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Introduction
DNA represents a major target for chemotherapeutic strategy in 

human cancers, particularly for those where elevated proliferation 
rates of some tumor cell types have resulted in sensitivity to drugs, 
which obstruct transcription and replication of their DNA [1]. Plenty 
of research projects are endeavored designing new molecules that 
are able to interact with the double stranded DNA (dsDNA) of 
tumor cells. Among DNA recognizing small molecules, intercalators 
represent an important group of potential anticancer drugs [2,3]. 
Ethidium bromide is a cationic dye and can interact with ds DNA by 
intercalation between the base pairs [4-7]. The fluorescent complex 
between ethidium bromide and DNA was reported previously [4-7]. 
A large increase in fluorescence is observed when ethidium bromide 
intercalates DNA making it a useful probe to measure drug–DNA 
interactions [8-10].There are two binding sites where ethidium 
bromide can bind to the DNA: a primary site, which has been 
interpreted as intercalation between base pairs, and a secondary  

 
site, which is considered to serve for electrostatic interactions, 
between the cationic ethidium bromide and the anionic phosphate 
groups located at the DNA surface [11,12].

The polyamines, spermine and spermidine and their diamine 
precursor putrescine are naturally occurring, polycationic 
alkylamines that are essential for the cell growth. The need 
of polyamines is often dysregulated in cancer and other 
hyperproliferative diseases, it therefore appears eligible making 
polyamine function and metabolism an important target for 
therapeutic intervention [13-15]. Many cationic polymers such as 
polylysine, polyethylenimine and fractured dendrimers can interact 
with DNA and form a complex. These polymers interact with DNA 
through electrostatic interaction forming a unit structure with 
toroidal morphology. The level of aggregation of the unit structures 
in solution depends on the features of the individual polymer [16]. 
Dendrimers are a class of polymers which distinguishes them 
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from linear polymers by their remarkable chemical and physical 
properties, which can be controlled during their synthesis. They are 
normally synthesized from a central polyfunctional core, branching 
segment and a surface called periphery. The periphery segments 
are the most effective parts in the dendrimers, they control the 
solubility and bioactivity. The potential of using dendrimers as 
vessels or hosts for other molecules was strikingly demonstrated 
by many researchers [17-20]. Amine terminal groups adds positive 
charge to the surface of dendrimersthat can be used for electrostatic 
drug interactions. Polyamide dendrimer based on tetraethyl-
1,1,3,3-propanetetracaroxylate synthesized through repeating 
amide formation of 1,6-diaminohexane with adipoyl chloride, 

tris(hydroxymethyl) aminomethane was introduced as branching 
point. The main aim of our study was to explore the ability of 
polyamines and polyamidedendrimers polymers to displace the 
ethidium bromide binding dye from the genomic DNA giving the 
opportunity to create new effective substances for cancer therapy.

Materials and Methods
Table 1 summaries the chemical structures of the compounds 

used in the study. Spermine dihydrate was purchased from Sigma 
Aldrich, cat No. 85588. The G2-NH2 and G4-NH2 were obtained from 
Dr. Ali Elejmi’s team (Chemistry Department, Tripoli University) 
(Table 1).

Table 1: Chemical structures of spermine, G2-NH2 and G4-NH2 molecules.
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DNA binding properties

To study how competently the synthesized compounds, interact 
with genomic DNA (G-DNA), we investigated their DNA binding 

ability using fluorescence emission spectra. All experiments were 
conducted in Tris buffer (0.01M Tris, 0.1M NaCl, at pH 7.4). Glass-
distilled deionized water and analytical grade reagents were used 

http://dx.doi.org/10.33552/ABEB.2019.03.000563


Citation: Abdul M Gbaj, Ali Elejmi, Asma Abdalgader, Wael Elhrari, Inass A Sadawe, Abdulathim A Alshoushan, et al. Polyamide Dendrimers 
and Spermine Interact with DNA. Arch Biomed Eng & Biotechnol. 3(3): 2019. ABEB.MS.ID.000563. DOI: 10.33552/ABEB.2019.03.000563.

Archives in Biomedical Engineering & Biotechnology                                                                                                       Volume 3-Issue 3

Page 3 of 6

throughout experiments. pH values of solutions were measured 
with a calibrated Jenway pH-meter model 3510 (Staffordshire, 
UK). All buffer solutions were filtered through Millipore filters 
(Millipore, UK) of 0.45 mm pore diameter.

Absorbance spectra

Absorbance spectra were measured on a Jenway UV-visible 
spectrophotometer, model 6505 (London, UK) using quartz cells of 
1.00 cm path length. The UV-Vis absorbance spectra were recorded 
in the 200-500 nm range and a spectral bandwidth of 3.0 nm. For 
the final spectrum of each solution analyzed baseline subtraction 
of the buffer solution was performed. Genomic DNA was used in 
a concentration of 75 μg/ml. DNA was extracted from peripheral 
lymphocytes of anticoagulated blood (EDTA) sampled by Proteinase 
K digestion and phenol/chloroform extraction [21]. The purity 
was determined by measuring the absorbance at 260/280nm 
indicating that the sample was free from protein contamination 
[21]. The concentration was assayed spectrophotometrically using 
6600M-1cm-1 as a molar extinction coefficient at 260 nm.

Fluorescence spectra and DNA-binding studies

Fluorescence emission and excitation spectra were measured 
using a Jasco FP-6200 spectrofluorometer (Tokyo, Japan) using 
fluorescence 4-sided quartz cuvettes of 1.00 cm path length. 
The automatic shutter-on function was used to minimize photo 
bleaching of the sample. The selected excitation wavelength for 
ethidium bromide was 480 nm. The emission spectrum was 
corrected for background fluorescence of the buffer. Ethidium 
bromide (EB) fluorescence displacement experiment were 
performed by sequential addition of aliquots of 1790 μl Tris buffer, 
10 μl EB (final concentration of 72 μM), 100 μl G-DNA from stock 
solutions (1.5 mg/ml) and finally 10 μl of compounds (spermine, 
G2-NH2 and G4-NH2 final concentration of 50μM). Emission spectra 
were recorded for each system using excitation wavelengths of 
maximum fluorescence intensity determined for the systems at 
to be480 nm using a slit width of 5 nm to examine alterations in 
emission spectra resulting from the complex construction of both 
systems. After completion of the full systems, the system was 
allowed to equilibrate for 30 minutes at room temperature and 
emission spectra (500-730nm) were recorded to monitor changes 
in EB intensity.

Result and Discussion
DNA binding properties

Measurement of the capability of ligands to displace 
ethidium bromide from genomic DNA is established as a suitable 
measurement of DNA binding ability for both intercalative and non-
intercalative drugs. The displacement of ethidium bromide from 
DNA provides an indirect method of measuring the binding affinity 
of drugs that lack a chromophore as in case of spermine, G2-NH2 
and G4-NH2. To study how effective the three compounds interact 
with G-DNA, the DNA primary binding properties were explored by 
using fluorescence emission spectroscopy. Fluorescence emission 
experiments have been extensively used to study the spermine, 

G2-NH2 and G4-NH2 compound-DNA interactions, in which the 
fluorescence emissions of ethidium-DNA complex was decreased 
significantly in the presence of these compounds, which is in 
good agreement with fluorescence results of other intercalators 
reported in the literature [22]. The results indicate that all three 
compounds can interact with G-DNA. It is well established in the 
literature that polyamines have multiple positive charges in vivo 
and in vitro due to protonation of the amine groups, they will 
interact with negatively charged polynucleic acids. It has been 
estimated that a large amount of polyamines available in cells are 
associated with DNA or RNA [23]. Polyamines have been shown to 
provoke DNA condensation and to stabilize compact forms of DNA 
[24]. Polyamines are also able to promote secondary structural 
transitions of DNA with the B–Z transition of alternating purine/
pyrimidine oligonucleotides in solution [25]. All these features 
effect the fluorescence of ethidium bromide when it is displaced 
from the DNA by polyamines or polymers.

EB competition assay

The structural properties of the complex formed between 
genomic DNA and ethidium bromide using Raman microscopy 
equipped with near-infrared laser excitation was studied by Tsuboi, 
[26]. The study showed that the phenanthridinium plane is tilted by 
35±5° from the plane perpendicular to the fiber (DNA helix) axis. 
The study also assumed coplanarity of the phenanthridiniumbyring 
and its immediate base neighbors at the intercalation site. Such 
bases would have a tilt angle closer to that of A-DNA (20°) compared 
to B-DNA (6°) and the average base tilt in stretches of DNA between 
intercalation sites remains that of B-DNA [26]. In our experiments 
the entrenched quenching assay based on the displacement of the 
intercalating dye, ethidium bromide (EB), from G-DNA was utilized 
to explore the interaction mode between the complexes and G-DNA. 
EB is an extremely helpful DNA probe, which exhibits a significant 
increase in fluorescence intensity when intercalating into the 
base pair of DNA. However, the increased fluorescence can be 
obviously quenched when a second complex can replace the bound 
EB or break the secondary structure of DNA [27,28]. It has been 
shown that the groove DNA binders possibly cause the decrease 
in EB emission intensities [29,30]. The entire compounds do not 
fluoresce with an excitation at 612 nm. 

The EB competition assay results are shown in Figure 1. The 
fluorescence intensity of DNA-bounded EB at 612 nm decreased 
substantially in the presence of spermine, G2-NH2 or G4-NH2. This 
decrease in fluorescence intensity may be due to the quenching 
of some EB molecules that were released from DNA into the 
solution after being substituted by spermine, G2-NH2 and G4-NH2 
compounds. A similar phenomenon of fluorescence quenching 
caused by DNA - compound interactions has been reported 
previously [29,30] (Figure 1).

In addition, it has been reported that polyamine binding to 
DNA in the presence of ethidium bromide forming a polyamine–
DNA complex was not completely responsible for the release of 
ethidium bromide. Polyamines in high concentration induces DNA 
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bending leading to conformational changes within the double 
helix that helps the release of bound ethidium bromide [31,32]. 
Spermine, G2-NH2 and G4-NH2 have polybasic character. The three 
compounds bind strongly to genomic DNA molecules and stabilize 
them by neutralizing negative charges of phosphate groups and 
by decreasing the repulsion between complementary strands. 
The fluorescence quenching activity obtained in this study could 
be related to DNA condensation which generally depends on the 
positive charge of polyamines and this is consistent with reports 
in the literature [33-35]. In spermine the distance between amino 
groups attached to carbon atoms is nearly the same as the distance 
between phosphate anions in the DNA backbone. This makes 

spermine an ideal molecule for creating a zwitterionic structure that 
often perk up target affinity to DNA. This may explain the pattern 
that G2-NH2 and G4-NH2 bind to DNA even they are big molecules. 

The literature also confirms that polyamines and their polymers 
bind to the DNA. It is reported that both electrostatic and chemical 
interactions take place in polyamine-DNA binding using Raman 
spectroscopy [36,37]. In addition, modeling, x-ray diffraction, and 
solution studies have emphasized our understanding of interactions 
between polyamines and nucleic acids. Polyamines appear to ccupy 
specific sites, particularly the major and minor grooves, in different 
DNA conformations [38-40]. 

Figure 1: Fluorescence changes of ethidium bromide that contains (1) G-DNA-ethidium bromide complex, (2) G-DNA-ethidium bromide 
complex with 50 µm spermine (3) G-DNA-ethidium bromide complex with 50 µm G4-NH2(4) ethidium bromide alone and (5) G-DNA-ethidium 
bromide complex with 50 µm G2-NH2. Experiments were conducted in solutions containing: Tris buffer (0.01M Tris, 0.1M NaCl, at pH 7.4, λex 
= 480 nm. Genomic DNA was used in a concentration of 75 μg/ml and ethidium bromide 72 µM.

As shown is Figure 1, compound G2-NH2 had the highest 
quenching efficacy suggesting that compound G2-NH2 attaches 
most tightly to G-DNA - even more than spermine and G4-NH2. The 
differences in the fluorescence quenching ability between G2-NH2 
and G4-NH2 could be related to the fact that the conformational 
change of the double stranded DNA molecule induced by G2-NH2 is 
more pronounced than by G4-NH2. A reason may be that the chain 
branch lengths in G2-NH2 are shorter than the branches lengths in 
G4-NH2 dendrimers. ThusG4-NH2 dendrimers are less flexible and 
bulky, as a result of the increase of hydrogen bonds as branches 
increase. This result is confirmed by other researchers [16]. 
Moreover, the results shed light on the periphery interaction of 
dendrimers with DNA rather than at interior segments.

Conclusion
In conclusion, the polyamine field, predominantly in relation 

to cancer and other hyperproliferative disorders, is at an exciting 
stage. The molecular mechanisms related to polyamine function are 

now becoming more obvious, creating an enhanced understanding 
of the differential requirements for polyamines in tumor cells 
versus normal cells. In our study the DNA binding of the spermine, 
G2-NH2 and G4-NH2 was investigated by fluorescence spectral 
techniques and revealed an intercalative interaction between them 
and G-DNA. Among the investigated three compounds G2-NH2 
showed the highest quenching affinity. Furthermore, the study 
provides evidence that the bulkiness of the molecules play role in 
the interaction with DNA.
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