Wade T. Tinkham

Wade T. Tinkham
US Forest Service | FS

PhD

About

58
Publications
23,017
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,478
Citations
Additional affiliations
August 2014 - present
Colorado State University
Position
  • PostDoc Position

Publications

Publications (58)
Article
Full-text available
Uncrewed aerial system (UAS) structure from motion (SfM) monitoring strategies for individual trees has rapidly expanded in the early 21st century. It has become common for studies to report accuracies for individual tree heights and DBH, along with stand density metrics. This study evaluates individual tree detection and stand basal area accuracy...
Article
Full-text available
Background Forest structural characteristics, the burning environment, and the choice of ignition pattern each influence prescribed fire behaviors and resulting fire effects; however, few studies examine the influences and interactions of these factors. Understanding how interactions among these drivers can influence prescribed fire behavior and ef...
Article
Full-text available
The USDA Forest Service recently launched a Wildfire Crisis Strategy outlining objectives to safeguard communities and other values at risk by substantially increasing the pace and scale of fuel reduction treatment. This analysis quantified layered operational constraints to mechanical fuel reduction treatments, including existing vegetation, prote...
Article
Full-text available
Increasingly, dry conifer forest restoration has focused on reestablishing horizontal and vertical complexity and ecological functions associated with frequent, low-intensity fires that characterize these systems. However, most forest inventory approaches lack the resolution, extent, or spatial explicitness for describing tree-level spatial aggrega...
Article
Full-text available
The number of large, high-severity wildfires has been increasing across the western United States over the last several decades. It is not fully understood how changes in the frequency of large, severe wildfires may impact the resilience of conifer forests, due to alterations in regeneration success or failure. Our research investigates 30 years of...
Article
Increasing frequency of droughts and wildfire are sparking concerns that these compounded disturbance events are pushing forested ecosystems beyond recovery. An improved understanding of how compounded events affect tree physiology and mortality is needed given the reliance of fire management planning on accurate estimates of postfire tree mortalit...
Article
Full-text available
Water supply is a critical component of tree physiological health, influencing a tree’s photosynthetic activity and resilience to disturbances. The climatic regions of the western United States are particularly at risk from increasing drought, fire, and pest interactions. Existing methods for quantifying drought stress and a tree’s relative resilie...
Article
Full-text available
The influence of forest treatments on wildfire effects is challenging to interpret. This is, in part, because the impact forest treatments have on wildfire can be slight and variable across many factors. Effectiveness of a treatment also depends on the metric considered. We present and define human–fire interaction, fire behavior, and ecological me...
Article
Full-text available
Patterns of spatial heterogeneity in forests and other fire-prone ecosystems are increasingly recognized as critical for predicting fire behavior and subsequent fire effects. Given the difficulty in sampling continuous spatial patterns across scales, statistical approaches are common to scale from plot to landscapes. This study compared the perform...
Article
Full-text available
Increasing global temperatures and variability in the timing, quantity, and intensity of precipitation and wind have led to longer fire season lengths, greater fuel availability, and more intense and severe wildfires [...]
Article
Full-text available
The reliability of forest management decisions partly depends on the quality and extent of the data needed for the decision. However, the relatively high cost of traditional field sampling limits sampling intensity and data quality. One strategy to increase data quality and extent, while reducing the overall sample effort, is using remote sensing-b...
Article
Full-text available
Research has shown that urban tree canopy (UTC) provides a multitude of ecosystem services to people in cities, yet the benefits and costs of trees are not always equitably distributed among residents and households. To support urban forest managers and sustainability planning, many studies have analyzed the relationships between UTC and various mo...
Article
Full-text available
Monitoring of tree spatial arrangement is increasingly essential for restoration of dry conifer forests. The presented method was developed for high-density point clouds, like those from unmanned aerial system imagery, to extract and model individual tree location, height, and diameter at breast height (DBH). Extraction of tree locations and height...
Article
Full-text available
The management of low-density savannah and woodland forests for carbon storage presents a mechanism to offset the expense of ecologically informed forest management strategies. However, existing carbon monitoring systems draw on vast amounts of either field observations or aerial light detection and ranging (LiDAR) collections, making them financia...
Chapter
O período entre 2018 e 2022 mostrou-nos que o problema dos incêndios à escala global não está a diminuir, antes pelo contrário. Parece que as consequências das alterações climáticas já estão a afectar a ocorrência de incêndios florestais em várias partes do Mundo, de uma forma que só esperaríamos que acontecesse vários anos mais tarde. Em muitos pa...
Article
Full-text available
Interest in prescribed fire science has grown over the past few decades due to the increasing application of prescribed fire by managers to mitigate wildfire hazards, restore biodiversity, and improve ecosystem resilience. Numerous ecological disciplines use prescribed fire experiments to provide land managers with evidence-based information to sup...
Article
Increased focus on restoring forest structural variation and spatial pattern in dry conifer forests has led to greater emphasis on forest monitoring strategies that can be summarized across scales. To inform restoration objectives with data sources that can characterize individual trees, groups of trees, and the entire stand, different remote sensi...
Article
Full-text available
Small-tree development affects future stand dynamics and dictates many ecological processes within a site. Accurately representing this critical component of stand development is important for evaluating treatment alternatives from fuel hazard reduction to harvest scheduling. As with all forest growth, competition with other vegetation is known to...
Article
Full-text available
Applications of unmanned aerial systems for forest monitoring are increasing and drive a need to understand how image processing workflows impact end-user products’ accuracy from tree detection methods. Increasing image overlap and making acquisitions at lower altitudes improve how structure from motion point clouds represents forest canopies. Howe...
Article
Full-text available
Characterization of forest structure is important for management-related decision making, monitoring, and adaptive management. Increasingly, observations of forest structure are needed at both finer resolutions and across greater extents to support spatially explicit management planning. Unmanned aerial system (UAS) based photogrammetry provides an...
Article
Full-text available
This paper presents a prototype Carbon Monitoring System (CMS) developed to produce regionally unbiased annual estimates of aboveground biomass (AGB). Our CMS employed a bottom-up, two-step modeling strategy beginning with a spatially and temporally biased sample: project datasets collected and contributed by US Forest Service (USFS) and other fore...
Article
Full-text available
In fire-adapted conifer forests of the Western U.S., changing land use has led to increased forest densities and fuel conditions partly responsible for increasing the extent of high-severity wildfires in the region. In response, land managers often use mechanical thinning treatments to reduce fuels and increase overstory structural complexity, whic...
Article
Full-text available
Research Highlights: The impact of variation in fuels and fuel dynamics among forest cover types on the outcome of fuel treatments is poorly understood. This study investigated the potential effects of treatment placement with respect to cover type on the development of potential fire behavior over time for 48 km2 of forest in Colorado, USA. Our fi...
Article
Full-text available
Land managers face constant challenges when balancing multiple land use goals that include ensuring that keystone species are protected. As mindful stewards of our natural areas we aim to promote, secure, and enhance our natural landscapes and the species that make them their home. When we focus our efforts on protecting and promoting pollinators a...
Article
Full-text available
The United States Forest Inventory and Analysis (FIA) program has been monitoring national forest resources in the United States for over 80 years; presented here is a synthesis of research applications for FIA data. A review of over 180 publications that directly utilize FIA data is broken down into broad categories of application and further orga...
Article
Full-text available
Wild bee community assemblages were surveyed in a high-elevation mixed conifer forest in central Colorado at multiple points during the growing season (April-August) and across a range of forest stand densities using blue vane traps. Understory forb communities were also characterized and related to bee species abundance and diversity. Overall γ-di...
Technical Report
Full-text available
Manipulation of forest spatial patterns has become a common objective in restoration prescriptions throughout the central and southern Rocky Mountain dry-mixed conifer forest systems. Pre-Euro-American settlement forest reconstructions indicate that frequent-fire regimes developed forests with complex mosaics of individual trees, tree clumps of var...
Article
Wildland fire emissions degrade air quality and visibility, having adverse economic, health and visibility impacts at large spatial scales globally. Air quality regulations can constrain the goals of landscape resilience and management of fire-dependent ecosystems. Here, we review the air quality regulatory framework in the United States, comparing...
Article
Climate change is projected to exacerbate the intensity of heat waves and drought, leading to a greater incidence of large and high intensity wildfires in forested ecosystems. Predicting responses of seedlings to such fires requires a process-based understanding of how the energy released during fires impacts plant physiology and mortality. Underst...
Article
Following typical forest inventory protocols, individual tree volume estimates are generally derived via diameter-at-breast-height (DBH) based allometry. Although effective, measurement of DBH remains time consuming and potentially a costly element in forest inventories. The capacity of airborne light detection and ranging (LiDAR) to provide indivi...
Article
Full-text available
There is growing consensus that spatial variability in fuel loading at scales down to 0.5m may govern fire behaviour and effects. However, there remains a lack of understanding of how fuels vary through space in wildland settings. This study quantifies surface fuel loading and its spatial variability in ponderosa pine sites before and after fuels t...
Article
Full-text available
The wildland-urban interface (WUI), the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and na...
Article
Full-text available
Restoration of pine forests has become a priority for managers who are beginning to embrace ideas of highly heterogeneous forest structures that potentially encourages high levels of regeneration. This study utilizes stem-mapped stands to assess how simulated regeneration timing and magnitude influence longevity of reduced fire behavior by linking...
Article
Full-text available
Geofences are virtual boundaries based on geographic coordinates. When combined with global position system (GPS), or more generally global navigation satellite system (GNSS) transmitters, geofences provide a powerful tool for monitoring the location and movements of objects of interest through proximity alarms. However, the accuracy of geofence al...
Article
Soil organic matter plays a key role in the global carbon cycle, representing three to four times the total carbon stored in plant or atmospheric pools. Although fires convert a portion of the faster cycling organic matter to slower cycling black carbon (BC), abiotic and biotic degradation processes can significantly shorten BC residence times. Rep...
Article
Accurate surface fuel load estimates based on the planar intercept method require a considerable amount of time and cost. Recently the photoload method has been proposed as an alternative for sampling of fine woody surface fuels. To evaluate the use of photoload fuel sampling, six simulated fuel beds of 100 photoload visual estimates and destructiv...
Article
Most landscape-scale fire severity research relies on correlations between field measures of fire effects and relatively simple spectral reflectance indices that are not direct measures of heat output or changes in plant physiology. Although many authors have highlighted limitations of this approach and called for improved assessments of severity,...
Article
Land managers lack locally relevant climate change science and are urgently calling for research to inform management. We conducted four climate change workshops in the U.S. northern Rocky Mountains and applied multiple methods of inquiry to understand whether the boundary organization (workshops) and objects (climate change science products) were...
Article
Full-text available
Recent mandates in the United States require federal agencies to incorporate climate change science into land management planning efforts. These mandates target possible adaptation and mitigation strategies. However, the degree to which climate change is actively being considered in agency planning and management decisions is largely unknown. We ex...
Article
As weight-based timber sales become more common in the Intermountain West, characterizing the factors affecting weight-to-volume relationships for softwood sawlogs has become more important. Several factors are thought to affect sawlog weight and volume (W:V) relationships, but the relative importance of weather, topography, species, and region in...
Article
Full-text available
Although fire is a common disturbance in shrub-steppe, few studies have specifically tested burned area mapping accuracy in these semiarid to arid environments. We conducted a preliminary assessment of the accuracy of the Monitoring Trends in Burn Severity (MTBS) burned area product on four shrub-steppe fires that exhibited varying degrees of withi...
Article
Although fire is a common disturbance in shrub–steppe, few studies have specifically tested burned area mapping accuracy in these semiarid to arid environments. We conducted a preliminary assessment of the accuracy of the Monitoring Trends in Burn Severity (MTBS) burned area product on four shrub–steppe fires that exhibited varying degrees of withi...
Article
Full-text available
Characterizing the moisture loss from felled trees is essential for determining weight-to-volume (W-V) relationships in softwood sawlogs. Several factors affect moisture loss, but research to quantify the effects of bole size and harvest method is limited. This study was designed to test whether bole size, harvest method, environmental factors, and...
Article
Full-text available
There is a growing professional and public perception that 'extreme' wildland fires are becoming more common due to changing climatic conditions. This concern is heightened in the wildland–urban interface where social and ecological effects converge. 'Mega-fires', 'conflagrations', 'extreme' and 'catastrophic' are descriptors interchangeably used i...
Article
There is increasing need to characterize the distribution of snow in complex terrain using remote sensing approaches, especially in isolated mountainous regions that are often water-limited, the principal source of terrestrial freshwater, and sensitive to climatic shifts and variations. We apply intensive topographic surveys, multi-temporal LiDAR,...
Conference Paper
Full-text available
GPS-VHF tracking systems can now integrate position tracking of multiple objects and personnel with onsite mapping on handheld devices and laptop computers. Combined GPSVHF systems require neither internet access nor cellular signal reception for real-time, operational safety and supply chain mapping and monitoring on site. This independence of aut...
Article
[1] Satellite based fire radiant energy retrievals are widely applied to assess biomass consumed and emissions at regional to global scales. A known potential source of uncertainty in biomass burning estimates arises from fuel moisture but this impact has not been quantified in previous studies. Controlled fire laboratory experiments are used in th...
Article
Full-text available
Light detection and ranging (lidar) is the premier technology for high-resolution elevation measurements in complex landscapes. Lidar error assessments allow for objective interpretation of Digital Elevation Models (DEMs) and products reliant on these layers. The purpose of this study is to spatially estimate the vertical error of a lidar-derived D...
Article
Full-text available
Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide an avenue in which fire-affected ecosystems can accumulate carbon over time, through the generation of highly resistant fire-altered carbon. Identifying how fuel moisture, and subsequent changes in the fire behavior, relates to the production of fire-a...
Article
Full-text available
Biomass burning by wildland fires has significant ecological, social and economic impacts. Satellite remote sensing provides direct measurements of radiative energy released by the fire (i.e. fire intensity) and surrogate measures of ecological change due to the fire (i.e. fire or burn severity). Despite anecdotal observations causally linking fire...
Article
Full-text available
Light detection and ranging, or LiDAR, effectively produces products spatially characterizing both terrain and vegetation structure; however, development and use of those products has outpaced our understanding of the errors within them. LiDAR’s ability to capture three-dimensional structure has led to interest in conducting or augmenting forest in...
Article
Light Detection and Ranging (LiDAR) has become one of the most effective and reliable means of characterizing surface topography and vegetation structure. Most LiDAR-derived estimates such as vegetation height, snow depth, and floodplain boundaries rely on the accurate creation of digital terrain models (DTM). As a result of the importance of an ac...
Article
Full-text available
With the progression of LiDAR (Light Detection and Ranging) towards a mainstream resource management tool, it has become necessary to understand how best to process and analyze the data. While most ground surface identification algorithms remain proprietary and have high purchase costs; a few are openly available, free to use, and are supported by...
Article
The use of Light Detection and Ranging (Lidar) for modeling a variety of topographic and vegetative variables has become widely accepted. While Lidar has been investigated in a range of environmental scenarios, recent studies have attempted to apply Lidar to watershed assessments of snow volume. One of the issues that have been presented with using...
Article
The use of Lidar (Light Detection and Ranging) technology is becoming one of the most effective and reliable means of collecting a variety of terrain and vegetation data. Most Lidar based estimates come from the creation of digital elevation models (DEM). As a result of the DEM's importance in using Lidar data as a management tool, it is necessary...

Network

Cited By