Wade T. TinkhamUS Forest Service | FS
Wade T. Tinkham
PhD
About
58
Publications
23,017
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,478
Citations
Introduction
Additional affiliations
August 2014 - present
Publications
Publications (58)
Uncrewed aerial system (UAS) structure from motion (SfM) monitoring strategies for individual trees has rapidly expanded in the early 21st century. It has become common for studies to report accuracies for individual tree heights and DBH, along with stand density metrics. This study evaluates individual tree detection and stand basal area accuracy...
Background
Forest structural characteristics, the burning environment, and the choice of ignition pattern each influence prescribed fire behaviors and resulting fire effects; however, few studies examine the influences and interactions of these factors. Understanding how interactions among these drivers can influence prescribed fire behavior and ef...
The USDA Forest Service recently launched a Wildfire Crisis Strategy outlining objectives to safeguard communities and other values at risk by substantially increasing the pace and scale of fuel reduction treatment. This analysis quantified layered operational constraints to mechanical fuel reduction treatments, including existing vegetation, prote...
Increasingly, dry conifer forest restoration has focused on reestablishing horizontal and vertical complexity and ecological functions associated with frequent, low-intensity fires that characterize these systems. However, most forest inventory approaches lack the resolution, extent, or spatial explicitness for describing tree-level spatial aggrega...
The number of large, high-severity wildfires has been increasing across the western United States over the last several decades. It is not fully understood how changes in the frequency of large, severe wildfires may impact the resilience of conifer forests, due to alterations in regeneration success or failure. Our research investigates 30 years of...
Increasing frequency of droughts and wildfire are sparking concerns that these compounded disturbance events are pushing forested ecosystems beyond recovery. An improved understanding of how compounded events affect tree physiology and mortality is needed given the reliance of fire management planning on accurate estimates of postfire tree mortalit...
Water supply is a critical component of tree physiological health, influencing a tree’s photosynthetic activity and resilience to disturbances. The climatic regions of the western United States are particularly at risk from increasing drought, fire, and pest interactions. Existing methods for quantifying drought stress and a tree’s relative resilie...
The influence of forest treatments on wildfire effects is challenging to interpret. This is, in part, because the impact forest treatments have on wildfire can be slight and variable across many factors. Effectiveness of a treatment also depends on the metric considered. We present and define human–fire interaction, fire behavior, and ecological me...
Patterns of spatial heterogeneity in forests and other fire-prone ecosystems are increasingly recognized as critical for predicting fire behavior and subsequent fire effects. Given the difficulty in sampling continuous spatial patterns across scales, statistical approaches are common to scale from plot to landscapes. This study compared the perform...
Increasing global temperatures and variability in the timing, quantity, and intensity of precipitation and wind have led to longer fire season lengths, greater fuel availability, and more intense and severe wildfires [...]
The reliability of forest management decisions partly depends on the quality and extent of the data needed for the decision. However, the relatively high cost of traditional field sampling limits sampling intensity and data quality. One strategy to increase data quality and extent, while reducing the overall sample effort, is using remote sensing-b...
Research has shown that urban tree canopy (UTC) provides a multitude of ecosystem services to people in cities, yet the benefits and costs of trees are not always equitably distributed among residents and households. To support urban forest managers and sustainability planning, many studies have analyzed the relationships between UTC and various mo...
Monitoring of tree spatial arrangement is increasingly essential for restoration of dry conifer forests. The presented method was developed for high-density point clouds, like those from unmanned aerial system imagery, to extract and model individual tree location, height, and diameter at breast height (DBH). Extraction of tree locations and height...
The management of low-density savannah and woodland forests for carbon storage presents a mechanism to offset the expense of ecologically informed forest management strategies. However, existing carbon monitoring systems draw on vast amounts of either field observations or aerial light detection and ranging (LiDAR) collections, making them financia...
O período entre 2018 e 2022 mostrou-nos que o problema dos incêndios à escala global não está a diminuir, antes pelo contrário. Parece que as consequências das alterações climáticas já estão a afectar a ocorrência de incêndios florestais em várias partes do Mundo, de uma forma que só esperaríamos que acontecesse vários anos mais tarde. Em muitos pa...
Interest in prescribed fire science has grown over the past few decades due to the increasing application of prescribed fire by managers to mitigate wildfire hazards, restore biodiversity, and improve ecosystem resilience. Numerous ecological disciplines use prescribed fire experiments to provide land managers with evidence-based information to sup...
Increased focus on restoring forest structural variation and spatial pattern in dry conifer forests has led to greater emphasis on forest monitoring strategies that can be summarized across scales. To inform restoration objectives with data sources that can characterize individual trees, groups of trees, and the entire stand, different remote sensi...
Small-tree development affects future stand dynamics and dictates many ecological processes within a site. Accurately representing this critical component of stand development is important for evaluating treatment alternatives from fuel hazard reduction to harvest scheduling. As with all forest growth, competition with other vegetation is known to...
Applications of unmanned aerial systems for forest monitoring are increasing and drive a need to understand how image processing workflows impact end-user products’ accuracy from tree detection methods. Increasing image overlap and making acquisitions at lower altitudes improve how structure from motion point clouds represents forest canopies. Howe...
Characterization of forest structure is important for management-related decision making, monitoring, and adaptive management. Increasingly, observations of forest structure are needed at both finer resolutions and across greater extents to support spatially explicit management planning. Unmanned aerial system (UAS) based photogrammetry provides an...
This paper presents a prototype Carbon Monitoring System (CMS) developed to produce regionally unbiased annual estimates of aboveground biomass (AGB). Our CMS employed a bottom-up, two-step modeling strategy beginning with a spatially and temporally biased sample: project datasets collected and contributed by US Forest Service (USFS) and other fore...
In fire-adapted conifer forests of the Western U.S., changing land use has led to increased forest densities and fuel conditions partly responsible for increasing the extent of high-severity wildfires in the region. In response, land managers often use mechanical thinning treatments to reduce fuels and increase overstory structural complexity, whic...
Research Highlights: The impact of variation in fuels and fuel dynamics among forest cover types on the outcome of fuel treatments is poorly understood. This study investigated the potential effects of treatment placement with respect to cover type on the development of potential fire behavior over time for 48 km2 of forest in Colorado, USA. Our fi...
Land managers face constant challenges when balancing multiple
land use goals that include ensuring that keystone species
are protected. As mindful stewards of our natural areas we aim
to promote, secure, and enhance our natural landscapes and the
species that make them their home. When we focus our efforts
on protecting and promoting pollinators a...
The United States Forest Inventory and Analysis (FIA) program has been monitoring national forest resources in the United States for over 80 years; presented here is a synthesis of research applications for FIA data. A review of over 180 publications that directly utilize FIA data is broken down into broad categories of application and further orga...
Wild bee community assemblages were surveyed in a high-elevation mixed conifer forest in central Colorado at multiple points during the growing season (April-August) and across a range of forest stand densities using blue vane traps. Understory forb communities were also characterized and related to bee species abundance and diversity. Overall γ-di...
Manipulation of forest spatial patterns has become a common objective in restoration prescriptions throughout the central and southern Rocky Mountain dry-mixed conifer forest systems. Pre-Euro-American settlement forest reconstructions indicate that frequent-fire regimes developed forests with complex mosaics of individual trees, tree clumps of var...
Wildland fire emissions degrade air quality and visibility, having adverse economic, health and visibility impacts at large spatial scales globally. Air quality regulations can constrain the goals of landscape resilience and management of fire-dependent ecosystems. Here, we review the air quality regulatory framework in the United States, comparing...
Climate change is projected to exacerbate the intensity of heat waves and drought, leading to a greater incidence of large and high intensity wildfires in forested ecosystems. Predicting responses of seedlings to such fires requires a process-based understanding of how the energy released during fires impacts plant physiology and mortality. Underst...
Following typical forest inventory protocols, individual tree volume estimates are generally derived via diameter-at-breast-height (DBH) based allometry. Although effective, measurement of DBH remains time consuming and potentially a costly element in forest inventories. The capacity of airborne light detection and ranging (LiDAR) to provide indivi...
There is growing consensus that spatial variability in fuel loading at scales down to 0.5m may govern fire behaviour and effects. However, there remains a lack of understanding of how fuels vary through space in wildland settings. This study quantifies surface fuel loading and its spatial variability in ponderosa pine sites before and after fuels t...
The wildland-urban interface (WUI), the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and na...
Restoration of pine forests has become a priority for managers who are beginning to embrace ideas of highly heterogeneous forest structures that potentially encourages high levels of regeneration. This study utilizes stem-mapped stands to assess how simulated regeneration timing and magnitude influence longevity of reduced fire behavior by linking...
Geofences are virtual boundaries based on geographic coordinates. When combined
with global position system (GPS), or more generally global navigation satellite system (GNSS)
transmitters, geofences provide a powerful tool for monitoring the location and movements of objects
of interest through proximity alarms. However, the accuracy of geofence al...
Soil organic matter plays a key role in the global carbon cycle, representing three to four times the total carbon stored in plant or atmospheric pools. Although fires convert a portion of the faster cycling organic matter to slower cycling black carbon (BC), abiotic and biotic degradation processes can significantly shorten BC residence times. Rep...
Accurate surface fuel load estimates based on the planar intercept method require a considerable amount of
time and cost. Recently the photoload method has been proposed as an alternative for sampling of fine woody surface fuels. To evaluate the use of photoload fuel sampling, six simulated fuel beds of 100 photoload visual estimates and destructiv...
Most landscape-scale fire severity research relies on correlations between field measures of fire effects and relatively simple spectral reflectance indices that are not direct measures of heat output or changes in plant physiology. Although many authors have highlighted limitations of this approach and called for improved assessments of severity,...
Land managers lack locally relevant climate change science and are urgently calling for research to inform management. We conducted four climate change workshops in the U.S. northern Rocky Mountains and applied multiple methods of inquiry to understand whether the boundary organization (workshops) and objects (climate change science products) were...
Recent mandates in the United States require federal agencies to incorporate climate change science into land management planning efforts. These mandates target possible adaptation and mitigation strategies. However, the degree to which climate change is actively being considered in agency planning and management decisions is largely unknown. We ex...
As weight-based timber sales become more common in the Intermountain West, characterizing the factors affecting weight-to-volume relationships for softwood sawlogs has become more important. Several factors are thought to affect sawlog weight and volume (W:V) relationships, but the relative importance of weather, topography, species, and region in...
Although fire is a common disturbance in shrub-steppe, few studies have specifically tested burned area mapping accuracy in these semiarid to arid environments. We conducted a preliminary assessment of the accuracy of the Monitoring Trends in Burn Severity (MTBS) burned area product on four shrub-steppe fires that exhibited varying degrees of withi...
Although fire is a common disturbance in shrub–steppe, few studies have specifically tested burned area
mapping accuracy in these semiarid to arid environments. We conducted a preliminary assessment of the accuracy of the
Monitoring Trends in Burn Severity (MTBS) burned area product on four shrub–steppe fires that exhibited varying
degrees of withi...
Characterizing the moisture loss from felled trees is essential for determining weight-to-volume (W-V) relationships in softwood sawlogs. Several factors affect moisture loss, but research to quantify the effects of bole size and harvest method is limited. This study was designed to test whether bole size, harvest method, environmental factors, and...
There is a growing professional and public perception that 'extreme' wildland fires are becoming more common due to changing climatic conditions. This concern is heightened in the wildland–urban interface where social and ecological effects converge. 'Mega-fires', 'conflagrations', 'extreme' and 'catastrophic' are descriptors interchangeably used i...
There is increasing need to characterize the distribution of snow in complex terrain using remote sensing approaches, especially in isolated mountainous regions that are often water-limited, the principal source of terrestrial freshwater, and sensitive to climatic shifts and variations. We apply intensive topographic surveys, multi-temporal LiDAR,...
GPS-VHF tracking systems can now integrate position tracking of multiple objects and
personnel with onsite mapping on handheld devices and laptop computers. Combined GPSVHF
systems require neither internet access nor cellular signal reception for real-time,
operational safety and supply chain mapping and monitoring on site. This independence of
aut...
[1] Satellite based fire radiant energy retrievals are widely applied to assess biomass consumed and emissions at regional to global scales. A known potential source of uncertainty in biomass burning estimates arises from fuel moisture but this impact has not been quantified in previous studies. Controlled fire laboratory experiments are used in th...
Light detection and ranging (lidar) is the premier technology for high-resolution elevation measurements in complex landscapes. Lidar error assessments allow for objective interpretation of Digital Elevation Models (DEMs) and products reliant on these layers. The purpose of this
study is to spatially estimate the vertical error of a lidar-derived D...
Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide an avenue in which fire-affected ecosystems can accumulate carbon over time, through the generation of highly resistant fire-altered carbon. Identifying how fuel moisture, and subsequent changes in the fire behavior, relates to the production of fire-a...
Biomass burning by wildland fires has significant ecological, social and economic impacts. Satellite remote sensing provides direct measurements of radiative energy released by the fire (i.e. fire intensity) and surrogate measures of ecological change due to the fire (i.e. fire or burn severity). Despite anecdotal observations causally linking fire...
Light detection and ranging, or LiDAR, effectively produces products spatially characterizing both terrain and vegetation structure; however, development and use of those products has outpaced our understanding of the errors within them. LiDAR’s ability to capture three-dimensional structure has led to interest in conducting or augmenting forest in...
Light Detection and Ranging (LiDAR) has become one of the most effective
and reliable means of characterizing surface topography and vegetation
structure. Most LiDAR-derived estimates such as vegetation height, snow
depth, and floodplain boundaries rely on the accurate creation of
digital terrain models (DTM). As a result of the importance of an
ac...
With the progression of LiDAR (Light Detection and Ranging) towards a mainstream resource management tool, it has become necessary to understand how best to process and analyze the data. While most ground surface identification algorithms remain proprietary and have high purchase costs; a few are openly available, free to use, and are supported by...
The use of Light Detection and Ranging (Lidar) for modeling a variety of topographic and vegetative variables has become widely accepted. While Lidar has been investigated in a range of environmental scenarios, recent studies have attempted to apply Lidar to watershed assessments of snow volume. One of the issues that have been presented with using...
The use of Lidar (Light Detection and Ranging) technology is becoming one of the most effective and reliable means of collecting a variety of terrain and vegetation data. Most Lidar based estimates come from the creation of digital elevation models (DEM). As a result of the DEM's importance in using Lidar data as a management tool, it is necessary...