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Abstract

A ring R is called right weakly continuous if the right annihilator of each element is essential
in a summand of R, and R satisfies the right C2-condition (every right ideal that is isomorphic
to a direct summand of R is itself a direct summand). We show that a ring R is right weakly
continuous if and only if it is semiregular and J(R) = Z(RR). Unlike right continuous rings,
these right weakly continuous rings form a Morita invariant class. The rings satisfying the right
C2-condition are studied and used to investigate two conjectures about strongly right Johns
rings and right FGF-rings and their relation to quasi-Frobenius rings.

A ring R is called semiregular if R/J(R) is regular and idempotents lift modulo J(R). A well known
result of Utumi [19] asserts that if R is a right selfinjective ring (indeed a right continuous ring)
then R is semiregular and J(R) = Z(RR). In this paper we investigate how much of a converse there
is to Utumi’s result. We show that a ring R is semiregular with J(R) = Z(RR) if and only if the
right annihilator of every element is essential in a direct summand of R, and every right ideal that
is isomorphic to a direct summand of R is itself a summand (R is a right C2-ring). Consequently
we call such a ring right weakly continuous, and we show that R is right weakly continuous if and
only if it is Z(RR)-semiregular, a natural generalization of semiregularity. Finally, we show that,
unlike the right continuous rings, the right weakly continuous rings form a Morita invariant class.

Next, we investigate the right C2-rings and their connection with the FGF-conjecture, which
asserts that every right FGF-ring is quasi-Frobenius. Here a ring R is called an FGF-ring if every
finitely generated right R-module can be embedded in a free module. We show that the conjecture
is true if every right FGF-ring is a right C2-ring. We also show that every right FP-injective, right
FGF-ring is quasi-Frobenius. In addition, the right C2-rings are related to the Johns conjecture. A
ring R is called strongly right Johns [8] if it is right noetherian and every right ideal in each matrix
ring over R is an annihilator, and it is an open question whether every strongly right Johns ring is
quasi-Frobenius. We show that every strongly right Johns, right C2-ring is quasi-Frobenius.

Throughout this paper the ring R is always associative with unity and all R-modules are unital.
We write J = J(R) for the Jacobson radical of R. If MR is a right R-module, we write Z(M)
and soc(M), respectively, for the singular submodule and the socle of M . For a ring R, we write
soc(RR) = Sr, soc(RR) = Sl, Z(RR) = Zr and Z(RR) = Zl. The notations N ⊆ess M and
N ⊆max M mean that N is an essential, (respectively maximal) submodule of M. We write Mn(R)



for the ring of n×n matrices over R. Right annihilators will be denoted as rX(Y ) = {x ∈ X | yx = 0
for all y ∈ Y }, with a similar definition of left annihilators lX(Y ).

1. I-Semiregular Rings

An element a in a ring R is called regular if aca = a for some c ∈ R, and R itself is called
(von Neumann) regular if every element is regular. We begin with a weakening of the regularity
condition.

Lemma 1.1. Let I be an ideal of a ring R. The following are equivalent for a ∈ R :
(1) There exists e2 = e ∈ aR with a− ea ∈ I.
(2) There exists e2 = e ∈ aR with aR ∩ (1− e)R ⊆ I.
(3) aR = eR⊕ S where e2 = e and S ⊆ I is a right ideal.

Proof. Given (1) we have aR = eR ⊕ [aR ∩ (1 − e)R]. If x ∈ aR ∩ (1 − e)R then x = (1 − e)x ∈
(1− e)aR ⊆ I. This proves (2). If (2) holds, (3) follows with S = aR ∩ (1− e)R. Finally, given (3)
write a = er + s. Then a− ea = s− es ∈ I because S ⊆ I, proving (1). �

If I is an ideal of a ring R, an element a ∈ R is called right I-semiregular if the conditions
in Lemma 1.1 are satisfied, and R is called a right I-semiregular ring if every element is right
I-semiregular. Left I-semiregular elements and rings are defined analogously. A ring is called
semiregular [13] if it is right (equivalently left) J-semiregular. In particular, if R is semiregular
then R is left and right I-semiregular for every ideal I ⊇ J. In general we have

Theorem 1.2. The following conditions are equivalent for an ideal I of a ring R :
(1) R is right I-semiregular.
(2) For all finitely generated right ideals T ⊆ R, there exists e2 = e ∈ T with T ∩ (1− e)R ⊆ I.
(3) For all finitely generated right ideals T ⊆ R, T = eR⊕ S where e2 = e and S ⊆ I is a

right ideal.
When these conditions are satisfied we have:

(i) J ⊆ I, Zr ⊆ I and Zl ⊆ I.
(ii) R/I is regular and idempotents can be lifted modulo I.
(iii) For all a ∈ R, there exists a regular element d ∈ R with a− d ∈ I.
(iv) Every right ideal of R that is not contained in I contains an idempotent not in I.

Proof. (1)⇒(2). We induct on n where T = a1R + · · · + anR. If n = 1 there is nothing to prove
by (1). If n ≥ 2 then (1) gives f2 = f ∈ a1R with (1− f)a1R ⊆ I. Write K = (1− f)a2R + · · ·+
(1 − f)anR. Since f ∈ a1R we have T = a1R + K. By induction, choose g2 = g ∈ K such that
(1− g)K = K ∩ (1− g)R ⊆ I. Then fg = 0 because g ∈ K, so e = f + g− gf is an idempotent and
e ∈ T. Thus it remains to verify that T ∩ (1 − e)R = (1 − e)T ⊆ I. But (1 − e) = (1 − g)(1 − f)
and (1− f)K = K, so

(1− e)T ⊆ (1− g)(1− f)a1R+ (1− g)(1− f)K ⊆ (1− g)I + (1− g)K ⊆ I.
This proves (2).

(2)⇒(3). Given (2) take S = T ∩ (1− e)R.
(3)⇒(1). This is clear by Lemma 1.1.
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Suppose these conditions hold. Then (iv) follows from Lemma 1.1, and (i) follows from (iv). Write
r̄ = r + I for each r ∈ R. If a ∈ R, (1) gives e2 = e ∈ aR such that a − ea ∈ I. If e = ab then
ā = ēā = āb̄ā, so R/I is regular. If in addition a2− a ∈ I then e− ae = ab− a2b = (a− a2)b ∈ I. If
f = e+ ea− eae then f2 = f ∈ aR and f̄ − ā = ē+ ēā− ē(āē)− ā = ē+ ēā− ē2 − ā = ēā− ā = 0̄.
This proves (ii). Furthermore, a− aba = a− ea ∈ I and (aba)b(aba) = aba. Hence (iii) follows with
d = aba. �

Example 1.3. If we take R = Z and I = 2Z, then R/I is regular (a field) and both idempotents 0
and 1 lift modulo I. Moreover if n ∈ R then n− d ∈ I where d = 0 or 1 according as n is even or
odd. Hence R satisfies (ii) and (iii) in Theorem 1.2, but R is not right I-semiregular since e ∈ 3Z
and 3− 3e ∈ I is impossible for e2 = e because e = 0 or e = 1. �

The next result shows that if J ⊆ I then (ii) and (iii) are equivalent to right (and left) I-
semiregularity. However this implies that I = J and R is semiregular.

Proposition 1.4. Let I be an ideal of a ring R. If I ⊆ J, the following are equivalent:
(1) R is right I-semiregular.
(2) R is left I-semiregular.
(3) For all a ∈ R, there exists a regular element d ∈ R with a− d ∈ I.
(4) R/I is regular and idempotents can be lifted modulo I.

When this is the case, I = J.

Proof. Since (3) and (4) are left-right symmetric, we prove (1)⇔(3) and (1)⇔(4). We have (1)⇒(3)
and (1)⇒(4) by Theorem 1.2.

(3)⇒(1). By (3) let a − d ∈ I where d is regular, say dcd = d. Write f = cd so f2 = f and
df = d. Then a− af = a(1− f) = (a− d)(1− f) ∈ I. Moreover, f − ca = c(d− a) ∈ I ⊆ J so let
u(1− f + ca) = 1 where u ∈ R. This gives fucaf = f, whence af(uc)af = af. Thus a−af ∈ I and
af is regular, so we may assume that d ∈ aR. Hence let a− d ∈ I where d ∈ aR and drd = d. Now
consider e = dr. Then e2 = e ∈ aR and, since ed = d, we have a−ea = (1−e)a = (1−e)(a−d) ∈ I.

(4)⇒(1). If a ∈ R let a − aba ∈ I where b ∈ R. Hence ba − (ba)2 ∈ I so by (4) choose f2 = f
such that f − ba ∈ I ⊆ J. Thus 1 − f + ba = u is a unit, so that fba = fu. It follows that
e = au−1fb ∈ aR is an idempotent. Writing r̄ = r + I in R/I, we have ū = 1̄ and āf̄ = āb̄ā = ā,
so ā− ēā = ā− āf̄ b̄ā = ā− āb̄ā = 0̄. Thus a− ea ∈ I, proving (1).

Finally, since we are assuming that I ⊆ J, we have I = J by Theorem 1.2. �

Note that Proposition 1.4 shows that either right or left J-semiregularity is equivalent to semireg-
ularity, as mentioned earlier.

2. Right Weakly Continuous Rings

Utumi identified two conditions enjoyed by any right selfinjective ring R :

C1 Every right ideal is essential in a summand of RR.
C2 If a right ideal T is isomorphic to a summand of RR then T is a summand.

A ring R is called right continuous if it satisfies C1 and C2. If R satisfies only C1 it is called a
right CS-ring. Our interest is mainly in the right C2-rings, that is rings R where RR satisfies the
C2-condition. We need the following well known fact (see [10, Proposition 1.19]).
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Lemma 2.1. Let KR ⊆ PR be modules where P is projective. Then K ⊆ess P if and only if P/K
is singular. In particular, if PR is both projective and singular, then P = 0.

Proposition 2.2. The following are equivalent for an element a ∈ R :
(1) r(a) ⊆ess fR for some f2 = f ∈ R.
(2) aR = P ⊕ S where PR is a projective right ideal and SR is a singular right ideal.

Proof. (1)⇒(2). Let r(a) ⊆ess (1− e)R where e2 = e ∈ R.
Claim. aR = aeR⊕ a(1− e)R.
Proof. Clearly aR = aeR + a(1 − e)R. If x ∈ aeR ∩ a(1 − e)R write x = aer = a(1 − e)s where
r, s ∈ R. Then er − (1− e)s ∈ r(a) ⊆ (1− e)R, so er = 0. Hence x = aer = 0, proving the Claim.

Now aeR ∼= eR because the multiplication map a· : eR → aeR has kernel {er | aer = 0} = eR ∩
r(a) = 0. Hence aeR is projective. Finally, a· : (1−e)R→ a(1−e)R has kernel (1−e)R∩r(a) = r(a).
Hence a(1−e)R ∼= (1−e)R/r(a), so a(1−e)R is singular by Lemma 2.1 because r(a) ⊆ess (1−e)R.

(2)⇒(1). Suppose that aR = P ⊕ S as in (2), and let π : aR → P be the projection with
ker(π) = S. Then define γ : R → P by γ(r) = π(ar), and write K = ker(γ). Then γ is onto so,
as P is projective, K = fR for some f2 = f ∈ R. Clearly r(a) ⊆ fR; it remains to verify that
r(a) ⊆ess fR. If k ∈ K then ak ∈ S because π(ak) = γ(k) = 0. Hence we have a map θ : K → S
defined by θ(k) = ak. Then ker(θ) = K ∩ r(a) = r(a) so K/r(a) ∼= im(θ) ⊆ S. Thus K/r(a) is
singular so, since K is projective, it follows that r(a) ⊆ess K by Lemma 2.1. �

Remark. In fact θ is epic in (2)⇒(1) so K/r(a) ∼= S. Indeed, if s ∈ S let s = ar. Then γ(r) =
π(ar) = 0 because S = ker(π), so r ∈ ker(γ) = K. Thus s = ar = θ(r).

Since a ring R is called a right CS-ring if every right ideal is essential in a summand of R, we
call a ring R a right ACS-ring (for annihilator-CS) if every element a ∈ R satisfies the conditions
in Proposition 2.2. (Note that we are employing the convention that 0 ⊆ess 0.) In order to prove
our main theorem, we need the following observation.

Lemma 2.3. If R is a right C2-ring then Zr ⊆ J.

Proof. If a ∈ Zr then, r(1− a) = 0 because r( a)∩ r(1− a) = 0, so (1− a)R ∼= R. Hence (1− a)R
is a direct summand of RR by hypothesis, whence R(1 − a) is a summand, say R(1 − a) = Rf,
f2 = f. But then (1 − f) ∈ r(1 − a) = 0, so R(1 − a) = R. Since this holds for every a ∈ Zr, we
have Zr ⊆ J. 2

Note that the converse of Lemma 2.3 is false: Consider the localization Z(p) of the ring of integers
at the prime p.

Theorem 2.4. The following are equivalent for a ring R:
(1) R is semiregular and J = Zr.
(2) R is right Zr-semiregular.
(3) If T is a finitely generated (respectively principal) right ideal, then T = eR⊕ S where

e2 = e ∈ R and S is a singular right ideal.
(4) R is a right ACS-ring and every finitely generated (respectively principal) projective right

ideal is a summand.
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(5) R is a right ACS-ring which is also a right C2-ring.

Proof. (1)⇒(2)⇒(3). These follow from Theorem 1.2.
(3)⇒(4). If a ∈ R, taking T = aR in (3) shows that R is a right ACS-ring by Proposition 2.2.

If T is a finitely generated (principal), projective right ideal of R, write T = eR⊕S as in (3). Then
SR is both singular and projective, so S = 0 by Lemma 2.1.

(4)⇒(5). To verify the right C2-condition, let T be a right ideal of R which is isomorphic to a
summand of RR. Then T is projective and principal, so T is a summand by (4), as required.

(5)⇒(1). Let a ∈ R. Since R is a right ACS-ring let aR = P ⊕S where P is projective and S is
singular. Thus P is isomorphic to a summand of RR (being projective) so the C2-condition ensures
that P = eR where e2 = e. Since S is singular we have S ⊆ Zr, and Zr ⊆ J by the C2-condition
(Lemma 2.3). Thus S ⊆ J, proving that R is semiregular. Finally, if a ∈ J then e2 = e ∈ J, so
e = 0 and aR = S is singular. Hence a ∈ Zr, proving that J ⊆ Zr. This proves (1). �

We call a ring right weakly continuous if it satisfies the conditions in Theorem 2.4. The name
comes from the fact that Condition (5) in Theorem 2.4 is a weakening of continuity.

Examples. (1) Utumi [19] proved that every right continuous ring (and hence every right selfin-
jective ring) is right weakly continuous.

(2) Every regular ring is right and left weakly continuous (with J = Zr = Zl = 0). Moreover,
it is easy to see that, for a right weakly continuous ring R, R is regular if and only if R is a right
semihereditary, if and only if R is a right PP-ring (every principal right ideal is projective).

(3) A ring R is called left Kasch if every simple left R-module embeds in R, and these rings
satisfies the right C2-condition by [20, Lemma 1.15]. Hence every left Kasch, right ACS-ring is right
weakly continuous by Theorem 2.4. It is easy to see that left Kasch, left PP-rings are semisimple;
this conclusion remains true if we replace left PP by right PP. Indeed, such a ring is right weakly
continuous. But Zr = 0 because R is a right PP-ring, so J = 0 and R is regular by Theorem 2.4.
Hence Zl = 0 so R is semisimple.

(4) If 0 and 1 are the only idempotents in R, then R is right weakly continuous if and only if
it is local with J = Zr. Call a ring I-finite if it contains no infinite set of orthogonal idempotents.
Then the I-finite, right weakly continuous rings are precisely the semiperfect rings with J = Zr.

(5) The ring Z of integers is an example of a commutative, noetherian ACS-ring which is not
weakly continuous, while the localization Z(p) of Z at the prime p is an example of a commutative,
local (hence semiregular) ACS-ring which is not weakly continuous.

(6) A direct product R = Πi∈IRi of rings Ri is right weakly continuous if and only if each Ri
is right weakly continuous.

(7) A ring R is called right principally injective (right P-injective) if, for each a ∈ R, every
R-linear map aR → R extends to R (equivalently if lr(a) = Ra). These rings are right C2-rings
by [15, Theorem 1.2] and satisfy J = Zr by [15, Theorem 2.1]. Hence every right P-injective,
right ACS-ring is right weakly continuous by Theorem 2.4. Note, however, that if F is a field then

R =

[
F F
0 F

]
is a right and left artinian, right and left ACS ring which is neither right nor left

weakly continuous because Zr = 0 = Zl while J 6= 0.
(8) If RVR is a bimodule over a ring R, the trivial extension of R by V is the direct sum

T (R, V ) = R ⊕ V with multiplication (r + v)(r′ + v′) = rr′ + (rv′ + vr′). The trivial extension
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R = T (Z,Q/Z) is a commutative P-injective ring, and so is a C2-ring with J = Zr, but it is not
weakly continuous because it is not semiregular (in fact R/J ∼= Z.)

Example 2.5. The following ring R is a right and left artinian, left continuous, right weakly
continuous ring which is not right continuous. The example is due essentially to Björk [2, Page 70].

Given a field F and an isomorphism a 7→ ā from F → F̄ ⊆ F, let R be the left F -space on basis
{1, t} with multiplication given by t2 = 0 and ta = āt for all a ∈ F. Then R is a local ring, and the
only left ideals are 0, J = Ft and R. Hence R is left artinian, left continuous and right principally
injective, and so has J = Zr by [14, Theorem 2.1]. Thus R is right weakly continuous and we claim
that it is not right continuous if dimF̄ (F ) ≥ 2. Indeed, if R were right continuous then, being local,
it would be right uniform. But if X and Y are nonzero F̄ -subspaces of F with X ∩ Y = 0 then
P = Xt and Q = Y t are nonzero right ideals with P ∩Q = 0. �

Right continuity is not a Morita invariant; in fact [19] the matrix ring M2(R) is right continuous
if and only if R is right selfinjective. However, semiregularity is a Morita invariant by [13, Corollary
2.8] as is the condition that J = Zr by [21, Lemma 1]. Hence we have

Theorem 2.6. Being right weakly continuous is a Morita invariant property of rings.

Corollary 2.7. The following are equivalent for a ring R :
(1) R is right selfinjective.
(2) R is right weakly continuous and R⊕R is CS as a right module.
(3) R is a right C2-ring and R⊕R is CS as a right module.

Proof. (1)⇒(3) is clear, and (3)⇒(2) because summands of CS-modules are CS.
(2)⇒(1). If the R is right weakly continuous, so also is M2(R) ∼= end(R⊕R) by Theorem 2.6.

In particular end(R⊕R) is a right C2-ring, and we will show in Theorem 3.8 below that this implies
that R⊕R has the right C2-condition. Hence R⊕R is continuous, and this implies that R is right
selfinjective by a theorem of Utumi [19]. 2

We conclude this section with a brief discussion of right ACS-rings. This class of rings includes
all domains, right uniform rings, right CS-rings; moreover every regular ring is a right and left
ACS-ring. If 0 and 1 are the only idempotents in R, then R is a right ACS-ring if and only if
every element a /∈ Zr satisfies r(a) = 0. In particular, the localization Z(p) of Z at the prime p is a
commutative, local (hence semiregular) ACS-ring in which Zr 6= J.

A direct product R = Πi∈IRi of rings is a right ACS-ring if and only if each Ri is a right
ACS-ring.

A ring R is a right PP-ring if and only if r(a) is a direct summand of R for every a ∈ R. Hence
the right PP-rings are precisely the right nonsingular, right ACS-rings. A result of Small [18] shows
that an I-finite, right PP-ring R is a Baer ring, that is every left (equivalently right) annihilator is
generated by an idempotent. (In particular R is left PP and has ACC and DCC on right and left
annihilators.) Small’s Theorem is the nonsingular case of the next result.

Proposition 2.8. Let R be a right ACS-ring.
(1) Every left annihilator L * Zr contains a nonzero idempotent.
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(2) If R is I-finite, every left annihilator L has the form L = Re⊕S where e2 = e and RS ⊆ Zr.

Proof. (1). If L = l(X), choose a ∈ L, a /∈ Zr. By hypothesis, r(a) ⊆ess eR where e2 = e, and
e 6= 1 because a /∈ Zr. Hence X ⊆ r(a) ⊆ eR, so 0 6= (1− e) ∈ l(X) = L.

(2). If L ⊆ Zr take e = 0 and S = L. Otherwise use (1) and the I-finite hypothesis to choose e
maximal in {e | 0 6= e2 = e ∈ L}, where e ≤ f means e ∈ fRf. Then L = Re⊕ [L ∩R(1− e)] so it
suffices to show that L ∩R(1− e) ⊆ Zr. If not let 0 6= f2 = f ∈ L ∩R(1− e) by (1). Then fe = 0
so g = e + f − ef satisfies g2 = g ∈ L and g ≥ e. Thus g = e by the choice of e, so f = ef and
f = f2 = f(ef) = 0, a contradiction. �

The proof of Proposition 2.2 goes through as written to prove the following module theoretic
version.

Lemma 2.9. If MR is a module, the following conditions are equivalent for m ∈M :
(1) r(m) ⊆ess eR for some e2 = e ∈ R.
(2) mR = P ⊕ S where PR is projective and SR is singular.

If R is a ring, we say that a right R-module MR is an ACS-module if the conditions in Lemma
2.9 are satisfied for every element m ∈ M. Hence a ring R is a right ACS-ring if and only if RR is
an ACS-module. The next result gives a similar characterization of the right CS-rings.

Proposition 2.10. A ring R is a right CS-ring if and only if every principal right R-module is an
ACS-module.

Proof. If R is a right CS-ring, let m ∈ MR. Then r(m) is a right ideal of R so r(m) ⊆ess eR
for some e2 = e ∈ R by the CS-condition. Conversely, let T be a right ideal of R and write
M = R/T = mR where m = 1 + T. By hypothesis M = P ⊕ S where PR is projective and SR
is singular. Hence Lemma 2.9 gives r(m) ⊆ess eR for some e2 = e ∈ R, and we are done because
r(m) = T. �

3. C2-Rings

In this section we study the C2-rings and use the results to make some progress on two conjectures
about quasi-Frobenius rings. Recall that a ring R is a right C2-ring if every right ideal that is
isomorphic to a direct summand of RR is itself a direct summand.

Examples. (1) Every right weakly continuous ring is a right C2-ring; every regular ring is a right
and left C2-ring.

(2) If 0 and 1 are the only idempotents in R then R is a right C2-ring if and only if every
monomorphism RR → RR is epic, equivalently r(a) = 0, a ∈ R, implies that a is a unit. In
particular, the only C2-domains are the division rings.

(3) If R is an I-finite C2-ring then every monomorphism RR → RR is epic. Indeed, if r(a) = 0,
a ∈ R then R ⊇ aR ⊇ a2R ⊇ a3R ⊇ · · · and each akR = ekR for some e2

k = ek because
akR ∼= R. Hence akR = ak+1R by the I-finite hypothesis, whence R = aR because r(a) = 0. Hence
monomorphisms RR → RR are epic. (A similar argument shows that if MR is a C2-module and
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end(M) is I-finite, then monomorphisms M → M are epic.) Note that any regular ring is a right
C2-ring and monomorphisms RR → RR are epic, but it need not be I-finite. However, we do not
know if I-finite rings in which monomorphisms RR → RR are epic must be right C2-rings.

(4) Every right P-injective ring is a right C2-ring by [15, Theorem 1.2]. The converse is false:
If V is a two-dimensional vector space over a field F , the trivial extension R = T (F, V ) = F ⊕ V
is a commutative, local, artinian C2-ring (see Corollary 3.5) with J2 = 0 and J = Zr, but R is not
P-injective. Indeed, if V = vF ⊕wF, let θ : V → V be a linear transformation with θ(v) = w. Then
(0, x) 7→ (0, θ(x)) is an R-linear map from (0, v)R → R which does not extend to R → R because
w /∈ vF.

(5) Every left Kasch ring is a right C2-ring by [20, Lemma 1.15], but the converse is not true
(consider any regular, right selfinjective ring that is not semisimple).

Example 3.1. There exists a left C2-ring R that is not a right C2-ring, and hence not left Kasch.
Faith and Menal [7] give an example of a right noetherian ring R in which every right ideal is an
annihilator, but which is not right artinian. Thus R is left P-injective ring, and hence is a left
C2-ring. But R is not right C2 because it would then be right artinian by Theorem 4.5 below. 2

Example 3.2. The trivial extension R = T (Z,Z2∞) is a commutative CS-ring with Zr = J 6= 0
which does not satisfy the C2-condition. In fact, R has simple essential socle. 2

We begin by deriving some of the basic characterizations of the right C2-rings.

Proposition 3.3. The following conditions are equivalent for a ring R :
(1) R is a right C2-ring.
(2) Every R-isomorphism aR→ eR, a ∈ R, e2 = e ∈ R, extends to R→ R.
(3) If r(a) = r(e), a ∈ R, e2 = e ∈ R, then e ∈ Ra.
(4) If r(a) = r(e), a ∈ R, e2 = e ∈ R, then Re = Ra.
(5) If Ra ⊆ Re ⊆ lr(a), a ∈ R, e2 = e ∈ R, then Re = Ra.
(6) If aR is projective, a ∈ R, then aR is a direct summand of RR.

Proof. (6)⇒(1)⇒(2)⇒(3)⇒(4)⇒(5) are routine computations. Assume that (5) holds. If aR is
projective then r(a) is a direct summand of R, say r(a) = r(e) for e2 = e. Thus a = ae, so Ra ⊆ Re.
But e ∈ lr(a) (because r(a) ⊆ r(e)) so we have Ra ⊆ Re ⊆ lr(a). Thus Ra = Re by (5), so Ra is
a direct summand of R, whence aR is a summand, proving (6). 2

Condition (3) of Proposition 3.3 gives

Corollary 3.4. The direct product ΠiRi of rings Ri is a right C2-ring if and only if each Ri is a
right C2-ring.

Corollary 3.5. The following conditions are equivalent for a local ring R :
(1) R is a right C2-ring.
(2) Every monomorphism RR → RR is epic.
(3) J = {a ∈ R | r(a) 6= 0}.

In particular, any local ring with nil radical is a right and left C2-ring.
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Proof. We have already observed that (1)⇒(2). Given (2), it is clear that J ⊆ {a ∈ R | r(a) 6= 0};
this is equality in a local ring. Hence (2)⇒(3). Finally, if (3) holds, suppose r(a) = r(e), a ∈ R,
e2 = e ∈ R. By Proposition 3.3 we must show that e ∈ Ra. This is clear if e = 0. If e = 1 then
r(a) = 0 so a /∈ J by (3). Hence Ra = R because R is local, and so e ∈ Ra as required. This proves
that (3)⇒(1). Finally the last statement follows from (3) because R is local. 2

Corollary 3.6. If R is a right C2-ring, so is fRf for any f2 = f ∈ R such that RfR = R.

Proof. Write S = fRf and suppose that rS(a) = rS(e), a ∈ S, e2 = e ∈ S. We must show that
e ∈ Sa. It suffices to show that e ∈ Ra so (by hypothesis) we show that rR(a) = rR(e). If r ∈ rR(a)
then, for all x ∈ R, a(frxf) = arxf = 0 so frxf ∈ rS(a) = rS(e). Thus erxf = 0 for all x ∈ R so,
as RfR = R, er = 0. Thus rR(a) ⊆ rR(e); the other inclusion is proved in the same way. 2

Proposition 3.6 is half of the proof that “right C2-ring” is a Morita invariant. We will characterize
when this is true in Corollary 3.11 below.

We now turn our attention to C2-modules and their relationship to their endomorphism ring.
We write dim(M) for the uniform dimension of a module M.

Proposition 3.7. Let MR be a finite-dimensional module.
(1) If M has the C2-condition then monomorphisms in end(M) are isomorphisms.
(2) In this case end(M) is semilocal.

Proof. If σ : M →M is monic, the C2-condition gives M = σ(M)⊕K, K ⊆M. If K 6= 0 then

dim(M) ≥ dim[σ(M)] + dim(K) > dim[σ(M)] = dim(M)

a contradiction. Hence K = 0, and so σ is an isomorphism. This proves (1), and then (2) follows
from a result of Camps and Dicks [5] because M is finite-dimensional. 2

Proposition 3.8. The following conditions are equivalent for a module MR with E = end(MR).
(1) MR has the C2-condition.
(2) If σ : N → P is an R-isomorphism where N ⊆M and P is a direct summand of M, then σ

extends to some β ∈ E.
(3) If α : P →M is R-monic where P is a direct summand of M, there exists β ∈ E with

β ◦ α = ι, where ι : P →M is the inclusion.
(4) If α : P →M is R-monic where P is a direct summand of M, and if π2 = π ∈ E satisfies

π(M) = P, there exists β ∈ E with π ◦ β ◦ α = 1P .

Proof. (1)⇒(2). If σ is as in (2), let M = N ⊕N ′ by (1). Then (n+ n′) 7→ σ(n) extends σ.
(2)⇒(3). If α is as in (3) then σ : α(P ) → P is an R-isomorphism if we define σ[α(p)] = p for

all p ∈ P. By (2) let β ∈ E extend σ. Then β ◦ α = ι.
(3)⇒(4). If α is as in (4), let β ◦ α = ι by (3) where β ∈ E. Then π ◦ β ◦ α = 1P .
(4)⇒(1). Suppose a submodule N ⊆ M is isomorphic to P where P is a direct summand of

M, say α : P → N is an R-isomorphism. We must show that N is a direct summand of M. If
π2 = π ∈ E satisfies π(M) = P, (4) provides β ∈ E such that π◦β◦α = 1P . Define θ = α◦π◦β ∈ E.

9



Then θ2 = θ and θ(M) ⊆ N, so we are done if we can show that N ⊆ θ(M). But θ ◦ α = α so
N = α(P ) = θ[α(P )] ⊆ θ(M), as required. 2

It is easy to verify that direct summands of a C2-module are again C2-modules. But the

direct sum of C2-modules need not be a C2-module. If R =

[
F F
0 F

]
, A =

[
F F
0 0

]
and

B =

[
0 0
0 F

]
where F is a field, then RR = A⊕B is not a C2-module because B ∼= J =

[
0 F
0 0

]
,

but both AR and BR are C2-modules (BR is simple, and AR has exactly one proper submodule
J � A).

Theorem 3.9. Let MR be a module and write E = end(MR). Then:
(1) If E is a right C2-ring then MR has the C2-condition.
(2) The converse in (1) holds if ker(α) is generated by M whenever α ∈ E is such that rE(α)

is a direct summand of EE .

Proof. (1). Let α : P → M be R-monic where P is a direct summand of M, let π2 = π ∈ E
satisfy π(M) = P, and write ker(π) = Q. Hence M = P ⊕Q and we extend α to ᾱ ∈ E by defining
ᾱ(p+ q) = α(p). Since α is monic, ker(ᾱ) = Q = ker(π). It follows that

rE(ᾱ) = {λ ∈ E | λ(M) ⊆ Q} = rE(π)

Since E is a right C2-ring, Proposition 3.3 gives π ∈ Eᾱ, say π = β ◦ ᾱ with β ∈ E. Then
π ◦ β ◦ α = 1P , and so MR has the C2-property by Proposition 3.8.

(2) Let rE(α) = rE(π) where α and π2 = π are in E. By Proposition 3.3, we must show that
π ∈ Eα.
Claim. ker(α) = ker(π).

Proof. 1 − π ∈ rE(π) = rE(α), so α = α ◦ π, whence ker(π) ⊆ ker(α). On the other hand,
our hypothesis gives ker(α) = Σ{θ(M) | θ ∈ E, θ(M) ⊆ ker(α)}. Since θ(M) ⊆ ker(α) implies
θ ∈ rE(α) = rE(π), it follows that θ(M) ⊆ ker(π). This means ker(α) ⊆ ker(π), proving the
Claim.

Now write π(M) = P and ker(π) = Q. Then P ∩ker(α) = 0 by the Claim so α|P is monic. Since
M has the C2-condition, Proposition 3.8 provides β ∈ E such that β ◦ (α|P ) = ι where ι : P →M
is the inclusion. We claim that β ◦α = π, which proves (2). If q ∈ Q then (β ◦α)(q) = 0 = π(q) by
the Claim; if p ∈ P then (β ◦ α)(p) = p = π(p). As M = P ⊕Q this shows that π = β ◦ α ∈ Eα, as
required. 2

Since a free module generates all of its submodules, we obtain

Corollary 3.10. If MR is free then M has the C2-condition if and only if end(MR) is a right
C2-ring. In particular Rnhas the right C2-condition if and only if Mn(R)is a right C2-ring

Question. Is “right C2-ring” a Morita invariant?

By Corollary 3.6, the answer is “yes” if we can show that M2(R) is a right C2-ring whenever R is
a right C2-ring. Hence Corollary 3.10 gives
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Corollary 3.11. The following conditions are equivalent:
(1) “Right C2-ring” is a Morita invariant.
(2) If R is a right C2-ring then (R⊕R)R has the C2-condition.

Call a ring R a strongly right C2-ring if Mn(R) is a right C2-ring for every n ≥ 1, equivalently
(by Corollary 3.10) if (Rn)R has the C2-condition for every n ≥ 1. Every right weakly continuous
ring is a strongly right C2-ring by Theorem 2.6. It is not difficult to check (using Corollary 3.6)
that “strongly right C2-ring” is a Morita invariant.

4. Applications

If a ring R has the property that every right module can be embedded in a free right module, then
R is quasi-Frobenius by a theorem of Faith and Walker (see [1, Theorem 31.9]). A ring R is called
a right FGF-ring if every finitely generated right R-module can be embedded in a free module, and
it is an open question whether every right FGF-ring is quasi-Frobenius (the FGF-Conjecture). The
conjecture is known to be true if the ring is either right selfinjective [3] or left Kasch [12]. Since
left Kasch rings are right C2-rings [20, Lemma 1.15], and since “left Kasch” is a Morita invariant,
the following theorem extends both these results.

Theorem 4.1. Suppose that R is a strongly right C2-ring and that every 2-generated right R-
module embeds in a free module. Then R is quasi-Frobenius.

Proof. Let a ∈ E(RR), where E(M) denotes the injective hull of a module M. Since R is right
FGF, let σ : R + aR → (Rn)R be monic. Then σ(R) is a summand of Rn by hypothesis because
σ(R) ∼= RR, and so σ(R) is a summand of σ(R + aR). But σ(R) ⊆ess σ(R + aR) because R ⊆ess
R + aR. This implies that a ∈ R, and hence that R = E(RR). Hence R is right selfinjective so,
since every principal right module embeds in a free module, R is quasi-Frobenius by [3, Theorem
2.5], using results of Osofsky [17]. 2

Corollary 4.2. Suppose that R is right weakly continuous and every 2-generated right R-module
embeds in a free module. Then R is quasi-Frobenius.

Proof. R is a strongly right C2-ring by Theorem 2.6. 2

Since being an FGF-ring is a Morita invariant, Theorem 4.1 immediately gives the following
simplification of what is required to prove the FGF-conjecture.

Theorem 4.3. The following statements are equivalent:
(1) Every right FGF-ring is a right C2-ring.
(2) Every right FGF-ring is quasi-Frobenius.

A module QR is called FP-injective if, whenever K is a finitely generated submodule of a free
right R-module F, every R-linear mapping K → Q extends to F. Our interest is in the right FP-
injective rings, that is the rings R for which RR is FP-injective. Examples include regular and right
selfinjective rings. The next result was formerly known only when R is a right selfinjective, right
FGF-ring.

11



Theorem 4.4. If R is a right FP-injective ring for which every 2-generated right module embeds
in a free module, then R is quasi-Frobenius.

Proof. Since FP-injectivity is a Morita invariant, each matrix ring Mn(R) is right FP-injective,
and hence is a right C2-ring by [15, Theorem 1.2]. Hence R is a strongly right C2-ring, and Theorem
4.1 completes the proof. 2

A ring R is called a right Johns ring [7] if it is right noetherian and every right ideal is an
annihilator, and R is called strongly right Johns [8] if the matrix ring Mn(R) is right Johns for
every n ≥ 1. It is an open question whether or not strongly right Johns rings are quasi-Frobenius.
A ring R is called a right CEP-ring if every cyclic right R-module can be essentially embedded in
a projective module. These rings are known [9, Corollary 2.9] to be right artinian. In the next
proposition we will show that right Johns rings and right CEP-rings are closely related. Moreover,
we show in Theorem 4.6 that strongly right Johns, right C2-rings are quasi-Frobenius.

Theorem 4.5. The following are equivalent for a ring R :
(1) R is a right CEP-ring.
(2) R is a right Johns, right C2-ring.

Proof. (1)⇒(2). Given (1), R is right artinian by [9, Corollary 2.9] and so is right noetherian, and
R satisfies the right C2-condition by [20, Proposition 1.10]. The right CEP-condition implies that
rl(T ) = T for every right ideal T of R.

(2)⇒(1). Given (2), R is a right noetherian, right C2-ring. Since R is I-finite, every monomor-
phism α : RR → RR is epic. Since R is right finite dimensional, it follows from a theorem of Camps
and Dicks [5] that R is semilocal. But J is nilpotent by [7, Lemma 2.2], so R is semiprimary, and
hence right artinian by Hopkins’ Theorem. Since R is right Johns we have rl(T ) = T for every
right ideal T of R, and hence R is a right CEP-ring by [14, Proposition 3.3]. 2

A ring R is called right mininjective [16] if every R-linear map K → RR, where K is a simple
right ideal of R, extends to R→ R.

Theorem 4.6. The following are equivalent:
(1) R is a strongly right Johns, right C2-ring.
(2) R is a right Johns, right mininjective ring.
(3) R is quasi-Frobenius.

Proof. (1)⇔(3). Given (1), R is a right CEP-ring by Theorem 4.5, and hence is right artinian by
[9, Corollary 2.9]. Thus R is quasi-Frobenius by [8, Corollary 1.3]. Hence (1)⇒(3); the converse is
obvious.

(2)⇔(3). Assume (2). Since R is right Johns, it is right noetherian and rl(T ) = T for all right
ideals T of R. In particular, R is left mininjective by [15, Lemma 1.1], so Sr = Sl. By [7, Lemma
2.2] Sr ⊆ess RR, J is nilpotent and J = l(Sr). If Sr = k1R ⊕ · · · ⊕ knR where each kiR is simple,
then J = l(Sr) = ∩ni=1l(ki). But each Rki is simple because R is right mininjective [16, Theorem
1.14], so R is semilocal, and hence semiprimary. By Hopkins’ Theorem R is right artinian, and
hence quasi-Frobenius by [16, Corollary 4.8]. This proves (2)⇒(3); the converse is clear. 2
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