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Exact modules *) 

By 

W. K. NICHOLSO~ and J. F. WATTERS 

1. Introduction. We shall say that a left R-module M is exact if for all 
f ~ M d = Horn (RM, e R) there are finite sets {J}} ~ M e, {mi} ~= M such t h a t f  = ~ f i  mif 
where the maps act on the fight. Examples include all finitely generated projective 
modules (take {f~, m,} to be a dual basis.) The reason for calling these modules exact is 
that this condition is necessary and sufficient for a certain functor, denoted by ( )o, from 
R-mod to End (gM)-mod to be exact. This functor is investigated in [3] and we shall 
describe some of its properties in Sect. 3. It is of interest to note that a weaker version of 
this condition, in which the set {mi} is replaced by a subset of M da, the double dual of M, 
characterizes locally projective modules (see [6]). In particular, when M is exact, M d is a 
locally projective right R-module. 

The main aim of this paper is to obtain characterizations for certain classes of rings 
via this notion of an exact module. This we do in Sect. 2. We show that R is left 
Noetherian if and only if every projective module is exact; R is a PP-ring if and only if 
every cyclic module is exact; R is a semihereditary ring if and only if every finitely 
generated module is exact; and R is hereditary Noetherian if and only if every module 
is exact. 

In Sect. 3 a further property of the functor ( )o is developed. Specifically, suppose that 
RP is a finitely generated projective module, E = End (RP), N ~ E-rood and M = P | eN. 
Then we have two functors, both denoted by ( )o, one from R-rood to End (RM)-mod and 
one from E-mod to End (eN)-mod. We show that if A is an arbitrary E-module, so A ~ is 
and End (eN)-module and (P| ~ is an End (RM)-module, then A ~  (P| A) ~ as 
Z-modules. As a corollary (and using Sect. 2) we deduce that the properties of being left 
Noetherian, semihereditary, or hereditary Noetherian pass from R to End (RP), where P 
is a finitely generated projective module. 

Throughout all rings have unity and modules are unital and, unless said otherwise, left 
sided. 

2. Characterizations by exactness. We begin with a characterization of left Noetherian 
rings by free modules. For any index set I denote the direct sum of [I] copies of R by 
R (I) and the direct product by R I. The index set of natural numbers will be denoted 
by N. 

*) Supported by NSEC grant A8075. 
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Theorem 1. The following are equivalent for a ring R: 

(1) R is left Noetherian. 
(2) Every free R-module is exact. 
(3) The direct sum R (~) is exact. 
(4) The direct sum R (m is exact. 
(5) Every projective R-module is exact. 

P r o  of.  (1) ~ (2). Let F = R (r) be a free module which we write as rows, so F d = R x 
written as columns. Let w ~ R * with components wx ~ R, 2 s I. Put L = ~ R w;. Then L 

is finitely generated by say w l , . . . ,  w, with {1, . . . ,  n} ~ I. Hence w z = ~ r~.~ w~. Denote 
i = 1  

the column matrix in R * with 2-entry r;~ by f/, denote by e z the row matrix in R (t) with, 

for a fixed 2, the 2~ entry 1 and all other entries 0. Then w - ~ fl wl = ~ f ei w and the 
module is exact. ~: ~ ~: ~ 

(2) =~ (3), (4). Clear. 
(4) ~ (1). Let L be a left ideal of R. Then L = ~ R a~, r 6 R. Define 

f: R (R) -'+ R by (x.) ~ ~ x, a,. 

Then im f = L and, by exactness, there are 

f ~ Horn (R (m, R), ml ~ R (g), such that Z fi mi f = f. 

There is a finite subset J of R such that if r ~ R \ J then the r th component of every m~ is 
zero. Now (x~)Zflmi = (y~) has y, = 0 for all reR\J  and so (x,)Zfimlf = Z yra~. 
Hence L = i m f  = Z Ra,, and R is left Noetherian. ~ s  

r f f J  

(3) ~ (1). As above, every countably generated left ideal is finitely generated and R is 
left Noetherian. 

(5) ~ (2). Clear. 
(2) ~ (5). Let R K c__ RM. If for every h e K d there exists f E M a such that fl ~: = h and 

im f = im h, we say that K is a quasi-summand of M. This holds, in particular, if K is a 
summand of M. It is easily seen that quasi-summands of exact modules are exact and so 
direct summands of exact modules are exact. (We note in passing that conversely, if M 
is a finite direct sum of exact modules, then M is exact.) [] 

We are indebted to K .R .  Fuller for pointing out that (3) could be inserted in 
Theorem 1. 

We now give a useful sufficient condition for a module to be exact and use it to 
characterise exact submodules of finitely generated projective modules. 

Theorem 2. (a) A module gM is exact whenever M f is finitely generated and projective 
for all f ~ m n. 

(b) A submodule L of a finitely generated projective module RP is exact if and only if L 
is finitely generated and projective. 
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P r o o f. (a) Given f e M e let {J'l . . . . .  f ,} ~ (M f) d and {r 1 . . . .  , r,} N Mf be a dual 
basis for Mf so that Zf~ri = 1My. Define g1 = ff~ ~ Md and choose ml e M such that 
ml f = r~ for each i. Then f = 52 9~ ml f, as required. 

(b) It was observed at the outset that finitely generated projective modules are exact, 
so we need only consider the case when L is exact and a submodule of a finitely generated 
projective module P. Let {gj, Pj}, 9j e pc, Pi ~ P, be a dual basis for P and denote the 
restriction of gj to L by fj  ~ L e. By exactness f~ e L ~ Lf~ and moreover, by a standard 
argument (see, for example, [3, Lemma 1]) there is s e L d L such that fj  = s ~  for all j. 
Hence Isgj = 19j for all l E L and so ZgjPj = le implies that s = 1L. Thus L has a dual 
basis as required. [] 

Of course the converse to Theorem 2 (a) is false. Every finitely generated projective 
module RM is exact as observed above but, if M = R, it is not necessarily the case that 
all principal left ideals of R are projective. However, we do have 

Corollary 3. Let Jg be a homomorphicaily closed class of R-modules. The following are 
equivalent: 

(1) Every left ideal of R in all~ is finitely generated and projective. 
(2) Every module in d// is exact. 
(3) Every left ideal of R in ~r is exact. 

P r o  of.  ( 1 ) ~  (2) and ( 3 ) ~  (1) follow from Theorem 2 and ( 2 ) ~  (3) is immedi- 
ate. [] 

If we let Jg be various special classes we obtain 

Corollary 4. (1) R is left hereditary and left Noetherian if and only if every left R-module 
is exact. 

(2) R is left semihereditary if and only if every finitely generated left R-module is exact. 
(3) R is a left PP-ring (principal left ideals projective) if and only if every principal left 

R-module is exact. 
(4) R has a projective left socle if and only if every simple left R-module is exact. 

In a slightly different direction, let a be a preradical on R-mod so that {M [ a (M) = M} 
is homomorphically closed. Then tr is called left exact if a (K) = K c~ a (M) whenever 
RK c= R M. Examples include the singular preradical and the socle. Then 

Corollary 5. Let a be a left exact preradical for R-mod. The following are equivalent: 

(1) Every finitely generated module M with a (M) = M is exact. 
(2) Every finitely generated left ideal contained in ~ (RR) is projective. 

P r o o f. (1) ~ (2). If L ~ ~r(R) is a finitely generated left ideal then G(L) = L because 
G is left exact, so L is exact by (1). Then (2) follows by Theorem 4. 
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(2) =~ (1). If R M is as in (1) and f :  M ~ R is R-linear then M f  ~ ~r(R) because o- is a 
preradical. Then (1) follows from Lemma 3. [] 

Similarly, one can show that every module RM with a (M) = M is exact if and only if 
cr R (R) is left Noetherian and every left ideal contained in Cr(RR ) is projective. 

3. Exactness and Morita contexts. If R is a ring it is well known that R is semisimple 
and left artinian if and only if every left module V is projective, equivalently if Horn R (V,, _) 
is an exact functor. Similarly R is (yon Neumann) regular if W| ) is exact for all right 
modules W. 

In this section exactness for a module is related to the exactness of a functor associated 

with a Morita context. Recall that a four-tuple F R V ]  is called a Morita context if R 
L W S d 

and S are rings, RVs and sWR are bimodules, and there exist multiplications V • W-~ R 
and W • V ~ S, written (v, w) -~ v w, and (w, v) -~ w v, which induce bimodule homo- 
morphisms V| R and WQRV-~ S and which satisfy v(wvl)=(vw)v 1 and 
w(vwO = (wv) wl for all v, v t ~ V and w,w 1 ~ W. These conditions are equivalent to the 

requirement that [ R V]  be a ring where "matrix" operations are employed. 

There are functors W |  and HomR(V,_ ) from R-rood to S-rood and a natural 
transformation 2 : W |  ~ H o m ( V , _ )  given by, for AER-mod,  w |  where 
w s W, a e A and c~: v --. (v w)a for all v s V Denoting the submodule 

{~wi@a i ~ W@AlY~(vwi)a i -- 0 for all v s V} 

of W|  A by ann A (V), we have the factor module A ~ = WNRA)/ann a V There is a natural 
epimorphism VA: W| -" A ~ and a natural monomorphism 

/~a: A~ ~ HOmR(V, A), given by [w| + anna(V)]/~A = e, 

so that 2 a = v A/~a. 
The functor ( )o has been investigated in [3] where it was shown that ( )o is exact if and 

only if, for all w ~ W, there exists s s WVsuch that V(w - s w) = 0 [3, Theorem 1]. For the 
standard context with V = M, W = M d, and S = End (R M) this becomes the condition 
that M be an exact module as defined earlier. 

In what follows we shall be concerned with using these results to carry properties of 
a ring R to the endomorphism ring S of a finitely generated projective module R V. Hence 

we start with a Morita context [ R V] in which WV = S. 

S-module, and write RM = V | Consider the standard contexts 

IRd M 1 and IN S NFI 
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and let the functors ( )o associated with these contexts be denoted ( )oM and ( )oN respectively. 
Give any S-module s A there is a Z-isomorphism 

rA: A ~ ~ (V @ sA) TM 

which is natural in A. 

P r o o f. As noted above there are natural embeddings #A and #v | a as in the diagram. 

AO s ~A ~ Horn s (N, A) 

1 |  

(V@A)O M u v o x  > HomR(M ' V| 

The map (actually an isomorphism since WV = S) ~ --* 1 | ~ from 

Horns (N, A) -~ H0mR (M, V| 

induces the natural isomorphism we seek. 

More precisely, since WV = S fix a representation ~ w i vi = 1 ~ S where w i ~ W and 
i = 1  

v~ s V. A typical generator of im#A is q~. a where q5 s N a =  Homs (N, S). For each 
i = 1, 2 . . . .  , n define ~b i ~ m a = Homg(V|  N, R) by (v| n)qS, = v(nc~)wl. 

Then 

l |  ~ cb~.(v,| 
i = 1  

in Horn R (M, V | A), and it follows that im PA is carried into im (/i v | A)" 
Conversely, each generator of im (Pv | A) has the form gt. t where 

~ M a =  HOmR(V| and t= ~ v~|162 V| 
k = l  

For each k = 1, 2, . . . ,  m, define 

~ u K : N ~ S  by n~uk= ~ wi[(vi| v]v~. 
i = 1  

Then qJk ~ V | N a = Horn s (N, S) and so Z ~k ' ak lies in im PA. Moreover, if v | n z V |  
then k 

(v | n) [l | Y~ ~u~. ak] = v | Z (n ~uk) a~ 
k k 

= ~ v(n~k)| 
k 

k i 

= Z [(v | n) ~,] (v;, | a~) 
k 

= (v| ~u. t. 

This means ~u-t = Z( l |  lies in the image of /~A, and it follows that 
A ~ =~ (V|  A) TM. [] 
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Our first application of Proposition 6 is a result on preservation of exactness. We shatl 
continue to distinguish the functors ()~ and ()~ 

Theorem7. Let[ R VlbeaMori tacontextsat is fy ingWV=S.  If sNissuchthat 

RM = V| s N is an exact R-module then sN is an exact S-module. 

P r o o f. Let 0 --* A ~ B J- ,  C --* 0 be an exact sequence in S-mod. Then 

V| I| V| I|174 )0 isexac tso ,  byhypothesis 

(V@A)OM (1 | (V@B)O M (1 |  (V@ C) TM ' 0 

is exact. Proposition 6 now implies that 

AO N ~O~ ) BO N ~O~ ) co N )0 

is also exact and so, since ()o always preserves monomorphisms [3, Proposition 2], it 
follows that ()~ is an exact functor. [] 

Applying this result to module properties preserved under tensoring with finitely 
generated projective modules and using Corollary 4 we have, for S = End (RV) where RV 
is a finitely generated projective module: 

(1) If R is left hereditary and left Noetherian, then so also is S (Small [5]). 
(2) If R is left semihereditary, then so also is S (Lenzing [2] and Sandomierski [4]). 

Similarly using Theorem 1; 

(3) If R is left Noetherian, then so also is S. 

If we restrict V to be of the form Re, e = e 2 ~ R, so that tensoring with V preserves the 
property of being cyclic, we can add: 

(4) If R is a left PP-ring, then so also is S (Chase [1]). 

A further consequence of Theorem 7 is that being an exact module is preserved under 
Morita equivalence so giving the Morita invariance of the ring properties in (1), (2), and 
(3). In addition, since V| s N is a simple R-module when RVis a progenerator and s N is 
simple, it follows from Corollary 4 (4) that the class of all rings with a projective left socle 
is a Morita invariant class. 

A c k n o w I e d g e m e n t. The authors are grateful to the referee for helpful com- 
ments, in particular for drawing our attention to the necessary part of Theorem 2(b). 
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