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Expression of the Renilla reniformis
Luciferase Gene in Mammalian Cells
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A eDNA encoding the Renilla reniformis luciferase was expressed in simian and murine
cells in a transient and stable manner, respectively. Light emission catalyzed by lucifer­
ase was detected from transfected cells both in vitro and in vivo. This work establishes
the Renilla luciferase gene as a new efficient marker of gene expression in mammalian
cells.
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INTRODUCTION

Light emission from the soft coral Renilla renifor­
mis (Order Cnidaria) is catalyzed by a luciferase.
Oxidation of the luciferin substrate, coelentera­
zine, by this luciferase leads to an excited state
product (oxyluciferin) from which energy is
transferred to the acceptor green fluorescent
protein (GFP). GFP emits the green light
(Amax = 509) seen in the living coral (1). In
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the absence of GFP, luciferase-catalyzed
oxidation of coelenterazine yields blue light
(Amax = 480 nm) (2).

A Renilla luciferase cDNA was cloned
previously and expressed in Escherichia coli (3)
and in plants (4). This cDNA was judged to be
full length based on: (i) the deduced amino acid
sequence; (ii) the apparent molecular size of the
recombinant protein relative to native luciferase
as determined from SDS-PAGE and Western
blot analyses; and (iii) the catalytic and kinetic
characteristics of the recombinant protein (3,5).
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The use of bioluminescence- and chemilumines­
cence-based reporter gene assays and immunoassays
has increased dramatically in the past 10years (6,7,8).
Luciferases and photoproteins are especially useful
since light emission can be measured and quantified
easily, and they are non-toxic. A number of bacterial
(9) and beetle (10,11) luciferase genes have been iso­
lated and their uses have been well characterized.
The bacterial lux genes have been used extensively
as reporters, although the applications are primarily
in procaryotic and plant hosts. Lux genes have a
demonstrated utility as reporters of environmental
pollutants and toxins, temporal and spatial develop­
mental events, promoter strength and bacterial
detection (see reviews 9,12,13). Similarly, the beetle
luciferase luc genes have a well documented history
as markers of transfection and transformation
(14,15,16), as reporters of transcriptional regula­
tion of genetic elements (17), and for determina­
tion of ATP concentrations in vivo and in vitro
(18,19).

Other bioluminescence reporter genes include the
phot genes which encode the calcium activated photo­
proteins aequorin (20) and obelin (21). The aequorin
gene has been used to report Ca2+ flux in plants (22)
and mammalian cells (23). Membrane-based assays
using biotinylated recombinant aequorin have been
developed for detection of nucleic and amino acids
(24), and diagnostic immunoassays have been devel­
oped for a number of target molecules (25,26). The
luc gene from the crustacean Vargula hilgendorfii has
been isolated (27) and tested as a reporter gene (28);
however, the substrate for this secreted luciferase is
not readily available. Most recently, the gene encod­
ing GFP from Aequorea victoria and has been used
as a reporter of gene expression (29). It is not likely
that any single reporter gene can offer the versatility
required in the expanding number of applications
that can be found for bioluminescence; each gene
may have a particular advantage or disadvantage,
depending on the assay and the conditions under
which it is performed. Here, we report transient and
stable expression of the Renilla luciferase rlucgene in
COS-7 cells and C5 mouse fibroblasts, respectively,
and demonstrate that this gene can be used both in
vitro and in vivo as a marker gene in mammalian cells.
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obtained from New England Biolabs (Beverly,
MA) and Promega (Madison, WI). PCR reagents
and Taq polymerase were purchased from Perkin
Elmer (Norwalk, CT). Media and chemicals
required for the growth and maintenance of mamma­
lian cell cultures were purchased from Gibco-BRL
(Green Island, NY) and Sigma (St Louis, MO).

Modification of the luciferase cDNA

Plasmid pBSRLuc-l was constructed by ligation of
the 2.2 kbp SstIjEcoRI fragment isolated from
pTZRLuc-l (3) into plasmid Bluescript (Strata­
gene, La Jolla, CA) and transformed into E. coli
DH5o: cells. pBSRLuc-l DNA was purified using
a Qiagen tip-IOO kit (Qiagen Inc, Chatsworth,
CA) according to the manufacturer's instructions,
linearized by digestion with SstI, and desalted in
a G-25 spin column (Boheringer Mannheim Bio­
chemicals) according to the manufacturer's instruc­
tions. Oligonucleotide primers were synthesized at
the University of Georgia Molecular Genetics
Sequencing Facility. The first oligo (GGCTGCA­
GATGACTTCGAAAGTITAT) contained a PstI
site immediately 5' to the ATG start codon, fol­
lowed by 18 nucleotides identical to the 5' end cod­
ing sequence; the second (GGCTGCAGAC­
ATTTATATTATTAAACCC) also contained a
PstI site and 20 nucleotides identical to the 3' end
immediately adjacent to an endogenous SmaI site
located in the non-coding region. PCR amplifica­
tion was performed using a programmable ther­
mal cycler (MJ Research Inc, Watertown, MA).
The PCR product was filled in with T-4 polymer­
ase, isolated from a low melting temperature agar­
ose gel (NuSeive; FMC, Rockland, ME) (30), and
blunt-end ligated into alkaline phosphatase­
treated SmaI digested pUC18 resulting in the plas­
mid pRLuc-4.1. E. coli DH5o: cells were trans­
formed and recombinant plasmid DNA was
purified with a Qiagen tip-100. PstI and PstI­
SmaI digests were performed to ensure correct
orientation and size of the fragments.

Plasmid constructions

MATERIALS AND METHODS pRLuc-6 & pRLuc-6.1. Plasmid pRLuc-4.1 was
digested with PstI and the insert was ligated into

Enzymes and media a unique PstI site contained on the mammalian
expression vector pXM (31). Recombinants in

Restriction enzymes, polymerases and ligases were pXM can be selected for by ampicillin resistance;
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the luciferase gene is placed under the transcrip­
tional control of the adenovirus major late promo­
ter. E. coli DH5a cells were transformed and
plasmid screens were performed to determine size
and orientation of the insert DNA. Two clones,
pRLuc-6.1 and pRLuc-6.1 R, were isolated and
contained the luciferase gene in the forward and
reverse orientation, respectively, with respect to
the promoter region.

pMCT-RUC. Plasmid pMCT-RUC (14kbp) was
constructed for site-specific targeting of the Renilla
luciferase gene to a mammalian chromosome
(details of the plasmid construction will be pre­
sented elsewhere). The relevant features of this
plasmid are the Renilla luciferase gene under
transcriptional control of the human cyto­
megalovirus immediate-early gene enhancer/
promoter; the hygromycin gene under the trans­
criptional control of the thymidine kinase pro­
moter; and a unique HpaI site is used to linearize
the plasmid.

Mammalian cell culture

COS-7 cells. COS- 7 cells were grown on 100mm
Costar plates as described previously (32). Cul­
tures were trypsinized and split 1/20 2 days before
use. Cell monolayers were 70-80% confluent at
the time of transfection and were washed once in
DME immediately prior to transfection. To each
plate 3 mL DME was added containing 10 flg of
plasmid DNA and 1.5 flL/ flg Transfectam (Pro­
mega). After 5 h the transfection media was
removed and the plates were washed once in
DME. Fresh growth media was added to the
cells, which were incubated for another 60 h. Cells
were washed gently in PBS and then collected by
scraping in 5 mL PBS/plate. Cells from one plate
were centrifuged at 500 x g for 10min, then resus­
pended in 0.5 mL 10rnmol/L Tris, I mmol/L
EDTA, pH 7.6. Cells were incubated on ice for
10min followed by sonication with a Branson
Cell Disruptor using several I s bursts. Half of
the cell extract was clarified by centrifugation at
15,000 x g, and luciferase activity was determined
in the crude and clarified cell extracts.

C5 cells. C5 mouse fibroblasts were maintained as a
monolayer as previously described (33). Cells at
50% confluency in 100mm Petri dishes were used
for calcium phosphate transfection (34) using 10 flg

of linearized pMCT-RUC per plate. Colonies
originating from single transfected cells were isol­
ated and maintained in F-12 medium containing
hygromycin (300 flg/mL) and 10% fetal bovine
serum. Cells were grown in 100mm Petri dishes
prior to the Renilla luciferase assay.

Luciferase assays

COS-7 cells. The Renilla luciferase assay has been
described previously (2). Assays of COS-7 cell
extracts were performed in a luminometer (Turner
model Td-20e) equipped with a sample chamber
aperture designed to hold 12 x 75 mm tubes. The
light path from the sample cell to the photomulti­
plier tube was restricted such that only the light
passing through a 5 mm hole in base of the sample
aperture was quantified. This design offered a
geometry more suitable for reproducible measure­
ments and calibration. The instrument was cali­
brated with a 14C phosphor light standard for
determination of quanta per second (35). For
this instrument, I LU (light unit) = 6.4 x 106 hv/s.
10 flL of crude or clarified extracts were diluted
into I mL luciferase assay buffer and injected
rapidly into the sample tube containing 10flL
of 2.5 mmol/L coelenterazine in I mol/L HCI/
MeOH. Integration time of the signal was 5 s.

C5 cells. Hygromycin-resistant cell lines obtained
after transfection of mouse fibroblasts with lin­
earized plasmid pMCT-RUC ("B" cell lines) were
grown to 100% confluency for measurements of
light emission both in vivo and in vitro. Light
emission was measured in vivo after about 30 gen­
erations as follows: growth medium was removed
and replaced by I mL RPMI 1640 containing
coelenterazine (l mmol/L final concentration).
Light emission from cells was then visualized by
placing the Petri dishes in a low light video image
analyzer (Hamamatsu Argus-IOO). An image was
formed after 5 min of photon accumulation using
100% sensitivity of the photon counting tube. For
measuring light emission in vitro, cells were tryp­
sinized and harvested from one Petri dish, pelleted,
resuspended in I mL assay buffer (0.5 mol/L NACl,
1mmol/L EDTA, 0.1 mol/L potassium phosphate,
pH 7.4) and sonicated on ice for lOs. Lysates were
than assayed in a Turner TD-20e luminometer for
10s after rapid injection of 0.5 mL of I mmol/L
coelenterazine, and the average value of light
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Mr 1 2 3
( kDa)

94 -
67 -
43 -
30 -

20.1 -

Figure 1. Western analysis of COS-7 cells transfected with
the Renilla luciferase gene. Protein extract was fractionated
with 12.5% 50S-PAGE before transfer to nitrocellulose as
described in Methods. Lane 1, Renilla luciferase; Lane 2,
pRLuc-6.1 R transfected cells; Lane 3, pRLuc-6.1 trans­
fected cells; Lane 4, pXM transfected cells

emission was recorded as LU (1 LU = 1.6 X 106 hv/s
for this instrument).

SOS PAGE/Western blot analysis of
recombinant luciferase

The protein concentration in lysates of cells expres­
sing Renilla luciferase was determined by the
method of Bradford (36). Clarified, crude extracts
(50pg) and native Renilla luciferase (0.5 pg)
were fractionated on 12.5% SDS-PAGE gels
(37). Western blot analysis was performed by
transfer to nitrocellulose (Schleicher and Schnell,
Keene, NH) (38). Luciferase detection was
performed with a rabbit po1yclonal anti-Renilla
luciferase antibody (1/1000 dilution) and horserad­
ish peroxidase conjugated goat anti-rabbit IgG
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second antibody' (1/5000 dilution; Bio-Rad, Her­
cules, CA) as described previously (3).

RESULTS

COS-7 cells. Restriction analysis of the modified
luciferase gene showed that: (i) it contained all
the endogenous restriction sites of the template
DNA as well as the additional Pstl sites; and (ii)
pRLuc-6.1 contained a single insert in the correct
orientation with respect to the promoter and that
pRLuc-6.1 R contained a single insert in the
reverse orientation (data not shown). An inte­
grated value of 3708LU was obtained for 10pL
of cell sonicate from pRLuc-6.1 transfected cells.
This corresponds to approximately 2.3 x 1010 hv/s
generated from 2% of the total protein released
from the plate (Table 1). Sonicates clarified by
centrifugation had a value of3315LU. No detect­
able light was measured from cells transfected
with pXM or pRLuc-6.1R. It is important to
note that the light intensity values reported above
represent minimal ones, since the luciferase assays
performed on these same samples with an
unrestricted aperture (having a 25mm bore) in
the photometer sample chamber led to light emis­
sions which exceeded the full scale limit of the
instrument by a factor of 103 when at the lowest
gain setting. Crude extracts from cells transfected
with the above plasmids were analyzed by Western
blotting (Fig. 1). A single protein band was seen in
the pRLuc-6.1 transfected cell extracts (lane 3) but
not in the pRLuc-6.1 R (lane 2) or pXM (lane 4) cell
extracts. Native Renilla luciferase (lane 1) is shown
as a control. An identical blot incubated with pre­
immune serum failed to give a detectable signal
(data not shown).

C5 cells. Independent cell lines of mouse fibroblasts
transfected with linearized plasmid pMCT-RUC

Table 1./n vitro light emission from COS-7 cells transfected
with plasmid pXM, pRLuc-6,1 R, amd pRLuc-6.1. Values are
an average of five measurements.

Plasmid pXM pRLuc-6.1 R pRLuc 6.1

L.U. (total crude extract)
L.U. (clarified crude extract)

0.0
0.0

0.0
0.0

3708+ / - 375
3315 + / - 540



Plate 1. Low light video image analysis of Petri dishes (100mm) containing hyromycin-resistant mouse fibroblast
cell lines (" B" cell lines) transfected with plasmid pMCT-RUC. a, cell line B3; b. cell line B6; c. cell line B9;
d. cell line C5 (negative control)
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Table 2. In vitro light emission of C5 fibroblasts
transfected with plasmid pMCT-RUC (B cell
lines).

Cell Line 83 86 89 C5
L.U. (clarified crude extract) 017.8 693.5 063.7 000.5

showed different levels of Renilla luciferase activity
(Plate I). Similar differences in light emission were
observed when measurements were performed on
Iysates of the same cell lines (Table 2). This varia­
tion in light emission was probably due to a posi­
tion effect resulting from the random integration of
plasmid pMCT-RUC into the mouse genome,
since enrichment for site targeting of the luciferase
gene was not performed in this experiment.

DISCUSSION

The Renilla luciferase gene can be expressed and
detected in a mammalian cell background. Transi­
ent expression in COS-7 cells showed that the in
vitro bioluminescence emission from both total
and clarified crude extracts exceeded 1 x 1010 hIl/s.
Also, the negligible difference between the light
emissions from these two samples indicates that,
as in expression in an E. coli host, recombinant
Renilla luciferase exists as a soluble, cytoplasmic
protein in transiently transfected mammalian
cells. Analysis of these same extracts by Western
blotting demonstrates that recombinant luciferase
expressed in mammalian cells is essentially identi­
cal to the native protein, in both its molecular
size and immunological reactivity. In addition,
the stable expression of the Renilla luciferase gene
in C5 fibroblasts demonstrates non-toxicity of the
gene product in mammalian cells, and confirms
that coelenterazine will readily permeate mamma­
lian cell membranes (23). Unlike photoproteins,
Renilla luciferase requires no time period for
charging an apoprotein prior to assay and signal
detection. The ease of detection of luciferase
activity in transiently transfected cells makes the
Renilla luciferase gene an ideal candidate as a mar­
ker of transfection, as well as a reporter gene of
genetic events associated with transcription and
translation.

Renilla luciferase requires only O2 and the
substrate coelenterazine, which is commercially

available. The fact that the Renilla luciferase gene
has been expressed at high levels in bacterial, plant
and animal cells in a stable and transient fashion
demonstrates its utility and versatility in the field
of bioluminescence-based detection. Further test­
ing of Renilla luciferase vectors may reveal that it
is superior to other luciferases when used in some
applications, because it requires no divalent
cations as does aequorin, no ATP as do the beetle
luciferases, and no long-chain aldehydes as do the
bacterial luciferases. Also, mammalian membrane
permeability to coelenterazine does not appear to
pose a problem.

Assay and detection methods based on currently
available bioluminescence genes offer sensitive and
reliable alternatives to other isotopic and non-iso­
topic methods. There are, however, inherent prob­
lems, such as temperature instability (39,40), low
turnover (41,42), rigid ionic strength/buffer con­
straints (43,44,45), lack of commercial availability
of substrate (i.e. Vargula luciferin), ATP depen­
dency (4,44), and susceptibility to proteolysis
(46,47) which limit the usefulness of currently
available luciferases and photoproteins. Prelimin­
ary evidence suggests that the expressed Renilla
luciferase is stable with respect to elevated tempera­
tures and a wide range of ionic strengths (5).
Finally, when a dual marker system is needed, it
should be noted that the Renilla luciferase gene
used in conjunction with the firefly gene may fill
this need, since the large difference in their peak
light emissions (480nm (2) and 562nm (48), respec­
tively) could be measured simultaneously.
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