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abstract: Population models in ecology are often not good at pre-
dictions, even if they are complex and seem to be realistic enough.
The reason for this might be that Occam’s razor, which is key for min-
imal models exploring ideas and concepts, has been too uncritically
adopted for more realistic models of systems. This can tie models
too closely to certain situations, thereby preventing them from pre-
dicting the response to new conditions. We therefore advocate a new
kind of parsimony to improve the application of Occam’s razor. This
new parsimony balances two contrasting strategies for avoiding er-
rors in modeling: avoiding inclusion of nonessential factors (false in-
clusions) and avoiding exclusion of sometimes-important factors (false
exclusions). It involves a synthesis of traditional modeling and analy-
sis, used to describe the essentials of mechanistic relationships, with
elements that are included in a model because they have been reported
to be or can arguably be assumed to be important under certain condi-
tions. The resulting models should be able to reflect how the internal
organization of populations change and thereby generate representa-
tions of the novel behavior necessary for complex predictions, includ-
ing regime shifts.

Keywords: complexity, error avoidance, agent-based models, model
development, modest approach.

Introduction

In this note, we challenge the central dogma of ecological
modeling that for developing theory, keeping models sim-
ple is always more important than making them realistic.
The emphasis here is on “always,” as there are different
kinds of models. We focus here only on those models that
are designed to represent systems and their functioning,
not just ideas.

Roughgarden et al. (1996) introduced the distinction
between minimal models for ideas and minimal/synthetic
models for a system. Models for ideas are developed for
exploring general concepts across systems, such as density
dependence, competitive exclusion, competition/dispersal
trade-offs, and stabilizing mechanisms. They indeed have
to be as simple as possible, and they are not designed for
making specific, testable predictions. In contrast, models
for a system are more tailored to specific systems or classes
of systems. Here, the intended potential for making test-
able predictions is an important modeling design criterion.
Models for a system—in particular, synthetic models—

are nowwidely used in ecology; synthetic models synthesize
submodels representing small spatial units and/or individ-
ual organisms into realistic models of populations, com-
munities, or ecosystems. However, their predictive power
is often still limited, and to date no general, predictive the-
ory seems to have emerged, despite the high hopes of the
pioneers of this kind of modeling (Huston et al. 1988;
DeAngelis and Mooij 2003; but see Stillman et al. 2015).
We believe that this slow progress is, to a large degree, due
to uncritically transferring the paradigm “as simple as possi-
ble” from minimal to synthetic models. Synthetic models,
which are usually implemented as simulation models, come
with a price: they are hard to develop, understand, and pa-
rameterize (Grimm 1999). But our main point (as indicated
by the Latin phrase in the title, which means “through hard-
ships to the stars”) is that to reach the stars, predictive mod-
els and associated theorymay require adding still more com-
plexity to our models for a system.
We first discuss and exemplify the important and to date

widely ignored distinction between two different types of
errors modelers try to avoid, which we here dub “false in-
clusion” (a factor is included in a model even though it is
not essential for the model’s purpose) and “false exclu-
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sion” (a factor is excluded even though it is sometimes
important). We then discuss why traditional parsimony,
which is intended to avoid false-inclusion errors, is inap-
propriate for developing predictive models, as it leads to
simplified, rigid, and closed representations of ecological
systems observed under certain specific conditions.We there-
fore suggest a new, complementary kind of parsimony that
limits assumptions on systems conditions in order to avoid
false-exclusion errors. This leads to more flexible and open
models that can take into account the possibility that, under
different conditions, different sets of factors might domi-
nate a system’s behavior and response patterns, that is, gen-
erate a regime shift. We will use individual-based or agent-
based models (ABMs) in population ecology as an example
to illustrate the new parsimony we are suggesting and will
finally discuss how the resulting new kind of models can
foster the development of predictive ecological theory.

What Kind of Errors Should We Strive to Avoid
When Constructing Predictive Population Models?

A model, by definition, is a simplified representation of a
real system. The task of the modeler is to find a represen-
tation of the study system that captures the dynamics
and responses of interest for the questions being asked of
the model. Two basic kinds of representational errors are
possible. First, the representation might identify incorrect
process(es) as being essential to capture the internal organi-
zation of the system. This can lead to a type of error we
here refer to as false inclusion, that is, a mechanism is in-
cluded even though it is in fact not essential to the ques-
tion. To avoid false inclusions, models are made as simple
as possible, concentrating on major dynamics. This reduces
the potential for spurious results but does so at the cost of
specificity and flexibility in relation to changing conditions.
Second, an alternative type of error can occur, which we re-
fer to as false exclusion, where the model leaves out a pro-
cess because it was assumed to not be essential when in fact
it was. To avoid false exclusions, modelers would prefer to
include rather than ignore a mechanism because under cer-
tain circumstances it might be important. This improves
completeness but does so at the cost of simplicity. In the
current practice of ecological model development, this type
of error avoidance rarely plays a role, even in complex syn-
thetic models for systems.

A simple example would be a population model where
we might consider the details of an organism’s energy bud-
get as not being essential for explaining population dy-
namics and rather use age- or size-specific growth, mortal-
ity, and reproduction rates. We might know that energy
budgets exist and are dynamic (Kooijman 2010; Sibly et al.
2013) and that they might also be important for popula-

tion dynamics, but most modelers would prefer to avoid
false inclusion, that is, they would rather accept the risk
of excluding a factor that might be important than the risk
of including a factor that is in fact not important. Thus,
most modelers would choose simplicity as the most im-
portant design criterion. A recent study has demonstrated,
however, that at least under fully closed and controlled
laboratory conditions, inclusion of dynamic energy bud-
gets was essential to develop a model that was able to pre-
dict the response of the population to new environmental
conditions (Martin et al. 2013).
Another more complex example is the case of the North

Atlantic cod fishery. Here, as in many other cases, an a
priori oversimplification of models can be understood as
an “arrogant” approach (sensu Cilliers 2005), on the basis
of the assumption that we are able to identify from the out-
set which processes should be left out. This arrogance can
lead to disaster when these models serve as the basis for
managing the use of natural resources. In the case of the
North Atlantic cod fishery off the coast of North America,
age-structured population models failed to capture system
dynamic relationships between the increasing anthropo-
genic catchability factors operating over time and the
density-dependent catchability. These factors together led
to the dramatic collapse of the Atlantic cod (Gadus mor-
hua) population (Walters andMaguire 1996). These factors
were not unknown. Rather, they were ignored because mod-
eling parsimony focused on the avoidance of false inclusions.
Although fishermen warned that the cod had disappeared
from suboptimal habitat and that their fishing effort was con-
centrated in optimal habitat, continued reference to the
key variable of constant catch rates, which were now asso-
ciated only with stock depletion in optimal habitat, led to
an incorrect assessment of the population’s state (Nenadovic
et al. 2012).
Avoiding false-inclusion errors helps ensure the rigor of

ecological models by focusing attention on important gen-
eral principles associated with central phenomena. Models
based on descriptions of the central phenomenon of density-
dependent growth rates usually avoid representation of spe-
cific processes. In this way, they also avoid false inclusions.
However, these models have limited capabilities for taking
into account situation-specific changes and have, on that
basis, been considered “remarkably useless in solving man-
agement problems or in providing an understanding of
why populations change in size” (Krebs 2002, p. 1211).
As a complement to the currently dominant type of par-

simony, we suggest a new kind of parsimony that limits as-
sumptions on systems conditions to avoid false-exclusion
errors. This approach would also aim to take into account
existing knowledge about, for example, adaptive behav-
ior, energy budgets, variations in space and time, and trait-
mediated interactions to provide a flexible, mechanistic,
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and open representation of the multitude of processes from
which density-dependent population growth can emerge.
For example, to model the response of winter survival of
shorebirds to changes in their feeding habitat and, hence,
density, Goss-Custard, Stillman, and co-workers took into
account tides, heterogeneous distribution of prey, energy bud-
gets, optimal foraging, and interference competition among
individuals to generate representations of novel behaviors
(Stillman and Goss-Custard 2010).

In fact there are increasingly important questions con-
cerning how populations and ecosystems develop over time
in response to changing external and internal conditions
that require models to include representations of novel be-
haviors. Since novelty is, by definition, unexpected, it can-
not be meaningfully represented using minimalist models
focused on false-inclusion avoidance. This is because the
dynamic response pathways available to any living system
are determined by more than the prevailing conditions in
the external environment and the basic characteristics of
the responding system; they are also determined by the types
of change mechanisms (e.g., genetic change, relocation, and
prey-switching) at the disposal of that system (Prigogine
1978) and by complex and ambiguous relationships between
exogenous and endogenous dynamics (Schneider and Kay
1995). Consequently, what we often need to do is to un-
derstand what might occur, providing a range of possibili-
ties and probabilities of potential outcomes. To understand
emergent dynamics in these systems, modeling approaches
that avoid false exclusions are required, formalizing repre-
sentation not of the system’s reliable simplicity but of its sur-
prising complexity.

From Static and Closed to Flexible and
Open Representations: The Role Played

by Scientific Narratives

Ideally, we want to predict, with a reasonable degree of ac-
curacy, the potential reactions, responses, and adaptations
that might be seen in populations facing, for example, an-
thropogenic changes to climate and habitat. To do this,
what is required are not snapshot models that represent
the present characteristics of these populations, including
how they currently respond to change, but flexible models
that also represent the populations’ behavioral patterns
and reactivity dispositions. Such models should be system-
atically related to what might be expected to happen when
both the population and its environment are changing si-
multaneously. Doing this requires a critical preliminary
analysis of which drivers and mechanisms might be needed
to simulate the system for a wide range of environmental
conditions; variable and parameter choices must, in effect,
be informed by preliminary modeling of the system, which
is intended to reduce the likelihood of false exclusions.

The key advantage of synthetic models is that we often can
indeed model the response of their building blocks, small
spatial units and individual organisms, to a wide range of
conditions and then let system-level responses emerge from
the responses of the building blocks and their interactions.
Where Krebs and Berteaux (2006) saw this requirement

carrying with it the risk of ecologists turning into little
more than storytellers, consideration of stories told about
the behavior of the system and its components should
play a larger role in synthetic model development. By “story-
telling” we mean reports about certain sequences of events
that are linked by causal relationships, for example, the ob-
servation of fisherman that cod disappeared from subop-
timal habitat because they moved to better sites that were
depleted of cod due to overfishing. Such stories should not
be dismissed as being “anecdotal” because they can pro-
vide critical information about how a certain system func-
tions under different conditions. Reports on causal chains
of events have been referred to as “scientific narratives”
(Prigogine 1997), an approach discussed in disciplines where
history and contingency are important for understanding
(Millington et al. 2012), such as sociology (e.g., Abell 2004),
ecology (e.g., Brown 2011), and geology (e.g., Cleland 2011).
Millington et al. (2012) discuss why narratives should be
used more often in ecology: “the narrative approach . . .
complements, rather than replaces, statistical portraits of
aggregated system-level outcomes” (p. 1027).
As with the cod example, we argue that attempting to

(over)simplify models to provide as concise a description
of the problem as possible is counterproductive when deal-
ing with complex systems. Oversimplification comes with
an increased likelihood that even small changes in drivers
and conditions will invalidate predictions of system re-
sponses, since each simplification removes a factor that may
turn out to have a minor but sometimes important role in
determining how the system changes in response to the
changed inputs. On the other hand, all models are simpli-
fications, and all potentially critical details of the system can-
not always be included in the model.
To balance false-inclusion and false-exclusion error avoid-

ance, we suggest adopting a “modest approach” (sensu Cil-
liers 2005) with respect to modeling the complexity of liv-
ing systems. Simplification is still needed, to get iterative
model development and refinement started (Grimm and
Railsback 2005), but this can work only if the output of
each iterative model version is compared with data and
observed patterns (Grimm et al. 2005). Imposing fixed
simplification a priori is a dangerous practice when mod-
eling systems whose stability properties—in particular, re-
silience—are maintained through a complex combination
of opportunities, redundancy, creativity, and positive and
negative feedback loops, all operating simultaneously and
across multiple spatial and temporal scales.

A Modest Approach to Ecological Modeling 671



A posteriori simplification of traditional populationmod-
els is easier to justify, in that mechanisms are dropped on
the basis of some initial understanding of the modeled sys-
tem’s behaviors; this approach has been referred to as
“robustness analysis” of computational models (Railsback
and Grimm 2012). However, this approach still presumes
that the modeled system resides within unchanging bounds
throughout the runtime of the model. This simplification
reduces the potential of the model to accurately predict sys-
tem responses to (1) changes that take place within the sys-
tem in the course of the processes being modeled (Holling
and Meffe 1996; Anderies et al. 2006) and (2) new input pa-
rameter values not yet seen in the real world.

A pluralistic modest approach generates a well-
documented array of possible scenarios of system develop-
ment whose usefulness can be evaluated on the basis of a
review of model presumptions, model output, and real-
world situations. By adopting a modest position and fully
documenting our knowledge concerning the limits of the
models we build, we describe the character and extent
of their “wrongness” and thereby highlight the range of
their usefulness (see also Augusiak et al. 2014). Essen-
tially, we suggest replacing static snapshots with models
that allow the exploration of a wider range of scenarios.
Adopting this pluralistic and dynamic approach might
have helped to prevent, for example, the collapse of the
North Atlantic cod fishery mentioned above. Similarly, the
financial crisis of 2008 might have been anticipated with
such an approach—and better coped with afterward (Silver
2012).

To achieve the right mix of avoiding false inclusions
and false exclusions and to represent scientific narratives,
ABMs are the most flexible approach and thus play a spe-
cial role. ABMs based on a more balanced consideration
of parsimony will still focus on avoiding false inclusions
to represent mechanisms operating at lower hierarchical
levels (e.g., individuals) and local spatial scales. Examples
include energy budgets of individuals (Topping et al. 2010;
Martin et al. 2013); adaptive behavior, such as optimal for-
aging (Stillman and Goss-Custard 2008); habitat selection
(Railsback and Harvey 2013); and generic representations
of interactions among individuals (Berger andHildenbrand
2000; Weiner et al. 2001).

The initial focus on avoiding false inclusions at the level
of submodels should then be complemented by avoiding
false exclusions at the level of the full model. In this part
of the process, we are concerned with developing a rele-
vant representation of the complexity of the study system.
Here, the conventional model development work of find-
ing variables and processes that can be removed should be
complemented by checking for important variables and
processes that might have been missed as they might be-
come relevant under new conditions.

Regarding the distinction between false inclusions and
exclusions we propose here, there is to date no population
model that has explicitly taken this into account. However,
this note is based on the lessons learned in a number of
projects where ABMs were developed within a framework
that comes close to the one we suggest (Topping et al.
2010, 2013; Stillman et al. 2015).

Conclusions

Basing understanding of population dynamics mainly on
models that focus on avoiding false inclusions is unreliable
because both external and internal conditions change the
way populations—and indeed ecosystems—develop over
time. However, as stated by Beardsley (2010), “biology
may have awkward properties, but it is not beyond sci-
ence’s power to manage them” (p. 327). To achieve greater
reliability in population ecology, we advocate the incor-
poration of an approach that is complementary to false-
inclusion avoidance: false-exclusion avoidance. ABMs play
a particularly important role in this, as they can include
both more traditional representation of the behavior of
spatial units and individuals and system-level representa-
tions in the form of “stories” about possible causal se-
quences of events that might become important, depend-
ing on how the system and its environment change over
time. This allows us to take into account the full range of
knowledge that is available about a certain system and the
general principles that might apply to it. These models,
which can take into account patterns of change over time,
appear to us to be a more appropriate tool for predicting
population change in the complex socioecological contexts
that constitute an increasingly important part of popula-
tion ecology studies. It makes no sense to expect potentially
surprising future states to be predictable on the basis of
reference to statistical tables that represent the most stable
basic features of a population’s established change dynam-
ics. The challenge here—and in predictive ecology more
generally—is to engage directly with the complexity of the
problem rather than factoring it away. To do this, we pro-
pose that population ecology must, for example, learn how
to work productively with complex stories told by experts,
which detail a variety of potential development pathways
for a population.
To achieve predictive systems models, we need to inte-

grate traditional approaches, which focus on rigorous de-
scriptions of stable system features by avoiding false in-
clusions, with complementary approaches that focus on
scientific narratives, which help us to avoid false exclusions.
Having more population models that make correct pre-

dictions about responses to new conditions will also foster
theory development. Any submodel representing a partic-
ular behavior that leads to correct predictions is a can-
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didate for a tested and valid theory of this behavior. This is
different from theories in, for example, behavioral ecology
because the theories are tested not in isolation but within
the context of an entire ABM of a certain system (“pattern-
oriented theory development”; Railsback and Grimm 2012).

Last but not least, developing models that include fac-
tors that are important under one set of conditions but not
others will help in the exploration and better understanding
of regime shifts and resilience (Scheffer et al. 2009). This is
much harder, if not impossible, with static models that tie
a representation to certain conditions but is facilitated by
adding the avoidance of false exclusions as a complementary
modeling approach.
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“Almost every one knows the Brown Thrush, or Thrasher (Harporhynchus rufus) of the Eastern United States—an abundant and familiar
inhabitant of shrubbery, and a spirited songster, with some talent for mimicry. It belongs to the mocking-thrush group (Miminæ) all of which
are famous for their vocal powers; the cat-bird, and the princely mocking-bird itself, are near relatives. The accompanying cut . . . looks
something like a thrasher in the act of singing.” From “Some United States Birds, New to Science, and Other Things Ornithological” by Elliott
Coues (The American Naturalist, 1873, 7:321–331).
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