CHANGING OF THE NUMBER OF MINIMUM DOMINATING SETS AFTER EDGE ADDITION: CRITICAL EDGES

VLADIMIR SAMODIVKIN
Department of Mathematics
University of Architecture Civil Engineering and Geodesy
Hristo Smirnenski 1 Blv., 1046 Sofia, Bulgaria
e-mail: vlsam_fte@uacg.bg

Communicated by: T.W. Haynes
Received; accepted 11 February 2008

Abstract

Let \(\gamma(G) \) and \(\#\gamma(G) \) denote the domination number and the number of all distinct minimum dominating sets of a graph \(G \), respectively. We show that if \(G \) is a graph without isolated vertices then for every edge \(e \in E(G) \), \(\gamma(G+e) < \gamma(G) \) if and only if \(\#\gamma(G+e) < \#\gamma(G) \).

Keywords: Domination number, critical edge.

2000 Mathematics Subject Classification: 05C69

1. Introduction

All graphs considered in this article are finite, undirected, without loops or multiple edges. For the graph theory terminology not presented here, we follow Haynes, et al. [3]. We denote the vertex set and the edge set of a graph \(G \) by \(V(G) \) and \(E(G) \), respectively. For any vertex \(v \) of \(G \), the open neighborhood of \(v \) is the set \(N(v,G) = \{ u \in V(G) : uv \in E(G) \} \), while the closed neighborhood of \(v \) is the set \(N[v,G] = N(v,G) \cup \{v\} \). The degree of \(v \) is defined as \(\deg(v,G) = |N(v,G)| \). For a set of vertices \(S \subseteq V(G) \), \(N(S,G) \) is the union of \(N(x,G) \) for all \(x \in S \), and \(N[S,G] = N(S,G) \cup S \). For \(s \in S \subseteq V(G) \), \(pn_G(s,S) = N[s,G] - N[S - \{s\},G] \) is the private neighborhood of \(s \) relative to \(S \). A dominating set in a graph \(G \) is a set of vertices \(D \subseteq V(G) \) such that every vertex of \(G \) is either in \(D \) or is adjacent to an element of \(D \). A dominating set \(D \) of a graph \(G \) is a minimal dominating set if no set \(D' \subseteq D \) is a dominating set. The domination number \(\gamma(G) \) is the minimum cardinality of a dominating set of \(G \). Any dominating set of cardinality \(\gamma(G) \) is called a \(\gamma(G) \)-set, or just \(\gamma \)-set when the graph \(G \) is clear from the context. The set of all \(\gamma \)-sets of a graph \(G \) is denoted by \(\mathcal{D}(G) \). If \(U \subseteq V(G) \), then denote \(\mathcal{D}(U,G) = \{ M \in \mathcal{D}(G) : U \subseteq M \} \). The number of distinct \(\gamma(G) \)-sets is denoted
Changing of the Number of Minimum Dominating Sets after Edge Addition: Critical Edges

\#\gamma(G) ([6]). The number of all \gamma(G)-sets each of which has \(U \subseteq V(G) \) as a subset is denoted by \#\gamma(U, G).

It is often of interest to known how the value of a graph parameter is affected when a small change is made in a graph, for instance vertex or edge removal, edge addition and edge contraction. In this connection, in this paper we consider this question in the case \#\gamma(G) when an edge from \(G \) is added to \(G \).

If \(e \in G \) and \(\gamma(G + e) < \gamma(G) \) then \(e \) is called a \(\gamma(G) \)-critical edge. A graph \(G \) is \(\gamma \)-edge-addition-critical if all edges of \(G \) are \(\gamma(G) \)-critical. This concept was introduced by Sumner et al. [7]. The study of effects on domination related parameters when a graph is modified by adding an edge is classical; see for instance [2, 4, 5, 10] and for surveys [3, Chapter 5] and [1, 8]. Note that \(\gamma(G + e) + 1 \geq \gamma(G) \geq \gamma(G + e) \) ([3]).

Definition 1.1. Let \(G \) be a graph. An edge \(e \in E(G) \) is \#\gamma(G)-critical if \(\#\gamma(G + e) < \#\gamma(G) \). A graph \(G \) is \#\gamma \)-edge-addition-critical if all edges of \(G \) are \#\gamma(G)-critical.

Our main results are:

Theorem 1.2. Let \(x_1 \) and \(x_2 \) be two distinct, nonadjacent and nonisolated vertices of a graph \(G \). Then \(x_1x_2 \) is \(\gamma(G) \)-critical if and only if \(x_1x_2 \) is \#\gamma(G)-critical.

Corollary 1.3. Let \(G \) be a graph with no isolated vertex. Then \(G \) is \(\gamma \)-edge-addition-critical if and only if \(G \) is \#\gamma \)-edge-addition-critical.

2. Proofs

We need the following notation and results.

Let \(u \) and \(v \) be nonadjacent vertices of a graph \(G \). We write \(u \mapsto v \) whenever \(\gamma(G - v) < \gamma(G) \) and \(u \) belongs to at least one \(\gamma \)-set of \(G - v \).

Lemma 2.1. Let \(G \) be a graph, \(x_1, x_2 \in V(G) \), \(x_1x_2 \in E(G) \) and let \(G_1 = G + x_1x_2 \).

(i) ([10] Theorem 3; [9] Theorem 2.8) \(\gamma(G_1) < \gamma(G) \) if and only if either \(x_1 \in p_{G_1}(x_2, M) \) or \(x_2 \in p_{G_1}(x_1, M) \) for each \(\gamma \)-set \(M \) of \(G_1 \).

(ii) ([4], Lemma 5(2)) \(\gamma(G_1) < \gamma(G) \) if and only if at least one of \(x_1 \mapsto x_2 \) or \(x_2 \mapsto x_1 \) holds.

(iii) ([4], Theorem 3) If \(\gamma(G_1) < \gamma(G) \) and \(x_2 \nleftrightarrow x_1 \) then \(x_2 \) belongs to no \(\gamma \)-set of \(G_1 \).

Lemma 2.2. Let \(G \) be a graph, \(x_1, x_2 \in V(G) \), \(x_1 \mapsto x_2 \) and let \(G_1 = G + x_1x_2 \). Then:

(i) \(D(G_1) \) is disjoint union of \(D(\{x_1\}, G_1) \) and \(D(\{x_2\}, G_1) \);
(ii) \(D(\{x_1\}, G_1) = D(\{x_1\}, G - x_2) \);

(iii) if \(x_2 \mapsto x_1 \) then \(D(\{x_1\}, G - x_2) \) and \(D(\{x_2\}, G - x_1) \) form a partition of \(D(G_1) \);

(iv) if \(x_2 \not\mapsto x_1 \) then \(D(G_1) = D(\{x_1\}, G - x_2) \);

(v) \(\#\gamma(\{x_1, x_2\}, G) \geq \#\gamma(\{x_1\}, G - x_2) \neq 0 \).

Proof. By Lemma 2.1 (ii), \(\gamma(G_1) = \gamma(G) - 1 = \gamma(G - x_2) \).

(i) By Lemma 2.1 (i), \(|\{x_1, x_2\} \cap M| = 1 \) for each \(\gamma \)-set \(M \) of \(G_1 \).

(ii) If \(M \in D(\{x_1\}, G - x_2) \) then \(M \) is a dominating set of \(G_1 \) with \(|M| = \gamma(G - x_2) = \gamma(G_1) \). Hence \(M \) is a \(\gamma \)-set of \(G_1 \) which implies \(D(\{x_1\}, G - x_2) \subseteq D(\{x_1\}, G_1) \).

Now assume \(M \in D(\{x_1\}, G_1) \). By (i), \(x_2 \not\in M \) and then \(M \) is a dominating set of \(G - x_2 \) of cardinality \(\gamma(G_1) = \gamma(G - x_2) \) which implies \(M \) is a \(\gamma \)-set of \(G - x_2 \). Thus \(D(\{x_1\}, G_1) \subseteq D(\{x_1\}, G - x_2) \).

(iii) The result follows immediately by (i) and (ii).

(iv) By Lemma 2.1(iii), \(D(\{x_2\}, G_1) = \emptyset \) and the result follows by (i) and (ii).

(v) Since \(x_1 \mapsto x_2, D(\{x_1\}, G - x_2) \) is not empty and \(M \cup \{x_2\} \in D(\{x_1, x_2\}, G) \) for each \(M \in D(\{x_1\}, G - x_2) \). \(\square \)

Proposition 2.3. Let \(G \) be a graph, \(x_1, x_2 \in V(G) \) and let \(G_1 = G + x_1x_2 \).

(i) If \(x_1 \mapsto x_2, x_2 \mapsto x_1 \) and \(\deg(x_2, G) \geq \deg(x_1, G) \geq 1 \) then
\[\#\gamma(G_1)(\deg(x_1, G) + \#\gamma(\{x_1\}, G_1)) (\deg(x_2, G) - \deg(x_1, G)) + \#\gamma(\{x_1, x_2\}, G) = \#\gamma(\{x_2\}, G - x_1) \deg(x_1, G) + \#\gamma(\{x_1\}, G - x_2) \deg(x_2, G) + \#\gamma(\{x_1, x_2\}, G) \leq \#\gamma(G). \]

(ii) If \(x_1 \mapsto x_2, x_2 \not\mapsto x_1 \) and \(\deg(x_s, G) \geq 1, s = 1, 2 \), then \(\#\gamma(G_1)(\deg(x_2, G) + 1) \leq \#\gamma(\{x_1\}, G) \leq \#\gamma(G). \)

(iii) Let \(x_1 \mapsto x_2, \deg(x_1, G) = 0 \) and \(\deg(x_2, G) \geq 2 \). Then \(\#\gamma(G_1) + \#\gamma(G - x_2)(\deg(x_2, G) - 1) \leq \#\gamma(G). \)

(iv) Let \(x_1 \mapsto x_2, \deg(x_1, G) = 0 \) and \(\deg(x_2, G) = 1 \). Let \(N(x_2, G) = \{x_3\} \) and \(A = \{M: M \text{ is a minimal dominating set of } G - x_2, x_3 \in M \text{ and } |M| = \gamma(G)\} \). Then \(\#\gamma(G) = \#\gamma(G_1) + |A| \).

(v) Let \(x_1 \not\mapsto x_2, x_2 \mapsto x_1 \) and \(\deg(x_1, G) = 0 \). Then \(\#\gamma(G_1) = \#\gamma(\{x_2\}, G) \). If \(x_2 \) is in each \(\gamma(G) \)-set then \(\#\gamma(G_1) = \#\gamma(G) \). If \(x_2 \) belongs to some \(\gamma(G) \)-set but not to all \(\gamma(G) \)-sets then \(\#\gamma(G_1) < \#\gamma(G) \).

(vi) If \(\deg(x_1, G) = \deg(x_2, G) = 0 \) then \(\#\gamma(G_1) = 2\#\gamma(G) \).
Proof. Let \(u, v \in V(G) \) with \(u \leftrightarrow v \) and \(\deg(v, G) \geq 1 \). Then each neighbor of \(v \) belongs to no \(\gamma \)-set of \(G - v \). Define \(B(u, v) = \{ M \cup \{ z \} : M \in D(\{ u \}, G - v) \text{ and } z \in N(v, G) \} \). Hence \(B(u, v) \subseteq D(\{ u \}, G - D(\{ u, v \}, G) \) and \(|B(u, v)| = \#\gamma(\{ u \}, G - v) \).

(i) \(\#\gamma(G) \geq |D(\{ x_1 \}, G) \cup D(\{ x_2 \}, G)| = |D(\{ x_1 \}, G) - D(\{ x_1, x_2 \}, G)| + |D(\{ x_2 \}, G) - D(\{ x_1, x_2 \}, G)| + \#\gamma(\{ x_1, x_2 \}, G) \geq |B(x_1, x_2)| + |B(x_2, x_1)| + \#\gamma(\{ x_1, x_2 \}, G) = \#\gamma(\{ x_1 \}, G - x_2)deg(x_2, G) + \#\gamma(\{ x_2 \}, G - x_1)deg(x_1, G) + \#\gamma(\{ x_1, x_2 \}, G)\). It remains to note that \(\#\gamma(\{ x_2 \}, G - x_1) = \#\gamma(\{ x_1 \}, G - x_2) \) by Lemma 2.2(iii) and \(\#\gamma(\{ x_1 \}, G - x_2) = \#\gamma(\{ x_1 \}, G - x_2) \) by Lemma 2.2(ii).

(ii) \(\#\gamma(G) \geq \#\gamma(\{ x_1 \}, G) \geq \#\gamma(\{ x_1, x_2 \}, G) + |D(\{ x_1 \}, G) - D(\{ x_1, x_2 \}, G)| \geq \#\gamma(\{ x_1, x_2 \}, G) + |B(x_1, x_2)| = \#\gamma(\{ x_1, x_2 \}, G) + \#\gamma(\{ x_1 \}, G - x_2)deg(x_2, G)\). Since \(\#\gamma(\{ x_1, x_2 \}, G) \geq \#\gamma(\{ x_1 \}, G - x_2) = \#\gamma(\{ x_1 \}, G - x_2) \) (by Lemma 2.2(v) and Lemma 2.2(iv), respectively), we have the result.

(iii) Clearly, \(x_2 \leftrightarrow x_1 \). We have, \(\#\gamma(G) = \#\gamma(\{ x_1 \}, G) + |D(\{ x_1 \}, G) - D(\{ x_1, x_2 \}, G)| \geq \#\gamma(\{ x_1, x_2 \}, G) + |B(x_1, x_2)| = \#\gamma(\{ x_1, x_2 \}, G) + \#\gamma(\{ x_1 \}, G - x_2)deg(x_2, G) = \#\gamma(\{ x_2 \}, G - x_1) + \#\gamma(\{ x_1 \}, G - x_2)deg(x_2, G)\). It remains to note that by Lemma 2.2(iii), \(\#\gamma(\{ x_2 \}, G - x_1) = \#\gamma(G_1) - \#\gamma(\{ x_1 \}, G - x_2) = \#\gamma(G_1) - \#\gamma(G - x_2) \).

(iv) Clearly \(D(\{ x_3 \}, G) \) is disjoint union of \(A \) and \(\{ M \cup \{ x_3 \} : M \text{ is a } \gamma \text{-set of } G - x_2 \} \). Hence \(\#\gamma(\{ x_3 \}, G) = |A| + \#\gamma(G - x_2) = |A| + \#\gamma(\{ x_1 \}, G - x_2) \). Since \(D(G) \) is disjoint union of \(D(\{ x_2 \}, G) \) and \(D(\{ x_3 \}, G) \), we have \(\#\gamma(G) = \#\gamma(\{ x_2 \}, G) + \#\gamma(\{ x_3 \}, G) = \#\gamma(\{ x_2 \}, G - x_1) + |A| + \#\gamma(\{ x_1 \}, G - x_2) \) and the result now follows by Lemma 2.2(iii).

(v) By Lemma 2.2(iv), \(\#\gamma(G_1) = \#\gamma(\{ x_2 \}, G - x_1) = \#\gamma(\{ x_2 \}, G) \).

(vi) Obvious.

Proof of Theorem 1.2.

Sufficiency: Let \(x_1x_2 \) be a \#\gamma(G)-critical edge. Assume \(\gamma(G) = \gamma(G + x_1x_2) \). Then each \(\gamma(G) \)-set is a \(\gamma(G + x_1x_2) \)-set. This implies \(\#\gamma(G) \leq \#\gamma(G + x_1x_2) \), a contradiction.

Necessity: Let \(x_1x_2 \) be a \(\gamma(G) \)-critical edge. By Lemma 2.1(ii), at least one of \(x_1 \leftrightarrow x_2 \) or \(x_2 \leftrightarrow x_1 \) holds. Since \(\gamma(\{ x_1, x_2 \}, G) \neq 0 \) (by Lemma 2.2(v)), it follows from Proposition 2.3(i)-(ii) that \(\#\gamma(G + x_1x_2) < \#\gamma(G) \).

Proof of Corollary 1.3. The result immediately follows by Theorem 1.2.
References

