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ABSTRACT

Increased variability of process parameters and recent prog-
ress in statistical static timing analysis make extraction of
statistical characteristics of process variation and spatial
correlation an important yet challenging problem in mod-
ern chip designs. Unfortunately, existing approaches either
focus on extraction of only a deterministic component of spa-
tial variation or do not consider actual difficulties in comput-
ing a valid spatial correlation function and matrix, simply
ignoring the fact that not every function and matrix can
be used to describe the spatial correlation. Based upon the
mathematical theory of random fields and convex analysis,
in this paper, we develop (1) a robust technique to extract
a valid spatial correlation function by solving a constrained
nonlinear optimization problem; and (2) a robust technique
to extract a valid spatial correlation matrix by employing a
modified alternative projection algorithm. Our novel tech-
niques guarantee to extract a valid spatial correlation func-
tion and matrix that are closest to measurement data, even
if those measurements are affected by unavoidable random
noises. Experiment results based upon a Monte-Carlo model
confirm the accuracy and robustness of our techniques, and
show that we are able to recover the correlation function
and matrix with very high accuracy even in the presence of
significant random noises.
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1. INTRODUCTION

Aggressive scaling down of transistors and interconnects has
resulted in miraculous achievements in chip performance and
functionality. However, this deep scaling of semiconductor
technology has introduced the problem of uncontrollable
process variations. Nowadays, it is commonly recognized
that for deep submicron technologies we are simply unable
to make transistors and interconnects with accurately pre-
dictable characteristics. Moreover, we are not even able to
make transistors the same on different copies of the same
chip and even at different locations of the same chip. Thus,
the only way to cope with variability is to take it into ac-
count during chip designs in order to maximize manufactur-
ing yield. This approach is supported by the successful de-
velopment of statistical static timing analysis (SSTA) tools
capable of predicting statistical timing yield [1, 2, 3] of de-
signed chips. Modern SSTA tools can handle both inter-chip
and intra-chip random variations of process and environmen-
tal parameters.

The inter-chip variations represent global variations that
are the same for all devices on a given chip. The intra-
chip variations represent variations of devices within the
same chip. The intra-chip variations include spatially cor-
related variations and purely independent or uncorrelated
variations. We say that parameter F' has spatially corre-
lated variation if devices that are closer to each other are
more likely to have similar values of this parameter, while
devices that are far away are more likely to have different
values of the parameter.

It is of significance to characterize different process var-
iation components (global, spatial and random variations)
and the overall process correlation, because that information
is the enabler for any attempts to analyze or optimize de-
signs statistically. For example, it is necessary to know the
variations of device parameters in order to build the statis-
tical delay models for both devices and interconnects, which
are the essential inputs for both statistical timing analysis
and robust circuit tuning. Recent statistical static timing
analysis techniques considering spatially correlated param-
eters [1, 4, 5] also assume that the required spatially corre-
lated information is known a priori. In fact, the only way
to obtain these variation characteristics is to extract them
from experimental measurements. However, to the best of
our knowledge, no existing work has provided a detailed



technique to extract that information properly from mea-
surements. Moreover, how to robustly extract statistical
characteristics of device parameters and especially charac-
teristics of spatially correlated parameters in the presence of
unavoidable measurement noise has not been considered in
literature [6, 7, 8]. The extraction of the deterministic com-
ponent of Leff variation was considered in detail in [9] for
the 0.18um CMOS technology. But that publication ignored
the random component of spatial variations, justifying its
approach by the fact that for the 0.18um CMOS technology
random variations were insignificant. Another publication
[10] limited its consideration by simple computation of the
spatial correlation coefficient that is a function of distance.
However, there is no verification that the extracted correla-
tion function was a valid correlation function, i.e., any corre-
lation matrix generated from this function must be positive
semidefinite.

From the theory of random fields [11], it is known that
not any function can be a valid spatial correlation function.
Even not every monotone decreasing function can represent
spatial correlation because it cannot guarantee to generate a
valid spatial correlation matrix for any given set of locations
on a chip. Moreover, not every set of coefficients can repre-
sent a valid correlation matrix even if all those coefficients
are less than one, because the resulting matrix simply can
be non-positive semidefinite. On the one hand, because of
unavoidable measurement errors, it is likely to extract a set
of correlation coefficients that do not form a valid correla-
tion matrix or cannot be interpolated into a valid correlation
function. On the other hand, statistical static timing analy-
sis requires that the correlation function is valid. Otherwise,
the results of statistical timing can have unpredictable error.

The major contribution of this work is as follows. We
develop a robust technique to extract a valid spatial corre-
lation function by solving a constrained nonlinear optimiza-
tion problem. We also develop a robust technique to extract
a valid spatial correlation matrix by employing a modified
alternative projection algorithm. Our techniques are based
upon the mathematical theory of random fields and convex
analysis, and it is guaranteed that the resulting correlation
function and correlation matrix are not only valid, but also
the closest ones to the measured data even if the data are
distorted by significant measurement noises. Experiment
results based upon a Monte-Carlo model confirm the accu-
racy and robustness of our techniques. We achieve less than
10% errors for the extracted process variations even if the
measurement noise is more than 100% of the total process
variations. Because of the promising results, we plan to ap-
ply our techniques to real wafer data to extract the spatial
correlation information.

The rest of the paper is organized as follows. We first
describe how to model process variations in section 2; then
present our problem formulations in section 3; and provide
algorithms to solve the problems in section 4 and 5, respec-
tively. Experiment results are presented in section 6, and
we draw conclusions in section 7.

2. MODELING OF PROCESS VARIATION

2.1 Process Variation Decomposition

We denote F' as the measurable process parameter of in-
terest, which can be either a physical parameter, like chan-
nel length, channel width, silicon oxide thickness, and wire

thickness, or a parametric quantity, like gate delay and thresh-
old voltage. We model the parameter as a random vari-
able, and its overall variation can be decomposed into three
distinct components: the inter-chip global variation X, the
intra-chip spatial variation Y, and the purely uncorrelated
random variation Z, i.e.,

F = fo+X+Y+2, (1)

where fy is the mean value of F', and X, Y and Z are ran-
dom variables. Studies have shown that the mean value fo
may also exhibit systematic variation. How to extract the
systematic variation has been studied in detail in [9]. There-
fore, in the following we do not consider systematic variation
in our model. Instead, we focus on the zero-mean random
variation components X, Y and Z. The inter-chip global
variation X models the variation due to global variation ef-
fects that are shared for all device parameters within the
chip, hence it will be same for all measurements within the
same chip but may be different for different chips. The intra-
chip spatial variation Y models location-dependent varia-
tions within the chip, hence it may be different for different
measurements at different locations within the same chip.
The random variation Z models the purely uncorrelated ran-
dom component that is not explainable by either the inter-
chip global variation X or intra-chip spatial variation Y.
Therefore, X, Y and Z have mutually independent distri-
butions, as the mechanisms of causing variation in X, Y and
Z are different by definition. The variance of the parameter
of interest F' is given by

oy = ox +oy+oz, (2)

where 0%, 0%, and 0% are the variances of X, Y, and Z,
respectively. The total variance o2 is also called the overall
chip variance.

2.2 Modeling of Spatial Correlation

It has been observed that devices that are physically close
to each other are more likely to have similar characteristics
than devices that are far apart. This phenomenon is cap-
tured by the modeling of spatial correlation. In order to
model the spatial correlation of random variable Y, we as-
sociate every point (z,y) in a chip with a random variable
Y (z,y). We have the following definitions:

DEFINITION 1. Random Field is a real random func-
tion Y (x,y) of position (z,y) in the 2-dimensional space R>.

DEeFINITION 2. Homogeneous and Isotropic Random
Field is a random field Y (z,y) whose mean value is a con-
stant number, and whose correlation function p(xzi,;,Y:, y;)
between any two points depends only on the distance v be-
tween them, i.e.,

p(i, x5y, y5) = p(V/ (zi — 25)2 + (g — y5)?) = p(v).  (3)

For any number of chosen points on the chip, we assume
the joint spatial variation Y=(Y1, Yz, ..., Yas)” follows a mul-
tivariate Gaussian process with respect to their respective
physical locations on the chip. Therefore, to fully character-
ize the M-dimensional Gaussian distribution, we only need
to know the variance o% and its correlation matrix Q as



shown in (4):

1 P12 P13 . PLM
p1,2 1 p2,3 ... pP2.M
Q = p3 P23 1 .. pam | (4)
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A walid correlation matrix must be positive semidefinite [12].
If the spatial variation is modeled as a homogeneous and
isotropic random field in a two dimensional space RZ, we
can also characterize it by extracting its variance o2 and
the correlation function p(v).
For the parameter of interest at two different points, their
covariance is

cov(Fi, F;) = cov(X+Yi+Z,X+Y,+2)
cov(X, X) + cou(Y;,Y;)
= oX +p(vij)oy, (®)

where p(v; ;) is the spatial correlation coefficient between
two locations that are v; ; distance apart. Saying that the
spatial variation follows a homogeneous and isotropic ran-
dom field is equivalent to saying that the same distance v; ;
always corresponds to the same p(v; ;), regardless of their
locations. Therefore, for simplicity, we denote p(v; ;) as p(v)
in the following whenever there is no ambiguity.

In general, the spatial correlation function p(v) is a mono-
tonically decreasing function of distance v. However, not all
monotonically decreasing functions qualify for the spatial
correlation function. We have the following theorem:

THEOREM 1. A necessary and sufficient condition for the
function p(v) to be a valid spatial correlation function of a
homogeneous and isotropic random field is that it can be
represented in the form of

plv) = / " Jo(wn)d(®(w)), (6)

where Jo(t) is the Bessel function of order zero and ®(w) is
a real nondecreasing function on [0,00) such that for some

non-negative p,
4P (w)
/0 T+ w)r < oo. (7)

Proof: See [11] for the proof. O

For example, ®(w) :l_dﬁ
satisfy this condition. By plugging them into (6), we obtain
the corresponding correlation functions as p(v)=exp(—bv)
and p(v)=exp(—b*v?), respectively, where b is a parameter
that regulates the decaying rate of the correlation function
with respect to distance v.

and ®(w)=1-exp(— %)

3. PROBLEM FORMULATION

To experimentally characterize the process variation, we ob-
tain N samples of a chip, and choose M number of sites on
each chip where measurement is conducted. The sites are
denoted as (x;,¥:), and the distance between any two sites
is denoted as v;,;. We denote each measurement of the pa-
rameter of interest F' as fi,; for the kth chip on the ith site.

When the spatial variation follows a homogeneous and
isotropic random field, we have the following first problem
formulation:

FORMULATION 1. Extraction of Process Variation:
Given noisy measurement data for the parameter of interest
with possible inconsistency, extract the inter-chip global var-
iation component 0%, the intra-chip spatial variation com-
ponent 0%, the random wvariation component 0%, and the
spatial correlation function p(v), so that the extracted varia-
tion components accurately capture the underlying variation
model and the spatial correlation function is always a valid
correlation function satisfying condition (6).

For the parameter of interest at two different locations with
distance of v, the overall process correlation between them
is given by
F, Fy
Py = CO’U( vy J) (8)
OF,0F,
2 2

Ox + p(’l))O'y (9)
0% +o2 +o%’

Because the spatial correlation p(v) is a function of the dis-
tance v, so is the overall process correlation p,. As p(v) is
homogeneous and isotropic, so is p,. Because of the one-
to-one correspondence between spatial correlation p(v) and
the overall process correlation p,, extracting the spatial cor-
relation function p(v) is equivalent to extracting the overall
process correlation function p,.
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Figure 1: Overall process correlation.

In Figure 1, we show a possible curve for the overall corre-
lation p, as a function of the distance v. According to Fig-
ure 1, the total correlation can be divided into three parts:
part X is the correlation caused by the inter-chip global var-
iation; part Y is the correlation caused by the intra-chip
spatial correlation; and part Z is caused by the purely un-
correlated random variation. We can see that the overall
process correlation p, starts to settle at a constant value
when the distance becomes large enough, which means that
even for devices from the same chip that are far apart, there
is still some correlation between them due to their shared
global variations. We can also see that there is a sudden
drop from one for p, at distance zero. The cause for that
drop is the purely uncorrelated random variation, such that
even for devices that are very close to each other, they are
still not perfectly correlated. Perfect correlation (p, = 1)
only occurs when the two devices are in fact the same de-
vice.

In some applications, however, it may not be appropri-
ate to model the spatial correlation as a homogeneous and
isotropic random field. In this case, we have to use the spa-



tial correlation matrix to characterize the spatial variation
directly. Therefore, we have the following second problem
formulation:

ForMuULATION 2. Extraction of Spatial Correlation
Matrix: Given noisy measurement data for the parame-
ter of interest with possible inconsistency at M number of
points on a chip, extract the overall process spatial correla-
tion matriz 0 as shown in (4), so that it not only accurately
captures the underlying process variation model, but the ex-
tracted correlation matriz € is always positive semidefinite.

In other words, we want to characterize the overall process
spatial correlation by providing the symmetric correlation
matrix  directly as shown in (4) for the given M number of
points of interest. Extracting a valid correlation matrix is of
practical use. For example, in a PCA (principle component
analysis) based statistical timing analysis [1], the required
spatial correlation matrix is always assumed to be valid and
known a priori.

In the following, we present techniques to solve the above
two problem formulations respectively.

4. EXTRACTIONOFPROCESS VARIATION

4.1 Global Variation Extraction

We treat each measurement of the parameter of interest F'
as a sampling of the quantity in (1). We also group the
measurement data fi; by their chip locations as follows:
e, =[fx,15 - fi,m] for k=1 to N, or by their site locations
as follows: f ;=[f1,,..., fn] for i=1 to M. For better pre-
sentation, we denote the actual variance as o2 with an up-
per case letter in subscript, like 0% for the global variation
component; and denote the extracted variance as o2 with a
lower case letter in subscript, like o2 for the extracted global
variation component.

We approximate the overall chip variance 0% by comput-
ing the unbiased sample variance [12] of fi,; as follows

sz’“ _ M). (10)

For all samples of the parameter of interest F' within a
particular chip ¢, because the inter-chip global variation X
changes the value of parameter for all samples with the same
chip by the same amount, the overall within-chip variance
is thus given by

2 2
O'FNO'f

2

R (11)

We estimate the overall within-chip variation by computing
the unbiased sample variance [12] of f,. as follows

Z sz)

2
(o) %O’

e =5 (12)
For different fi,., we may get different estimation of U%C
due to possibly inconsistent measurement. To improve the
accuracy, we estimate the overall within chip variance by
taking the average value of U?‘k. We denote the resulting
average value as ‘712‘0 ~ U%C.

Knowing the estimation of the overall chip variance JJQI and
the overall within-chip variance O'?‘C, we extract the inter-
chip global variation by

2 2 2 2 2 2
Ox =0p — O, " 0y =0f —O0F,. (13)

c

4.2 Spatial Variation Extraction

For any two different sets of f ; and f. ; at two different
sites that are v distance apart, we estimate the covariance
of F; and F; by computing the unbiased sample covariance
[12] of f.; and f.; as follows

cov(Fy, Fy) =~ cov(f.i, f.;)
_ Zk Jr,ifr,j _ Zk X Zk fr.s (14)
- N-1 N(N-1)

For simplicity, we also denote cov(f. s, f.;) as cov(v) to show
that it is a function of two points that are v distance apart.

According to (5) and (13), we can estimate the product of
spatial variation 0% and spatial correlation p(v) as follows:

oy p(v) = cov(Fy, Fy) — ox ~ cov(v) — o2 (15)

Because p(v) is a function of v, we need to compute p(v)
for different pairs of sites with different distances in order
to obtain the full description of p(v). However, there are
two challenges in doing that: (1) we do not know the exact
value of spatial variation o%; (2) due to unavoidable mea-
surement errors, the data set computed as above may not be
consistent. Therefore, in the following, we propose a robust
technique to find the spatial correlation function p(v) and
o2 accurately. Moreover, the resulting p(v) is guaranteed
to be a valid spatial correlation function for modeling the
homogeneous and isotropic random field, and any spatial
correlation matrix generated from p(v) is guaranteed to be
positive semidefinite.

Given the data set (v, cov(v)) as computed from (14), we
formulate the robust spatial variation extraction problem as
the following optimization problem:

min : I a'%// Jo(wv)d(®(w)) — cov(v) + o2 ||,(16)
®,05 0
s.t. aff < U?‘C,

/ < dd(w)

= <00
o (I+w?)r
In other words, we find a valid spatial correlation function
by solving a constrained nonlinear optimization problem,
so that the resulting spatial correlation function minimizes
the total error with respect to measurement data. After
obtaining ®(w), we plug it into (6) to obtain the valid spatial
correlation function p(v).

The above problem formulation is very general and ap-
plies to any real non-decreasing function ®(w). However,
for practical use, there is no need to enumerate all possible
choices of ®(w) in order to find the optimal p(v). In fact, it
is sufficient to chose a family of functions ®(w) so that the
p(v) obtained from (6) contains a rich set of functions for
the purpose of modeling spatial correlation.

It has been shown in [13] that by choosing a proper family
function of ®(w), we can obtain a very general family of
spatial correlation functions

o) =2(%

where K is the modified Bessel function of the second kind,
T" is the gamma function, and b and s are two real parameter
numbers that regulate the shape of the function. By varying
b and s, we can obtain different spatial correlation functions.

VT K (bo)D(s — 1)1, (17)



For example, p(v)=exp(—bv) with ®(w) :l_ﬁ in (6)
can be generated from (17) by choosing s = 3/2.

To show that the function of (17) indeed provides us a
rich set of correlation functions that suffice for our spatial
correlation modeling, we plot the function of (17) under dif-
ferent parameters of b and s. Figure 2 shows a few samples
of correlation functions generated from (17) by setting b to
be 0.1, 1 and 10, and varying s from 2 to 10 with a step
size of 2. From the figure, we can see that the correlation
function (17) indeed can generate a rich gamut of correlation
functions for the purpose of spatial correlation modeling.

s=2,4,6,8,10

10

Figure 2: Correlation functions generated from (17).

Without loss of generality, in the following, equation (17)
will be used as the candidate correlation function in (16).
Moreover, 2-norm is used as a measure of the objective func-
tion in (16). Therefore, we can rewrite the optimization
problem as given in (16) as follows:

. X bv s—1 —
bgl,lfg/ : Z[Qa’ (= 5 T K1 (bv)l'(s — 1)
—cov(v) + 027, (18)
s.t. aff < O'?‘C.

This is a constrained nonlinear least square problem and we
can solve it efficiently via any nonlinear least square tech-
nique [14].

After solving the above problem, we obtain the estimated
spatial variation component 0’5 ~ 0%, and the parameter b
and s. By plugging b and s into (17), we obtain the esti-
mated spatial correlation function p(v) ~ p(v). Therefore,
we have obtained all information about the spatial variation
component: both the variance of spatial variation and the
spatial correlation function.

4.3 Overall Algorithm

The overall algorithm for characterizing the process varia-
tion is summarized as shown in Figure 3:

Extract global variation cri by (13);

Solve (18) to obtain 03 and b and s;
Extract p(v) by plugging b and s into (17);
Extract random variation o2 by (19);
Extract overall process correlation by (9);

T W N =

Figure 3: Algorithm for characterization of process
variation.

We first extract the global variation component o2 by
using formula (13). We then solve the nonlinear least square
optimization problem as defined in (18) to obtain the spatial
variation component 057 and the parameter of b and s that
define the spatial correlation function for a homogeneous
and isotropic random field as shown in (17). According to
(2), we extract the random variation component by using
the following formula:

2 2 2 2 2 2 2 2
07 =0p —0x — 0y R0, =0f — 0y — 0y (19)

By plugging all variation components into (9), we obtain the
overall process correlation at any distance.

5. EXTRACTION OF SPATIAL CORRELA-
TION MATRIX

5.1 Overall Algorithm

We are given measurement data for M points of interest on
a chip and we have N samples of the same chip. We extract
the overall process spatial correlation as follows.

We first estimate the covariance between any two points
of interest by (14). We then estimate the variance of each
point of interest by computing its unbiased sample variance
[12] as follows:

By plugging the estimated O'?‘i and JJ%], and cov(f. i, f..5)

)- (20)

2 2
O-Fiwa-fii

from (14) into (8), we obtain the estimated overall process
correlation coefficient

cov(F;, F; cov(f. i, f.,j
Pz‘,j — ( J) ~ (f f J)' (21)

OF,0F; of0f;
For the given M points of interest, we have M (M — 1)/2
number of pairs of points F; and F}; and the corresponding
M(M — 1)/2 number of estimated correlation coefficients
pi,;. Putting all p; ; into (4), we obtain the estimated overall
process spatial correlation matrix A ~ .

Note that in order for the above estimated A to qualify
for a correlation matrix, it has to be a positive semidefi-
nite matrix. But due to measurement errors, we can not
guarantee that such a property would hold automatically
for the resulting A due to the unreliable (sometimes even
inconsistent) measurement data. We solve this problem by
employing the modified alternative projection algorithm that
enables us to robustly extract a valid correlation matrix 2
from the unreliable measurement data.

The overall algorithm for extracting a valid spatial corre-
lation matrix is summarized as follows in Figure 4:

Compute cov(fi, f;) by (14);

Compute a?i by (20);

Compute p; ; by (21);

Compute A by assembling p; ; into (4);

Tk W N =

Compute 2 via the modified alternative projection algorithm;

Figure 4: Algorithm for extracting a valid spatial
correlation matrix.

5.2 Modified Alternative Projection Algorithm

The robust extraction of a consistent correlation matrix
problem can be formulated as the following optimization




problem. For a given symmetrical matrix A with elements
a;,; between 0 and 1, find a correlation matrix Q that is
mostly close to A. Mathematically, the closeness can be
measured via the distance between two matrices, i.e.,

inn ] A—=Q||,s.t.: Q € correlation matriz. (22)

We use the weighted Frobenius norm to measure the dis-
tance between two matrix. Recall that the Frobenius norm
is defined as || A [|[=Y" a7 ;. One of the weighted Frobenius
norms is the W-norm as defined by

IA w=] W2 AW ||, (23)

where W is a symmetric positive definite matrix.

This problem is also called the nearest correlation ma-
trix problem [15], or the least-squares covariance adjustment
problem [16]. We solve this problem by employing the mod-
ified alternative projection algorithm proposed in [15]. The
idea is to iteratively project the symmetric matrix A onto
two convex sets alternatively, and at the end of iteration,
the final projected matrix is the solution to the optimiza-
tion problem as defined in (22).

We first define the sets

U = {Y=Y"eR"":yu =1}, (24)
S — {Y:YT eRan }/20}7 (25)

where the notation Y > 0 means that Y is positive semidef-
inite. Our desired correlation matrix  as shown in (22) is
a matrix that is in the intersection of U and S and has the
shortest distance to A in a weighted Frobenius norm. Since
S and U are both closed convex sets, so is their intersection.
It thus follows from standard results in approximation the-
ory that the minimum 2 in (22) is obtainable and is unique.

Moreover, for a symmetric matrix A € R"™*™ with spectral
decomposition (or eigen-value decomposition) A = QDQT,
where D = diag(X\;) and Q is orthogonal, we introduce the
following notations

Ay = Qdiag(maz():,0))Q7. (26)

We denote Py(A) and Ps(A) as the projections of A onto
U and S, respectively. Then for a given W-norm, Py (A)
can be computed analytically via the following formula.

Py(A) = A— W diag(6,)W ™, (27)
where 0 = [04, ..., 6‘n]T is the solution of the linear system
(W™t oW ™10 = diag(A — 1), (28)

where o denotes the Hadamard product: A o B=(a; ;bi ;),
i.e., element-wise matrix multiplication.

For a given W-norm, Ps(A) can also be computed ana-
lytically via the following formula.

Ps(A) =W Y2 (W2 AW yw ! (29)

When the W-norm is taken as the identity I, i.e., the un-
weighted Forbenius norm, Py (A) is simply as

Py(A) = (pij) (30)

with pi;; = as; for all 4 # j and p;; = 1 for all ¢ = j. For
Ps(A), it is simply as

Ps(A) = Ay = Qdiag(maz(\i,0))Q". (31)

The following modified alternative projection algorithm
as shown in Figure 5 can be used to solve the nearest corre-
lation matrix problem as defined in (22).

ASy =0, Yo=A
for k=1,2,...
Ry =Yr_1-ASk1
X, = Ps(Ry)
ASL = X - R
Yi = Pu(X3)
end
Q=Y

Figure 5: The modified alternative projection algo-
rithm.

It has been proved that when k — oo, both X3 and Y}
converge to the desired correlation matrix 2. Therefore,
among many possible choices, the following convergence con-
dition can be used in Figure 5 to stop the loop:

s { [ Xk = Xea | [ Ve =Yeor |l [[Ye—Xe ||}
X |l | Ye |l Il Y |l

<e

where ¢ is a small tolerance number (say ¢ = 107%).

6. EXPERIMENTAL RESULTS

We employ a Monte Carlo model of measurement to verify
the robustness and accuracy of our extraction algorithms.
The Monte Carlo model is based on a valid correlation func-
tion p(v) with known variation amounts for all variation
components. By comparing the extracted variation com-
ponents o2, O'S, and p(v) with the known variation com-
ponents used in the Monte Carlo model, we can quantita-
tively examine how robust and how accurate our extraction
algorithms are in the presence of different amount of mea-
surement errors. Such a study is useful because it provides
us the confidence in applying the algorithms to real wafter
measurement.

In the first experiment, by using the Monte Carlo method,
we generate a set of measurement data from N number of
sample chips and M number of measurement sites on each
chip. To model the reality due to measurement error, we
add a Gaussian noise with different variation amounts dur-
ing the Monte Carlo sampling. By applying the algorithm
as shown in Figure 3, we extract the global variation com-
ponent o2, random variation component o2, spatial varia-
tion component 05, and parameter of b and s that define

the spatial correlation function p(v) for a homogeneous and
isotropic random field as shown in (17). By plugging all
variation components into (9), we obtain the overall process
correlation at any distance. We measure the accuracy of
our extraction algorithm for the global variation and spa-
tial variation, but not the random variation as it is indistin-
guishable from the added measurement noise. For the global
variation component, the relative error is given by err(agg)

2 2
o —0 . . . .
= —=5X%; for the spatial variation component, the relative
X

2 2
. . g, —0c .
error is given by err(a%) = Y . and for the spatial cor-
Y

relation function, the relative error is given by err(p(v)) =

le()—p()]]
el ) )
From statistical theories, we know that if we have more

measurement data, we have more confidence in the accuracy



of statistics obtained from measurements. However, in re-
ality, measurement of chips is usually very time-consuming
and expensive. Therefore, it is desirable to attain similar
accuracy yet with as few number of measurement data as
possible. A robust extraction algorithm helps to achieve
that goal.

We report experiment results in Table 1, where N is the
number of sample chips, M is the number of measurement
sites, Noise is the amount of random noise added into the
Monte Carlo model in terms of the total variation (6% + 0%
+ 0%). The product of N and M gives the total number of
measurement points.

According to Table 1, we see that our algorithm is very
accurate in extracting different variation components, yet
very robust to different amount of random noise. For exam-
ple, with N=2000, M=60 and Noise=10%, our extracted
results have about 0.4% error for the global variation, 1.9%
error for the spatial variation, and 2.0% error for the spatial
correlation function. When the noise amount changes from
10% to 100%, the accuracy of our results almost does not
change at all. This convincingly shows that our extraction
algorithm is very resilient to the measurement noise.

Table 1: Process variation extraction.

N M [ Noise | err(c%) | err(c3) | err(p(v))

2000 | 60 10% 0.4% -1.9% 2.0%
50% 0.3% -2.8% 2.7%

100% 0.3% -2.6% 3.7%

1500 | 60 10% 4.1% 2.5% 0.9%
50% 3.9% 2.1% 1.0%

100% 3.8% 2.0% 1.2%

1000 | 60 10% 7.5% 1.2% 1.0%
50% 7.2% 1.0% 1.0%

100% 6.9% 1.4% 1.0%

500 60 10% 17.8% 10.9% 6.6%
50% 18.3% 6.1% 4.8%

100% 18.6% 4.7% 3.1%

1000 | 50 10% 6.5% 0.8% 2.8%
50% 5.7% -0.4% 3.0%

100% 5.1% -3.0% 3.5%

40 10% 8.6% -4.1% 6.5%

50% 8.7% -3.9% 7.0%

100% 8.9% -2.3% 8.4%

We further test the robustness of our algorithm by reduc-
ing the number of chip samples N from 2000 to 500. We
see that when there are reasonable number of chip samples
(1500 and 1000), our algorithm still gives quite accurate re-
sults, and the maximum error for the global variation is no
more than 10%, and the maximum error in either the spa-
tial variation or spatial correlation function is less than 5%.
When the chip samples drop to 500, we start to see a larger
error (but no more than 20%) in the extracted global vari-
ation. This is expected because according to the statistical
sampling theories, there is a lower bound on the number of
samples in order to obtain reasonably accurate statistics.

Moreover, we observe that because of the optimization
procedure used to extract the spatial variation and spatial
correlation function as shown in (18), the extraction of those
two parts is not as sensitive to the number of sample chips
as the global variation extraction does.

We further fix the number of sample chips N to be 1000
and vary the number of measurement sites M on the chip
from 60 to 40 to study how the accuracy of our algorithm
changes. From Table 1, we see that our algorithm still gives
quite accurate results. When M changes from 60 to 40, we

only see slight increase of errors for all extracted variation
components, and none of them has more than 10% error.

A Model Data
0.9r - Measurement Data
' Extraction Data

Figure 6: Experiment on extracting the overall pro-
cess correlation function.

We further plot one of the extracted overall process corre-
lation functions in Figure 6, where the (red) triangle points
are the model data from the Monte Carlo model, the (blue)
dotted points are data from our measurements with noise
added. Obviously, the measurement data are noisy, not con-
sistent, and are quite difficult to use directly. However, after
applying our algorithm, we obtain a very robust yet consis-
tent results as shown in the (black) continuous curve, which
not only captures the underlying process model very well,
but also provide consistent extrapolation results for those
data points that are not even available from measurement.

Table 2: Overall process correlation matrix extrac-
tion.

Points 50 100 | 150 | 200
A(A)ieast | -0.83 | -1.43 | -1.84 | -2.38
)‘(Q)least 0 0 0 0

TA=—Q, | 200 | 4.35 | 6.85 | 9.39

A0 52% | 5.9% | 6.6% | 3%

In the second experiment, we have measurement data for
a number of points of interest on the chip, and we want to
obtain their overall process correlation matrix for further
operations. We apply the algorithm as shown in Figure 4 to
achieve this goal.

We show experimental results in Table 2. According to
the algorithm as shown in Figure 4, we compute individual
pair-wise correlations and then put them together to obtain
an estimated correlation matrix A. However, due to mea-
surement noise, the resulting correlation matrix may not be
positive semidefinite as illustrated by the second row in Ta-
ble 2, where the smallest eigenvalue Ajeqst of A is shown.
For example, when we have 200 points, the measured corre-
lation matrix has the smallest eigenvalue -2.38. The negative
eigenvalue indicates that the measured correlation matrix is
not positive semidefinite. On the contrary, after applying
the modified alternative project algorithm as shown in Fig-
ure 5, we can always find a “closest” yet valid correlation



matrix €. And the resulting matrix € has all non-negative
eigenvalues as shown in the third row in Table 2. Moreover,
the difference between Q2 and A is very small (no more than
10%).

In summary, our experiment results convincingly show
that our proposed extraction algorithms can accurately ex-
tract different variation components and are robust to the
unavoidable measurement noise. Moreover, it is guaranteed
that our algorithms always produce a wvalid spatial correla-
tion function or spatial correlation matrix, which warrants
the validity of further operations on these extracted varia-
tion data.

7. CONCLUSION AND DISCUSSION

Robust extraction of statistical characteristics of process pa-
rameters is the enabler to achieve the benefits provided by
statistical timing analysis and robust circuit optimization.
In this paper, we have developed a novel technique to ro-
bustly extract the statistical characteristics of process varia-
tion from experimental measurements. Our technique guar-
antees that the resulting spatial correlation function and
spatial correlation matrix are always valid and are the clos-
est to the measurement data even if the data are distorted by
some measurement noise. We plan to apply this technique to
real wafer data and use the extracted process characteristics
for robust mixed signal circuits tuning with consideration of
correlated process variations in the future.
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