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Abstract. We calculate the Shannon, Rényi and Havrda-Charvat entropy function-

als (α = β = 1/2) as functions of the excited states of the infinite potential well and

quantum oscillator and show that all these entropy functionals represent the monotonous

increasing functions of these states. From the mathematical point of view the presented

entropy functionals are to be considered as equivalent uncertainty measures (spreads)

of probability distributions. Though the Rényi and Havrda-Charvat entropy functionals

represent equally well uncertainty measures as the Shannon entropy functional they are

generally simpler evaluated mathematically than it.

1 Introduction

When teaching statistical physics, students are well-acquainted with the Gibbs-Shannon

entropy. However, they are not generally acquainted with the fact that there exist a

whole class of another measures of uncertainty apart of Shannon entropy. In physics,

these measures of uncertainty, called in theory of probability as generalized entropies,

become more and more important in quantum and statistical physics. Classical example

is the Tsallis entropy [10] playing important role in statistical physics.
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As is well-known, in theory of probability, there are basically two uncertainty mea-

sures of a random variable x̃, namely the moment and entropic ones (see, e.g. [4]). The

moment uncertainty measures of x̃ contains in its definition components of its probability

distribution as well as the corresponding values given on its probability states. A typical

moment uncertainty measure of x̃ is its variance. The entropic uncertainty measure of a

random variable contains only components of its probability distribution. The most im-

portant entropic measure of uncertainty of x̃ is the familiar Shannon information entropy

[5]. If x̃ is a discrete random variable which takes the values xi , i = 1, 2, . . . , n, with

the probabilities P (x1), P (x2), . . . , P (xn),
∑

i P (xi) = 1 ; P (xi) ≥ 0 , i = 1, 2, . . . , n,,

then its information entropy is [5]

H(x̃) = −
n∑

i=1

P (xi) log P (xi). (1)

The Shannon information entropy for a discrete random variable with the finite proba-

bility states assumes a finite number. The transition from the discrete to the continuous

Shannon information entropy is, however, not always unique and has still many open

problems [1]. To a quantum continuous observable is assigned a continuous random vari-

ables x̃c with its probability density p(x). Again, the typical moment measure of x̃c is its

variance while its entropic uncertainty measure is its Shannon information entropy which

is a function of its probability density p(x) and consists of two terms

H(x̃c) = S(p(x)) + S ′, S(p(x)) = −
∫

p(x) log p(x) dx, S ′ = lim
∆x→0

log4x.

H(x̃c) with both terms S and S ′ always diverges, i.e. the information contain of x̃c is

infinite. Usually, one ”renormalizes” H(x̃c) by taking only the term S(p(x)) called the

Shannon entropy functional (sometimes denoted as the differential entropy). S(p(x))

plays an important role in probability theory and statistics [6]. We refer to Karlin and

Rinott [7] for applications of S(p(x)) in probability theory and statistics.

From the mathematical point of view, S(p(x)) can be taken as a formula for expressing

the spread of any normed single-valued function (the probability density belongs to this
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class of functions). The Shannon entropy functional was studied just at the beginning

of information theory [8]. Since that time, besides S(p(x)), several other similar entropy

functionals were introduced and studied in information theory. The majority of them

depend on certain parameters. As such, they form a whole family of different entropy

functionals (including S(p(x)) as a special case). In a sense, they are generalization of

S(p(x)) and express likewise the uncertainty measure (spread) of p(x). Two most familiar

are

(i) The Rényi entropy functional S(R)
α given as [8]

S(R)
α (p(x)) =

1

1− α
log

[∫ ∞

−∞
[p(x)]αdx

]
α ∈ R. (a)

(ii) The Havrda-Charvat entropy functional S
(HC)
β given as [9]

S
(HC)
β (p(x)) =

1

1− β

[∫ ∞

−∞
[p(x)]βdx− 1

]
β ∈ R. (b)

A quick look shows that S(R)
α and S

(HC)
β are functionally related. Note that S(R)

α , S
(HC)
β

tend to S(p(x)) as α, β tends to 1. In some instances, it is simpler to compute S(R)
α , S

(HC)
β

and then recover S(p(x)) by taking limits α, β → 1.

According to experimental arrangement a particle can be described by different wave

functions φ(z) and so with different position or momentum probability density functions

p(z) = |φ(z)|2. When taking the Rényi and Havrda-Charvat entropy functionals with

α = β = 1/2 as the uncertainty measures of p(z), then the integrand in (a) and (b)

becomes simply p(z)1/2 = |φ(z)|. This is why we focus our attention on these entropy

functionals which we denote as RF and HCF

RF (p(z)) = 2 log
[∫ ∞

−∞
p(z)1/2dx

]

and

HCF (p(z)) = 2
[∫ ∞

−∞
p(z)1/2dz − 1

]
,
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respectively. For the position probability density p(x) = |ϕ(x)|2 the Shannon, Rényi and

Havrda-Charvat entropy functionals become

S(ϕ(x)) =
∫ ∞

−∞
|ϕ(x)|2 log |ϕ(x)|2dx,

RF (ϕ(x)) = 2 log
[∫ ∞

−∞
|ϕ(x)|dx

]
(a′)

and

HCF (ϕ(x)) = 2
[∫ ∞

−∞
|ϕ(x)|dx− 1

]
, (b′)

respectively. We see that the integrand in (a’) and (b’) represents the absolute value of

the position wave function.

In Sections 2 and 3 we calculate the position and momentum Rényi and Havrda-

charvat functionals, RF and HCF , for the excited states (n ∈ [1, 40]) of the infinite

well and quantum oscillator and compare them with the corresponding Shannon entropy

functional. In Section 4 we summarize the most important results.

2 The Shannon, Rényi and Havrda-Charvat entropy

functionals for the infinite well

As is well-known, the infinite potential well is a quantum system defined as (h̄ = 1) [2]

U(x) =





0 for |x| ≤ a

+∞ for |x| > a ,
(2)

where U(x) is the potential. Its position and momentum wave functions are

ψn(x) =





1√
a
sin

[
πn
2a

(x− a)
]

for |x| ≤ a

0 for |x| > a
, (3)

φn(p) =

√
πn2

2a3

sin(ap− π
2
n)(

p2 − π2n2

4a2

) , (4)
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respectively.

Inserting the position probability density, p(x) = |ψn(x, a)|2 into S(p(x)), RF (p(x)) and

HCF (p(x)) we get [3]

S(ψn(x, a)) = −
∫ a

−a
|ψn(x, a)|2 log |ψn(x, a)|2dx = ln (4a)− 1. (5)

With

Ψ(a) =
∫ a

−a
ψn(x, a)dx =

∫ a

−a

∣∣∣∣∣
1√
a

sin

(
nπ(x− a)

2a

)∣∣∣∣∣ dx =
4
√

a

π

we have

RF (ψn(x, a)) = 2 log Ψ(a) = 2 log

[
4
√

a

π

]
(6)

HCF (ψ(x, a)) = 2 [Ψ(a)− 1] = 2

(
4
√

a

π
− 1

)
.

We see that all the considered entropy functionals for the infinite well are independent of

n.

Inserting the momentum probability density into above functionals we obtain

S(φn(p)) = −
∫ ∞

−∞
|φn(p)|2 log |φn(p)|2dp.

With

ΦW (n, a) =
∫ ∞

−∞
|φn(p, a)|dp

we have

RF (φn(p)) = 2 [log (ΦW (n, a))]

and

HCF (φn(p)) = 2 [ΦW (n, a)− 1] .

ΦW (a, n) represents the integral of the square of the momentum density function of the

infinite well. The corresponding indefinite integral can be evaluated analytically (using

the software MATHEMATICA 5) for an arbitrary a and n yielding

ΦW (a, n) =
∫
|φn(p, a)|dp =

1

8n
√

π
{n√ax(+)x(−) cos(ap− nπ

2
)
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+ sin(ap− nπ

2
)(x(+)x(−))−1IC(x(−)) sin(y(−))− IC(x(+)) sin(y(+))

− cos(y(−))IS(x(−)) + cos(y(+))IS(x(+))},

where x(+) = a(p + nπ), x(−) = a(p− nπ), y(+) = (1 + 2a)nπ/2 and y(−) = (1− 2a)nπ/2.

IS and IC denote the integralsine and integralcosine, respectively.

The dependence of ΦW (n, a) (a = 1) versus n is depicted in Fig.1. From Fig.1 it

follows that

ΦW (n, a) < ΦW (n + 1, a),

i.e. the spread of position wave function increase with increasing n.
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Figure 1: ΦW (n) for momentum of the infinite well (a = 1) as a function of n.

The dependence of the Shannon, Rényi and Havrda-Charvat entropy functionals for

momentum wave function on n are depicted in Fig.2. We see that the momentum Shan-

non entropy functional for the infinite well, as a function of n, is always smaller than the

corresponding RF and HCF . All these entropy functionals exhibit a correlated increase

with n, which corresponds to the increase of uncertainties of the momentum probability

density.
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Figure 2: S
(HC)
1/2 (ψn(p)) − HCF , S

(R)
1/2 (ψn(p)) − RE and Shannon entropy functional

S(ψn(p))− SE for momentum of well (a=1) as a function of n.

3 The Shannon, Rényi and Havrda-Charvat entropy

functionals for a quantum oscillator

The wave function of a quantum harmonic oscillator reads as

ϕn(x) = CnHn(x) exp (−x2/2),

where Cn = (n!2n
√

π)−1/2 is the norm constant and Hn(x) is Hermite polynomial of n-th

degree [2]. Since the wave function in momentum representation is the Fourier transform

of position wave function, having similar form as position one, we will investigate only

the position probability density assigned to a quantum state of quantum oscillator. The

Shannon entropy functional of position probability density of quantum oscillator is given

as

S(ϕn(x)) = −
∫ ∞

−∞
|ϕn(x)|2 log |ϕn(x)|2dx.

With

ΦQO(n) =
∫ ∞

−∞
|ϕn(x)|dx
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we get

RF (n) = 2 [log (ΦQO(n)] and HCF (n) = 2 [ΦQO(n)− 1]

The position S(ϕn(x)),RF (ϕn(x)) and HCF (ϕn(x)) as functions of n, we have calculated

numerically. The dependence of ΦQO(n) is depicted in Fig.3. The position Shannon

entropy functional of the excited states of quantum oscillator as a function of n has been

also calculated in [13] and [12]. As seen in Fig.4, the Shannon entropy functional, HCF

and RF for the excited states of quantum oscillator show correlated enlargement with n

however, with the different increase.
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Figure 3: ΦQO(n) as a function of n (a=1).
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Figure 4: S
(HF )
1/2 (ϕn(x)) − HCF , S

(R)
1/2)(ϕn(x)) − RE and Shannon entropy functional

(S(ϕn(x))− SE) for position of the quantum oscillator as a function of n (a=1).
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4 Conclusions

(i) Figs. 1 and 3 show that ΦW (n) and ΨQO(n) represent sequences of n which

monotonously increase with the excited states of the infinite well as well as quantum

oscillator. This means that spreads of the probability distributions assigned to corre-

sponding wave functions enlarge as the energy eigenvalues increases.

(ii) As seen in Fig. 2 all entropy functionals exhibit correlated sequences of n however,

with different degree of increase.

(iii) Striking feature of graphs depicted in Fig.2 and 4 is a small difference between the

values of S(n) and RF (n).

(v) All the considered entropy functionals belong to the set of uncertainty measures

of probability distribution in that all of them enlarge as their uncertainty enlarge.

HCF (p(x)) and HCF (p(x)) equally well express the spreads of the probability density

functions as S(p(x)).

(vi) In the literature the entropic uncertainty relation is often defined as the sum of

position and momentum of information entropies of two continuous non-commuting ob-

servables . This is strictly speaking incorrect because the information entropy of any

continuous probability simply diverges. The Shannon entropy functional resembles only

in the form the Shannon information entropy but in fact it does not express the informa-

tion content of the continuous probability distribution but it is only one element of the

class of general uncertainty measures.

(v)From the purely mathematical point of view, S(p(x)), SR(p(x)) and SHC(p(x)) have

to be taken as different formulas for expressing the spread of any normed single-valued

function (the probability density belongs to this class of functions). Generally, S(p(x)),

SR(p(x)) and SHC(p(x) assign to a probability density function (which belongs to the

class of functions L2(R1)) a real number S through a mapping L2(R1) → S. S is a

monotonously increasing function of the degree of spread of p(x).

(vi) As it is well-known, the Shannon entropy functionals of some continuous observables
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contain complicated integrals which often are difficult to compute analytically and even

numerically. Everybody who tried to calculate analytically the Shannon entropy function-

als of the continuous observables, became aware of how difficult this may be [13]. On the

other side, the Rényi and Havrda-Charvat entropy functionals for a number of quantum

systems are generally easier to handle mathematically than the Shannon one.
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