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Abstract This paper deals with the analysis of randomization effects in clinical

trials. The two randomization schemes most often used are considered: unstrati-

fied and stratified block-permuted randomization. A new analytic approach using

a Poisson-gamma patient recruitment model and its further extensions is proposed.

The prediction of the number of patients randomized in different strata to different

treatment arms is considered. In the case of two treatments, the properties of the to-

tal imbalance in the number of patients on treatment arms caused by using stratified

randomization are investigated and for a large number of strata a normal approxi-

mation of imbalance is proved. The impact of imbalance on the power of the trial is

considered. It is shown that the loss of statistical power is practically negligible and

can be compensated by a minor increase in sample size. The influence of patient

dropout is also investigated.

1 Introduction

The properties of various types of randomization schemes are studied in the papers

Hallstrom and Davis (1988), Lachin (1988), Matts and Lachin (1988), and books by

Pocock (1983), Rosenberger and Lachin (2002). However, the impact of random-

ness in patient recruitment and the prediction of the number of randomized patients

in the case of multiple centres have not been fully investigated.

To investigate these phenomena, a new analytic approach using a Poisson-gamma

patient recruitment model developed in Anisimov and Fedorov (2006, 2007) is pro-

posed. The model accounts for the variation in recruitment over time and in recruit-

ment rates between strata. The prediction of the number of patients randomized in

different strata to different treatment arms is considered. In the case of two treat-
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ments, the properties of the total imbalance in the number of patients randomized to

different treatment arms caused by using stratified randomization are investigated as

well. For a large number of strata a normal approximation of imbalance is proved.

These results are used for investigating the impact of randomization on the power

and sample size of the trial. Note that in a special case of a centre-stratified random-

ization some results in these directions are obtained in Anisimov (2007). The effect

of patient dropout is also considered. These results form the basis for comparing

randomization schemes using combined criteria including statistical power, study

costs, drug supply costs, etc.

2 Recruitment in Different Strata

Consider a multicentre clinical trial carried out with the aim to recruit in total n

patients. Suppose that the patient population is divided into S strata. Strata can stand

for different countries, centres or regions, groups of population specified by some

covariates, etc. Upon registration, patients are randomized to one of the treatment

arms according to some randomization scheme. The recruitment is stopped when

the total number of recruited patients reaches n. Assume that the patients in different

strata are recruited independently. Accounting for a natural variation in recruitment

between strata, we can consider the following model: the recruitment in s-th stratum

is described by a Poisson process with rate µs, where µs is viewed as a realization of

a gamma distributed variable with parameters (αNs,β ) (shape and rate parameters),

and the values Ns reflect the sizes of strata. Denote N = ∑s Ns.

As a natural illustration of this model, assume that there are N clinical centres

divided among S regions, where a region s has Ns centres. Let us associate the re-

gion s with s-th stratum. Suppose that the recruitment in centres is described by a

Poisson-gamma model (Anisimov and Fedorov, 2006,2007): in centre i the patients

are recruited according to a Poisson process with rate λi, where {λi} are viewed

as a sample from a gamma distributed population with parameters (α,β ). Then the

recruitment in s-th region is described by a Poisson process with rate µs which is

gamma distributed with parameters (αNs,β ). For this case, in Anisimov and Fe-

dorov (2007) a ML-procedure for estimating parameters is proposed.

Consider now the prediction of the total number of patients ns recruited in a par-

ticular strata s. The variable ns has a mixed binomial distribution with parameters

(n,gs) where gs = µs/µ , µ = ∑
S
s=1 µs. Thus, µ has a gamma distribution with pa-

rameters (αN,β ) and gs has a beta distribution with parameters (αNs,α(N −Ns)).
Denote by B(a,b) a beta function. Then ns has a beta-binomial distribution and

P(ns = k) = P(n,N,Ns,α ,k), where

P(n,N,Ns,α,k) =

(
n

k

)
B

(
αNs + k,α(N −Ns)+n− k

)

B

(
αNs,α(N −Ns)

) , k = 0, ..,n. (1)
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3 Randomization Effects

Description of randomization schemes can be found in the books by Pocock (1983),

Rosenberger and Lachin (2002). Consider the two often used in clinical trials ran-

domization schemes: unstratified and stratified block-permuted randomization. Un-

stratified randomization means that the patients registered for the study are random-

ized to treatment arms according to the independent randomly permuted blocks of a

fixed size without regard to stratum. Stratified randomization means that the patients

are randomized according to randomly permuted blocks separately in each stratum.

Clearly, unstratified randomization minimizes the imbalance in the number of pa-

tients on treatment arms for the whole study, but in general is likely to increase the

imbalance within each stratum compared to stratified randomization.

Assume that there are K treatments with the allocations (k1, ..,kK) within a ran-

domly permuted block of a size K1 = ∑
K
j=1 k j. Denote by ns( j) the number of pa-

tients randomized to treatment j in s-th stratum.

Consider first an unstratified randomization. Assume that the value M = n/K1

is integer. Then there are Mk j patients on treatment j and all patients can be di-

vided into K groups with Mk j patients in group j, j = 1, ..K. Within each group the

patients are distributed among strata independently of other groups according to a

beta-binomial distribution as described in section 2. Thus, for any stratum s,

P(ns( j) = i j, j = 1, ..,K) =
K

∏
j=1

P(Mk j,N,Ns,α, i j). (2)

Consider now a stratified randomization. In this case in each stratum randomiza-

tion is carried out independently of other strata according to block-permuted ran-

domization. If in some stratum s, ns is not a multiple of K1, then the last block is

incomplete. The incomplete block may contain an unequal number of patients on

treatment arms and cause an imbalance in this stratum. Many incomplete blocks

in different strata may cause an imbalance between the total number of patients on

treatment arms and this may lead to power loss in the study.

Assume that s-th stratum contains an incomplete block of size m, m = 1, ..,K1−1,

and denote by ξ j(m) the number of instances of treatment j in this block. Then

ξ j(m) has a hypergeometric distribution and P(ξ j(m) = l) =
(k j

l

)(K1−k j

m−l

)(
K1
m

)−1
, l =

0,1, ..,min(k j,m). Therefore, E[ξ j(m)] = k jm/K1, Var[ξ j(m)] = k jm(K1 − k j)×
(K1 −m)/(K2

1 (K1 − 1)). Let int(a) be the integer part of a, and mod(a,k) = a−
int(a/k)k. Then

ns( j) = int(ns/K1)k j +ξ j(mod(ns,K1)). (3)

As the distribution of ns is given by (1), the characteristics of ns( j) can be numer-

ically calculated. Closed-form expressions for the mean and the variance of ns( j)
also can be derived. In the case when strata are associated with different geographi-

cal regions, these results allow prediction of supply needed to cover patient demand

in regions, number of places in hospitals, etc.
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3.1 Impact of Randomization on the Power and Sample Size

Let us consider the impact of randomization scheme on the sample size and the

power of a statistical test. If one might expect a statistically significant stratum-

by-treatment interaction, then stratified randomization should be preferable from a

statistical point of view as it provides better balance within each stratum. Therefore,

let us assume that there is no stratum-by-treatment interaction. As stratified random-

ization in general causes the random imbalance between treatment arms, one would

expect that unstratified randomization should be preferable. However, we prove that

in general the size of imbalance is rather small compared to the total sample size

and its impact on the power and sample size is practically negligible.

3.1.1 Properties of Imbalance in Stratified Randomization

Assume for simplicity that there are only two treatments, a and b with equal treat-

ment allocations. Denote by ηs = ns(a)−ns(b) an imbalance in stratum s. Let n∗j be

the total number of patients on treatment j, j = a,b, and ∆ = n∗a − n∗b be the total

imbalance in the number of patients on both treatments. Then ∆ = ∑
S
s=1 ηs.

Theorem 1. For large enough n and S such that nmin(Ns)/N ≥ K1, the imbalance

∆ is well approximated by a normal distribution with mean zero and variance s2
0S,

where s2
0 = (K1 +1)/6.

Proof. For equal treatment proportions k j = K1/2 and E[ξ j(m)]= m/2, Var[ξ j(m)]=
m(K1 −m)/(4(K1 −1)), j = 1,2. Thus, if in s-th stratum the incomplete block has

a size m, then the imbalance in this stratum is ηs(m) = ξ1(m)− (m− ξ1(m)) =
2ξ1(m)−m, and E[ηs(m)] = 0, Var[ηs(m)] = 4Var[ξ1(m)] = m(K1 −m)/(K1 −1).
In general, in stratum s the imbalance ηs is a random variable: ηs = ηs(m) with

probability qm(n,Ns,K1), m = 0, ..,K1 − 1, where ηs(0) = 0, and qm(n,Ns,K1) =
P(mod(ns,K1) = m). Thus, E[ηs] = 0 and from (1) it follows

qm(n,Ns,K1) =
n/K1−1

∑
l=0

P(n,N,Ns,α,m+ lK1), m = 0,1, ..,K1 −1. (4)

Furthermore, if on average the number of patients in a stratum is not less than

2K1, one can use the approximation qm(·) ≈ 1/K1 (compare with Hallstrom and

Davis (1988)). This is also supported by numerical calculations and Monte Carlo

simulations (Anisimov 2007). For example, for n = 60,S = 6,Ns = 1 (on aver-

age 10 patients in a stratum), K1 = 4 and α = 1.2, numerical calculations give

(q0,q1,q2,q3) = (0.269,0.259,0.244,0.228) and simulated values for 106 runs co-

incide with these values up to 3 digits.

Thus, using the approximation qm(n,Ns,K1) = 1/K1,m = 0, ..,K1 − 1, we have

Var[ηs] ≈ s2
0 = (K1 +1)/6. The variables ηs and ηp are not correlated as s 6= p and

conditionally independent. Thus, E[ηsηp] = 0, Var[∆ ] ≈ s2
0S, and at large S, ∆ is
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approximated by a normal distribution with parameters (0,s2
0S). This is supported

by Monte Carlo simulations (Anisimov 2007). ⊓⊔
Remark 1. As shown above, for large enough numbers of patients the imbalance

ηs in each stratum can be approximated by a mixed hypergeometric distribution

η̃s = 2ξ (U)−U , where P(U = m) = 1/K1,m = 0, ..,K1 −1, Eη̃s = 0,Varη̃s = s2
0,

and the variables η̃s are independent. Thus, for a few strata (S < 10), the imbalance

∆ can be approximated by the variable ∆̃ = ∑
S
s=1 η̃s, where E∆̃ = 0,Var∆̃ = s2

0S.

3.1.2 Impact of Imbalance on the Power and Sample Size

In general imbalance is rather small compared to the sample size. Theorem 1 implies

that with probability 1− ε , for large S (S ≥ 10), |∆ | ≤ s0

√
Sz1−ε/2. If S < 10, then

|∆ | ≤ s0

√
S/ε (basing on Remark 1 and Chebyshev inequality). In particular, for

n ≥ 100, K1 ≤ 4 with probability 0.95, |∆ | ≤ 8 as S = 20, and |∆ | ≤ 6 as S = 6.

Let us evaluate the increase in sample size required to maintain the same power

as for the balanced study accounting for possible imbalance. Consider as an example

a standard test that compares means in two patient populations.

Assume that n patients are randomized to two treatments, a and b, in S strata. If

one can expect a stratum-by-treatment interaction, then the stratified randomization

should be more preferable from a statistical point of view. Consider the case where

there is no stratum-by-treatment interaction. Then general guidelines indicate that

unstratified randomization should be more preferable from a statistical point of view.

However, we prove that stratified randomization leads practically to the same results.

Consider a stratified randomization by blocks of size K1 and equal treatment al-

locations. Let n∗j be the total number of patients randomized to treatment j, j = a,b,

and {x1,x2, ..,xn∗a} and {y1,y2, ..,yn∗
b
} be the patient responses on each treatment.

Suppose that the observations are independent with unknown means ma and mb and

the known variance σ2. It is known that for testing the hypothesis: H0 : ma−mb = 0

against H1 : ma −mb ≥ h with probabilities γ and δ of type I and type II errors, the

values n∗a and n∗b should satisfy the relation

h
(

σ
√

1/n∗a +1/n∗b

)−1

= z1−γ/2 + z1−δ . (5)

For a balanced study n∗a = n∗b = n/2 (assuming that n is even). Thus, in the balanced

case a sample size is nbal = 4σ2(z1−γ/2 + z1−δ )2/h2. Denote by ∆ = n∗b − n∗a the

imbalance between treatment arms. Let us evaluate a sample size increase n+ =
n−nbal required to achieve the same power as for a balanced trial.

Theorem 2. At small S/n2
bal , n+ ≈ s2

0S(1 +
√

2z1−δ )(1 + ζ )/nbal , where ζ is the

error term of approximation, ζ = O(s2
0S/n2

bal).

Proof. Consider a standard test statistic

T ∗ =
x̄a − ȳb

σ
√

1/n∗a +1/n∗b
, (6)
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where x̄a and ȳb are sample means. Under the hypothesis H0 for large enough n∗a
and n∗b, T ∗ ≈ N (0.1), where N (0,1) has a standard normal distribution. Thus,

for testing H0 with error probabilities γ and δ , the acceptance region is the interval

(−z1−γ/2,z1−γ/2), and under the hypothesis H1 it should be

PH1
(T ∗ ≤ z1−γ/2) = δ . (7)

Accounting for random imbalance, let us find n satisfying (7). Let ζi be the values

of the magnitude O(s2
0S/n2

bal). Then, under the hypothesis H1, given the imbalance

∆ and assuming that ma −mb = h and ∆/n is small, one can use the approximation:

T ∗ ≈ h
2σ

√
n(1−∆ 2(1 + ζ1)/(2n2))+N (0,1). As z1−γ/2 + z1−δ =

√
nbal

h
2σ , rela-

tion (7) is asymptotically equivalent to a quadratic equation n2
+ + nbaln+ −Q(1 +

ζ2) = 0, where Q = s2
0S(1 +

√
2z1−δ ). Thus, n+ = nbal

2
(
√

1+4Q(1+ζ2)/n2
bal −

1) = Q(1 + ζ3)/nbal . Results of Monte Carlo simulation support this statement for

rather wide range of parameters and even for not so large n, e.g. n = 30. ⊓⊔

As usually S < nbal/2 and for two treatments K1 = 4, this implies that in general

n+ ≤ 2. Thus, both randomization schemes lead practically to the same sample size.

Note that the impact of imbalance is concentrated in the term ∆ 2/2n2 = O(S/n2)
and is negligible at large n. This is in agreement with Lachin (1988).

3.1.3 Impact of patient dropout

Consider the impact of a random patient dropout on a sample size for both random-

ization schemes on the example of the test that compares means (see Section 3.1.2).

Assume that each patient randomized to treatment j will stay till the end of the trial

with probability p j, j = a,b. Only these patients will be included into the analysis.

The values q j = 1− p j, j = a,b, define the probabilities of dropout. Let ν j be the

number of patients initially randomized to treatment j. Assume that νa −νb = G,
where G is a random variable with mean zero and variance D2. As νa +νb = n, then

νa = n/2 + G/2, νb = n/2−G/2. In this general setting we can combine together

the cases of unstratified and stratified randomization, as in the first case G = 0, and

in the second case G = ∆ and according to Theorem 1, D2 ≈ s2
0S.

Let n∗j be the remaining number of patients on treatment j after dropout. Then

n∗a = Bin(n/2 + G/2, pa), n∗b = Bin(n/2−G/2, pb), where Bin(k, p) is a binomial

variable with parameters (k, p). If G is random, n∗a and n∗b are dependent and E[n∗j ] =

np j/2, Var[n∗j ] = np jq j/2+D2 p2
j/4, E[n∗an∗b] = pa pb(n

2 −D2)/4. Thus, at large n

(n∗a,n
∗
b) ≈

(
(n/2)pa(1+ψaξa/

√
n),(n/2)pb(1+ψbξb/

√
n)

)
, (8)

where ψ j =
√

2q j/p j +D2/n, j = a,b, and vector (ξa,ξb) has a bivariate normal

distribution, Eξ j = 0,Varξ j = 1,E[ξaξb] = −D2/(nψ1ψ2). Denote
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M =
h

σ2

√
pa pb

2(pa + pb)
, R =

D2 pa pb(pa − pb)
2

2n
, B2 =

h2

σ2

qa p3
b +qb p3

a +R

4(pa + pb)3
.

Under the hypothesis H1, after some algebra one can get an approximation for statis-

tic (6) in the form T ∗ ≈ √
nM +

√
1+B2N (0,1). This relation together with (7)

implies the relation for the required sample size:

n ≈ 2σ2(pa + pb)

h2 pa pb

(z1−γ/2 +
√

1+B2z1−δ )2. (9)

Consider now the averaged design (the number of patients on treatments a and b

are fixed and equal to (n/2)pa and (n/2)pb, respectively). Using (5) one can easily

establish that the sample size for the averaged design is

naver ≈
2σ2(pa + pb)

h2 pa pb

(z1−γ/2 + z1−δ )2.

Thus, the sample size increase compared to the averaged design is concentrated in

the term B2 and is practically negligible. For example, if B2 is rather small,

n−naver ≈
qa p3

b +qb p3
a +R

2pa pb(pa + pb)2
z1−δ (z1−γ/2 + z1−δ ). (10)

In particular, for γ = δ = 0.05 and pa = pb = p, in the region p ≥ 0.4 (dropout less

than 60%), n−naver ≤ 2 (sample size increases by no more than two patients).

The impact of the randomization scheme is concentrated in the term R. For

unstratified randomization R = 0, while in the case of stratified randomization

R = s2
0Spa pb(pa − pb)

2/(2n) and is also rather small. Calculations show that us-

ing stratified randomization practically does not lead to sample size increase.

Table 1: Sample size calculations.

h 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Averaged design 409 284 209 160 127 103 85 71 61 53 46

Unstratified 411 286 211 162 129 105 87 73 63 55 48

Stratified 411 286 211 162 129 105 87 73 63 55 48

Table 1 shows the calculated values of sample sizes for a particular scenario. Con-

sider a study with S = 10 strata of equal sizes (Ns = 1). Let γ = 0.05,δ = 0.05, pa =
0.4, pb = 0.7,K = 2, block size K1 = 4. Consider three cases: averaged design (ran-

domness in dropout is not accounted for), unstratified randomization and stratified

randomization. We set σ2 = 1. The sample size is calculated for different values of h

in interval [0.5,1.5]. As one can see, a sample size increase accounting for random

patient dropout is only two patients, and using stratified randomization does not
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lead to an additional sample size increase compared to unstratified randomization.

Similar results are true for other scenarios and large number of strata.

4 Conclusions

Using the advanced patient recruitment model allows prediction at the design stage

of the number of patients randomized to different treatment arms in different strata

and investigation of the properties of imbalance caused by stratified randomization

and its impact on the power and sample size of the trial. For two treatment arms

with interest in a statistical test that compares means, it is shown, that the sample

size increase required to compensate for random imbalance is practically negligi-

ble. Randomness in patient dropout also leads to a negligible sample size increase

compared to averaged design (fixed number of randomized patients). These results

show that stratified randomization even for a large number of strata does not lead to

a visible sample size increase compared to unstratified randomization.

The type of randomization may affect other characteristics of the trial, e.g. centre-

stratified randomization in general requires less drug supply compared to unstrati-

fied randomization. Thus, in the cases when the choice of randomization is not dic-

tated by the type of data, it is beneficial to use various criteria accounting for sample

size, recruitment and supply costs, etc., when choosing a randomization scheme.

References

Anisimov, V. V. (2007). Effect of imbalance in using stratified block randomization

in clinical trials. Bulletin of the International Statistical Institute - LXII, Proc. of

the 56 Annual Session, Lisbon, 5938–5941.

Anisimov, V. V. and V. V. Fedorov (2006). Design of multicentre clinical trials with

random enrolment. In Advances in Statistical Methods for the Health Sciences

(N. Balakrishnan, J. L. Auget, M. Mesbah, and G. Molenberghs eds). Berlin:
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