Vittorio Gentile

Vittorio Gentile
Università degli Studi della Campania "Luigi Vanvitelli · Dipartimento di Medicina di Precisione

M.D.; Ph.D.; specialist in Neurology

About

67
Publications
4,854
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,225
Citations
Citations since 2016
10 Research Items
222 Citations
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
Introduction
Vittorio Gentile currently works at the Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli. Vittorio Gentile's group does research in Biochemistry, Molecular Biology and Neuroscience. Their current project is 'Identification and characterization of transglutaminase genes in the Nervous System in relationship to the development of neurodegenerative diseases..'
Additional affiliations
September 1988 - July 1993
University of Texas Medical School
Position
  • Visiting Assistant Professor

Publications

Publications (67)
Article
Full-text available
The 2-pentadecyl-2-oxazoline (PEA-OXA) is a natural compound with protective action in neuro-inflammation. We have previously shown that PEA-OXA behaves as an α2 adrenergic receptor (α2AR) antagonist and a putative protean agonist on histamine H3 receptors. Recently, neuroinflammation and monoaminergic neurotransmission dysfunction has drawn partic...
Article
Full-text available
Background: Tissue type 2 transglutaminase (TG2, E.C. 2.3.2,13) is reported to be involved in the phagocytosis of apoptotic cells in mouse microglial BV2 cells and peripheral macrophages. In this study, by using lipopolysaccharide (LPS)- or amyloid-β 1-42 (Aβ 1-42) peptide-stimulated microglial cell line BV2 and mouse primary microglial cells, we e...
Article
Transglutaminases are a family of Ca2+-dependent enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substra...
Article
Full-text available
Transglutaminases are a family of Ca2+-dependent enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrate...
Article
Full-text available
Transglutaminases are a family of Ca2+- dependent enzymes which catalyze posttranslational modifications of proteins. The main activity of these enzymes is the crosslinking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates...
Article
Full-text available
Transglutaminases are a family of Ca²⁺-dependent enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrate...
Article
Full-text available
Objectives: Curcumin, a naturally occurring compound derived from turmeric (Curcuma longa) has long been suggested to have strong therapeutic or preventive potential against human diseases because of its antioxidative, anticancerous, and anti-inflammatory effects. Curcumin is known to exert anti-inflammatory effects by interrupting NF-κB signaling...
Article
Full-text available
Transglutaminases (TGs) are ubiquitous enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may incl...
Article
Full-text available
Transglutaminases are a family of Ca²⁺-dependent enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrate...
Article
Full-text available
Transglutaminases (TG, E.C. 2.3.2.13) are related and ubiquitous enzymes that catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. These enzymes are also capable of catalyzing other post-translational reactions important for cell life. The distribution and the physio...
Research
Full-text available
Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/ peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic cosubstrates may include mon...
Article
Full-text available
Transglutaminases are Ca 2+-dependent enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may inclu...
Article
Full-text available
Transglutaminases are a class of ubiquitous enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may...
Article
Full-text available
Transglutaminases are ubiquitous enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include mo...
Article
Full-text available
Transglutaminases are ubiquitous enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include mo...
Article
Full-text available
FXIII is a transglutaminase consisting of two catalytic (FXIIIA) and two non-catalytic subunits (FXIIIB) in plasma, where this enzyme is responsible for stabilizing fibrin clots. Although possible functions of intracellular FXIIIA have been proposed, these remain to be established. We show that a 40 kDa protein species of FXIIIA is present in the h...
Article
Full-text available
Transglutaminases are ubiquitous enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include mo...
Article
Full-text available
Transglutaminases (TGs; E.C. 2.3.2.13) are ubiquitous enzymes which catalyze post-translational modifications of proteins. TGs and TG-catalyzed post-translational modifications of proteins have been shown to be involved in the molecular mechanisms responsible for several human diseases. In particular, TG activity has been hypothesized to also be in...
Article
Full-text available
Transglutaminases (TGs, E.C. 2.3.2.13) are related and ubiquitous enzymes which catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. These enzymes are also capable of catalyzing other reactions which are important for cell life. To date, at least eight different huma...
Article
Full-text available
Introduction Biochemistry of TG2 Molecular Biology of TG2 Physiopathology of TG2 Medical Perspectives and Future Directions Acknowledgments References
Article
Full-text available
Transglutaminases are ubiquitous enzymes, which catalyze post-translational modifications of proteins. Recently, transglutaminases and tranglutaminase-catalyzed post-translational modification of proteins have been shown to be involved in the molecular mechanisms responsible for several human diseases. Transglutaminase activity has been hypothesize...
Article
Full-text available
Transglutaminases are ubiquitous enzymes which catalyze posttranslational modifications of proteins. Recently, transglutaminase-catalyzed post-translational modification of proteins has been shown to be involved in the molecular mechanisms responsible for human diseases. Transglutaminase activity has been hypothesized to be involved also in the pat...
Article
Full-text available
Transglutaminases are ubiquitous enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other nucleophilic co-substrates may include monoamine...
Article
Full-text available
Transglutaminases (TGs) are a large family of related and ubiquitous enzymes that catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. In addition to lysyl residues, other second nucl...
Article
Full-text available
Transglutaminases are a large family of related and ubiquitous enzymes which catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substitu...
Article
Full-text available
Transglutaminases are a large family of related and ubiquitous enzymes which catalyze the cross-linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. These enzymes are also capable of catalyzing other reactions important for the cell viability. The distribution and the physiological rol...
Article
Full-text available
Transglutaminases (TG, E.C. 2.3.2.13) are a family of related and ubiquitous enzymes which catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. These enzymes are also capable of catalyzing other reactions which are important for cell life. The distribution and the ph...
Article
Full-text available
Transglutaminases (TGases) are enzymes which catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate with the formation of an N-gamma-(epsilon-L-glutamyl)-L-lysine [GGEL] cross link (isopeptidic bond) and the concomitant release of ammonia. Such cross-linked proteins are...
Article
Full-text available
Tissue transglutaminase (tTG or TG2; E.C. 2.3.2.13) belongs to the transglutaminase family, a group of closely related enzymes that share the ability to catalyze the cross-linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. tTG is a multifunctional enzyme since it is also capable of c...
Article
Full-text available
Transglutaminases are a family of enzymes which show the common capacity to catalyse the cross-linking of protein substrates. Some members of this family of enzymes are also capable to catalyse other chemical reactions for the cell life. The distribution and the role of these enzymes have been studied in numerous cell types and tissues, but only re...
Article
Full-text available
Transglutaminases (TGases) belong to a family of closely related proteins that catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate with the formation of an Nepsilon-(gamma-L-glutamyl)-L-lysine [GGEL] cross link and the concomitant release of ammonia. Such cross-linke...
Article
Chorea-Acanthocytosis (CHAC) is an autosomal recessive disease characterized by neurodegeneration and acanthocytosis. Enhanced creatine kinase concentration is a constant feature of the condition. The mechanism underlying CHAC is unknown. However, acanthocytosis and enhanced creatine kinase suggest a protein defect that deranges the membrane-cytosk...
Article
Full-text available
Coeliac disease (CD) is one of the most common food intolerances described in the western population. The main food agent that provokes the strong and diffuse clinical symptoms has been known for several years to be gliadin, a protein present in a very large number of human foods derived from vegetables. Only recently, some biochemical and immunolo...
Article
Full-text available
Protein aggregates are a hallmark of Huntington's disease (HD) and other inherited neurodegenerative diseases caused by an elongated (CAG)n repeat in the genome and to a corresponding increase in the size of the Qn domain in the expressed protein. When the protein associated with HD (huntingtin) contains < 35 Q repeats disease does not occur. Howev...
Article
Full-text available
Transglutaminases (Enzyme Commission 2.3.2.13) are a large family of enzymes that show the common capacity to catalyze cross-linking of protein substrates. Some members of this family of enzymes are also capable of catalyzing other reactions important for the cell life. The distribution and the role of these enzymes have been widely studied in nume...
Article
Full-text available
We treated primary epithelial cells from human normal prostate (NEPC) and prostate cancer (CEPC) with all-trans-retinoic acid (RA) to study whether it regulates the activity of tissue transglutaminase (tTGase), an enzyme that accumulates in cells undergoing apoptosis. tTGase activity was assessed by [14C]spermidine incorporation; tTGase, P53, Bcl-2...
Article
Full-text available
At least eight neurodegenerative diseases, including Huntington disease, are caused by expansions in (CAG)n repeats in the affected gene and by an increase in the size of the corresponding polyglutamine domain in the expressed protein. A hallmark of several of these diseases is the presence of aberrant, proteinaceous aggregates in the nuclei and cy...
Article
Tissue transglutaminase (tTGase) is a GTP-binding Ca(2+)-dependent enzyme which catalyses the post-translational modification via epsilon(gamma-glutamyl)lysine bridges. The physiological role of tTGase is not fully understood. It has been shown that in cartilage the expression of tTGase correlates with terminal differentiation of chondrocytes. Rece...
Article
Full-text available
Post-translational formation of hypusine in eukaryotic initiation factor 5A (eIF-5A) is essential for cell viability. Recently, we showed that hypusine protein is an in vitro substrate for transglutaminases (TGases). We report the effect of tissue TGase expression on the in vivo hypusine metabolic pathway. The stable expression of tTGase in BALB/c...
Article
Full-text available
To investigate possible biochemical mechanisms underlying the “toxic gain of function” associated with polyglutamine expansions, the ability of guinea pig liver tissue transglutaminase to catalyze covalent attachments of various polyamines to polyglutamine peptides was examined. Of the polyamines tested, spermine is the most active substrate, follo...
Article
Full-text available
Genetic defects of the CD95 (Fas/Apo-1) receptor/ligand system, has recently been involved in the development of human and murine autoimmunity. We investigated whether a deregulation of the ;tissue' transglutaminase (tTG), a multifunctional enzyme which is part of the molecular program of apoptosis, may act as a cofactor in the development of autoi...
Article
Full-text available
Stably transfected Balb-C 3T3 fibroblasts (clone 5), overexpressing a catalytically active tissue transglutaminase, showed a basal adenylate cyclase activity lower than control cells (clone 1). Several modulators of the adenylate cyclase activity (forskolin, Mn2+ and pertussis toxin) showed the existence of a marked negative control on the adenylat...
Article
Full-text available
Cell interaction(s) with biomaterial undergo a multistep-step paradigm of adhesion, contact, attachment, and spreading. However, the molecular mechanism(s) underlying the cell anchorage on a material surface is not yet well understood. Transglutaminases, a family of calcium-dependent enzymes, has been implicated in the interactions between cells an...
Article
Full-text available
Tissue transglutaminase (tTgase) is a GTP-binding Ca(2+)-dependent enzyme which catalyses the post-translational modification of proteins via epsilon(gamma-glutamyl) lysine bridges. Recent evidence suggests that the GTP-binding activity of tTgase may be important in intracellular signaling thus explaining some of the diverse suggested roles for the...
Article
Full-text available
Transglutaminases (EC 2.3.2.13) catalyze the post-translational modifications of proteins by the formation of{var_epsilon}({gamma}-glutamyl)lysine insopeptide bonds. The number of transglutaminases recently described in eukaryotic cells includes at least five distinct enzymes that have been localized both intracellularly (tissue transglutaminase, k...
Article
Full-text available
Tissue transglutaminase belongs to a family of calcium-dependent enzymes, the transglutaminases that catalyze the covalent cross-linking of specific proteins by the formation of epsilon (gamma-glutamyl)lysine isopeptide bonds. The goal of this study has been the isolation and characterization of the human tissue transglutaminase gene promoter. Geno...
Article
Full-text available
In this report, we show that the overexpression of tissue transglutaminase (tTG) in the human neuroblastoma cell line SK-N-BE(2) renders these neural crest-derived cells highly susceptible to death by apoptosis. Cells transfected with a full-length tTG cDNA, under the control of a constitutive promoter, show a drastic reduction in proliferative cap...
Article
Full-text available
Reduced expression of the tissue transglutaminase in both murine and human tumours has been consistently associated with tumour growth and progression. To investigate the functional effects of transglutaminase expression we have transfected a constitutive human tissue transglutaminase expression construct into a highly malignant hamster fibrosarcom...
Article
Full-text available
A cDNA encoding for the human tissue transglutaminase gene has been used to identify the chromosomal localization of the corresponding structural gene. The precise chromosomal and subregional localizations have been established by using in situ fluorescence mapping with a recombinant lambda-Zap phage containing the full cDNA coding sequence. The st...
Article
Human immunodeficiency virus envelope glycoprotein gp120, but not its precursor gp160, covalently incorporates both spermidine and glycine ethyl ester in the presence of Ca2+ and transglutaminase purified from guinea pig liver. The examined ability to act as enzyme substrate of various glutamine-containing gp120 fragments, including the principal n...
Article
Full-text available
Tissue transglutaminase is a cytosolic enzyme whose primary function is to catalyze the covalent cross-linking of proteins. To investigate the functions of this enzyme in physiological systems, we have established lines of Balb-C 3T3 fibroblasts stably transfected with a constitutive tissue transglutaminase expression plasmid. Several cell lines ex...
Article
Full-text available
The deduced amino acid sequences for tissue transglutaminases from human endothelial cells and mouse macrophages have been derived from cloned cDNAs. Northern blot analysis of both tissue transglutaminases shows a message size of approximately 3.6-3.7 kilobases. The molecular weights calculated from the deduced amino acid sequences were 77,253 for...
Article
Full-text available
The deduced amino acid sequences for tissue transglutaminases from human endothelial cells and mouse macrophages have been derived from cloned cDNAs. Northern blot analysis of both tissue transglutaminases shows a message size of approximately 3.6-3.7 kilobases. The molecular weights calculated from the deduced amino acid sequences were 77,253 for...