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Abstract—In this work, we consider a wireless communication
system consisting of multiple rotary-wing unmanned aerial vehi-
cles (UAVs) used as areal base stations (ABSs) in order to provide
downlink connectivity to the user terminals (UEs) on the ground.
Towards investigating power efficient deployment strategies for
such a system, the contribution of this article is twofold: we
formalize the relevant multi-objective optimization problem, and
secondly develop Particle Swarm Optimization (PSO) based
techniques for optimization of the individual objectives, which
are then exploited in an iterative manner. The relevant optimiza-
tion objectives for reducing the total power consumed are the
number of base stations (BSs) and their transmit powers. The
optimization is performed while assuring minimum quality-of-
service constraints (QoSs) such as per-user coverage probability
and per-user rate. Through system level simulations, we show
that the developed approach ensures great reductions for both
the number of base stations as well as their individual transmit
power, thus saving initial deployment cost as well as reducing
operational costs induced due to energy consumption.

Index Terms—unmanned aerial vehicles, green communica-
tions, 5G and beyond, energy aware network, ad hoc networks

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) (commonly known as
drones) are becoming ubiquitous in various applications like
safety surveillance, shipping and delivery applications, search
and rescue operations, remote sensing and wireless commu-
nications. In wireless communications, thanks to their small
size, mobility, and flexibility in positioning, they find key
applications such as providing connectivity in remote areas
or disaster-affected areas, or enhancing an already existing
terrestrial cellular network [1]. UAVs can be deployed as aerial
base stations (ABSs) in areas where it is not feasible to build
ground cellular infrastructure or where service is required only
for a short period of time. A key advantage of UAVs lies
in the establishment of a fast and reliable line-of-sight (LoS)
connection with the ground users and/or terrestrial network of
ABSs by changing their position in 3D space in any required
direction. After the massive loss of infrastructure in Puerto
Rico due to Hurricane Maria in the year 2017, AT&T used
drones fitted with LTE to provide cellular service to people
on the island [2]. This further demonstrates the usefulness of
UAVs in setting up ad hoc mobile connectivity. Despite the
clear advantage they bring, there are many challenges involved
in planning, designing and deploying them. Minimizing power
consumption of the UAV based communication systems is a

crucial research topic and attracted great attention recently
[3][4][5][6].

The total cost of deployment of ABSs to provide downlink
connectivity to the ground user terminals (UEs) has two cost
components -
1) the fixed cost : which depends on the number of ABSs
that need to be deployed;
2) the operational cost : major component of which is the
total power consumption of the whole network, where the
total power consumption of the network is further divided
between the power needed by the UAVs to hover, and the
power consumed in signal transmissions.
The two cost components are mutually coupled via the number
of ABSs that are deployed. Thus, reducing the number of
ABSs will help in reducing both the costs. However, in the
long term, operational costs dwarf the fixed upfront costs,
and are thus a bigger priority. Reducing the operational cost
essentially boils down to reducing the total power consumed
by the network, especially given the rising energy prices. Thus,
the relevant optimization problem is to minimize this total
power consumption with respect to the 3D placement of the
UAVs while taking into account the quality-of-service (QoS)
constraints such as per-user coverage probability and per-user
rate for a fixed distribution of UEs on the ground.

The total power consumption is directly proportional to the
number of ABSs as well as the average individual transmit
power required by these ABSs. However, the multiple ob-
jectives of reducing both these quantities are complementary.
Indeed, reducing the number of ABSs might lead to increased
transmit power consumption, and conversely, reducing trans-
mit power might lead to increase in required number of
ABSs. In most of the existing works optimization of these two
objectives is treated as two independent problems (fixing one
while optimizing the other). For example in [7], the authors
consider the problem of reducing the number of UAVs to be
deployed while the transmit power of the ABSs is considered
fixed. In [8], the authors consider the problem of minimizing
total transmit power, but only the case with no interference
among the UAVs has been addressed, and the number of ABSs
is considered fixed.

In this paper, we argue that taking both the components
into account in order to reduce the the total power consumed
leads to better results compared to reducing only one of them.
Optimizing the two components jointly is difficult due to the
prohibitive complexity. Even optimizing a single component is
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non-trivial due to its non-convex nature. Therefore, we develop
particle swarm optimization (PSO) based optimization algo-
rithms for the individual objectives of minimizing the number
of ABSs as well as their individual transmit powers. We then
exploit these algorithms in an iterative manner to converge to
locally optimal solutions. Through extensive simulations, we
show the gain in performance achieved through the developed
iterative process when compared to the cases when only one of
the objectives was optimized. The algorithm therefore gives a
cost efficient and energy efficient solution for 3D placement of
ABSs in an ad hoc network without any need for cell planning.

The rest of this paper is organized as follows: In Section II
we describe the system model and define various parameters
that we examine. In Section III we formulate the main op-
timization problem. In Section IV we present the algorithms
and explain how the PSO technique is adopted. In Section V
we explain the simulation setup. In Section VI we present
conclusions and give indicate future directions.

II. SYSTEM DESCRIPTION

Fig. 1. UAVs deployed as aerial base stations and UEs distributed arbitrarily
on the ground.

Consider a 2D plane in which nu UEs are distributed
at arbitrary fixed locations {(x1, y1), . . . , (xnu

, ynu
)}, on the

ground. We begin by supposing that we need nb = [nu

k ]
rotary-wing UAVs each carrying a ABS to provide downlink
connectivity for the users. The value of the k needs to be fixed
based on factors such as the maximum traffic load a ABS can
handle on an average. We define Ptot, the total power consumed
by the nb UAVs as

Ptot = nb(Phov + Pt) (1)

where Phov is the power needed for a UAV to hover, and
Pt is the individual transmitted power of all the ABSs.
Our task now is to deploy these UAVs in 3D locations
{(u1, v1, w1), . . . , (unb

, vnb
, wnb

)} such that target QoS con-
straints coverage probability and rate are assured to the users.

A. Air-to-ground channel model

For the jth ABS located at the coordinate (uj , vj , wj), let
Λij ∈ {0, 1} denote the event of LoS which takes the value

1 when there is LoS with the ith UE, and 0 otherwise. Then,
the probability of LoS is given as [9]

P (Λij = 1) =
1

1 + a exp(−b[ 180π θcij − a])
(2)

where, a and b are constants which depend on the environment
(rural, urban, dense urban etc), θcij = sin−1(

wj

d(xi,yi)
) is the

elevation angle, dj(xi, yi) =
√

(uj − xi)2 + (vj − yi)2 is the
distance on the ground. The path loss between the ABS and
the UE in our model is given by

Lj(xi, yi)[dB] = 20 log

(
4πfcd(xi, yi)

c

)
+ΛijηLoS + (1− Λij)ηNLoS (3)

where fc is the carrier frequency, ηLoS and ηNLoS are the
average additional loss to the free space propagation for LoS
and no-line-of-sight (NLoS) connections respectively.

B. Connection policy

The connection policy that we adopt is that each UE gets
connected to the ABS that offers the strongest signal-to-
interference-plus-noise ratio (SINR), provided that it is greater
than the coding-modulation target γ, which is required for
successful reception. The SINR received by the ith UE located
at (xi, yi) from the jth ABS located at (uj , vj , wj) is given
by

SINRj(xi, yi) =
Pt/Lj(xi, yi)

N0 + Ij(xi, yi)
(4)

where Lj(xi, yi) is as defined in Eq 3, N0 is the noise,
and Ij(xi, yi) =

∑nb

j′=1,j′ 6=j Pt/Lj′(xi, yi) is the interference
caused due to all the UAVs other than the jth one. We now
define the connectivity matrix as

cij
0≤i<nu

0≤j<nb

=


1 if j = min

0≤j′<nb

{j′|SINRj′(xi, yi) ≥ γ}

0 otherwise.
(5)

Following this definition, the entry cij is equal to 1 if and
only if the ith user is connected to the jth ABS. Further, each
row of the connectivity matrix contains at most one non-zero
element because a user can only connect to one ABS at any
given instance.

C. Qualities-of-service constraints (QoS)

1) Per-user coverage probability: The first QoS factor that
we consider is the per-user coverage probability (P̄cov) which
is the average value of coverage probability of all the users.
We guarantee it to be greater than a target ξ as follows

Constraint 1: P̄cov ≥ ξ (6)

where,

P̄cov =
1

nu

nu∑
i=1

P

 nb∑
j=1

cij = 1

 , (7)

and P[.] is the probability that the SINR received by the user
at location (xi, yi) is greater than γ.



2) Per-user rate: The second QoS constraint that we con-
sider is the per-user rate R̄, and we constrain it to be greater
than a target β.

Constraint 2: R̄ ≥ β (8)

where,

R̄ =
1

nu

nu∑
i=1

WiE

log

1 +

nb∑
j=1

cijSINRj(xi, yi)

 (9)

where, Wi = B
Mj

is the bandwidth allocated to the ith user for
a fixed total bandwidth B, and Mj =

∑
i cij is the number of

users that are connected to the jth ABS. Note that when a UE
is not connected to any ABS, its received rate will be zero.

III. PROBLEM FORMULATION

As stated in Section I, we only consider minimizing the total
power consumption (Eq 1) as it is the major component of the
operational costs. Reduction of fixed costs is a by-product of
this optimization, due to reduced number of ABSs.

We formulate the optimization problem of minimizing the
total power consumption Ptot while constraints in Eq 6 and
Eq 8 are satisfied:

minimize
uj ,vj ,wj

Ptot = nb(Phov + Pt) ; where j ∈ {1, 2, .., nb}

subject to P̄cov ≥ ξ and R̄ ≥ β.
(10)

Our goal is to find the optimal 3D position coordinates
(uj , vj , wj) which minimize the total power required to satisfy
the QoS constraints. This problem is non-convex in nature and
standard convex optimization techniques are not applicable
here.

As one can clearly see, the only controllable quantities in
the objective function of Eq 10 are the number of base stations
nb, and their individual transmit power is Pt. Minimizing
these quantities are two contrasting tasks as reducing the
number of base stations might lead to increased average power
consumption. Therefore, the optimization problem Eq 10 is
a multi-objective optimization problem with the following
objectives:
(objective-1) Minimization of transmit power - Considering
nb to be fixed, find the UAV positions (uj , vj , wj) which
minimize the transmit power P ∗t .
(objective-2) Minimization of no. of UAVs - Considering,
instead, that Pt is fixed, find the UAV positions (uj , vj , wj)
which minimize n∗b , the number of UAVs required.

Ideally, one would like to jointly optimize the two objec-
tives. However, the computational complexity of this joint
optimization is prohibitive. We therefore propose instead to
use efficient PSO based algorithms for each objective and
perform them in an iterative manner. A priori, it is not clear
which of these objectives has a greater impact on the total
power consumed Ptot. For example, if the power required for
hovering was much higher than the individual transit power,
Phov/Pt >> 1, then reducing the number of base stations
would have a higher priority. Therefore, we perform both

the optimizations in an iterative manner till we converge to
minimal values for both nb and Pt, denoted henceforth as
(nbPt)

?. Keeping this in view we will develop PSO based
algorithms for these two approaches in Section IV.

IV. ANALYSIS

Solving the optimization problem in Eq 10 analytically is
challenging due to the mutual dependence of (uj , vj , wj) and
Mj , and due to the fact that uj , vj , wj are continuous variables
that can take infinite possible values in 3D. Therefore, we
solve the problem numerically using PSO based algorithms.
Therein, a set of candidate solutions are iteratively improved
upon with regards to a given cost function until a desired
accuracy is reached. In our case, each candidate solution (a
particle) represents the position coordinates of all UAVs in 3D
space. In the analysis that follows, we describe the algorithms
developed to numerically solve the optimization problem for
both the individual objectives discussed in Section III.

A. Minimization of transmit power

We start with an initial population S(0) containing P
randomly generated particles {W0(0), . . .WP (0)} each of
dimension 3 × nb. We then iteratively evolve each particle
according to the equation

Wp(τ + 1) = Wp(τ) + Vp(τ + 1) (11)

where, Vp(τ + 1) is the velocity term. This velocity term also
changes every iteration based on: Wp(τ), the previous position
of the pth particle; Vp(τ), its previous velocity; W local

p , the
positions associated with least cost for pth particle up to
iteration τ ; and W global, the positions associated with the best
particle up to iteration τ , in the following way:

V (p)(τ + 1) = mV (p)(τ)

+ c1r1(W local
(p) −W(p)(τ))

+ c2r2(W global −W(p)(τ)) (12)

where, m is the inertial weight governing the speed of con-
vergence of PSO, c1, c2 are the personal and global learning
coefficients respectively, and r1, r2 are two positive numbers
drawn randomly at every iteration.

We define the cost function for Algorithm 1:

U(W p) = min{Pt > 0|P̄cov ≥ ξ and R̄ ≥ β}. (13)

to be the least possible transmit power that satisfies the QoS
constraints for a particle W p. We then use this and find
the optimal configuration of the UAVs for a given arbitrary
distribution of the users. At the end of all the iterations,
we record the best particle W global, which is the set of 3D
positions of all the UAVs at which QoS requirements have
been satisfied with least amount of transmit power P ∗t .



Algorithm 1 PSO for optimization of transmit power
1: function PSO
2: τ ← 0
3: Generate an initial population S(0) composed of P

random particles {W1(0),W2(0), . . .WP (0)} each of di-
mension 3× nb.

4: U local
p ← Up(0), ∀p ∈ [1, P ]

5: Uglobal ← min{U1(0), U2(0), . . . , UP (0)}
6: W local

p ←Wp(0), ∀p ∈ [1, P ]
7: W global ←Wp(0) for p such that Up(0) = Uglobal

8: τ ← 1
9: while τ < MaxIters do

10: Vp(1)← 0,∀p ∈ [1, P ]
11: for all p in {1,2,. . . ,P} do
12: Compute Vp(τ),Wp(τ), Up(τ)
13: if Up(τ) < U local

p then
14: W local

p ←Wp(τ), U local
p ← Up(τ)

15: if U local
p < Uglobal then

16: W global ←Wp(τ), Uglobal ← Up(τ)
17: end if
18: end if
19: end for
20: τ ← τ + 1
21: end while
22: return (W global, Uglobal)
23: end function

B. Minimization of no. of UAVs

To minimize the number of ABSs, we employ the mod-
ified version Algorithm IV-B to contain two cost functions
corresponding to the two QoS constraints defined in Eq 6 and
Eq 8. We first find ABS positions that optimize the coverage
probability, and then optimize the average rate while assuring
that the coverage probability never falls below the target ξ.
Once, we have the positions for all the ABSs, which offer
good coverage probability as well as average rate, we start
reducing the number of ABSs. To this effect, starting with the
optimal configuration, we eliminate the redundant ABSs by
going through them iteratively, and removing the ones that do
not affect the two constraints. This approach is similar to the
ones used in [10],[7]. During this optimization, the value of
Pt is considered to be fixed. For Pt values that are too low,
the algorithm may not show any improvement in terms finding
the optimum configuration.

V. SIMULATION RESULTS

We analyze the performance of our iterative procedure
through extensive simulations. To this end, we execute the
algorithms described in Section IV with numerical values
for parameters given in Table V (unless specified otherwise).
We examine the scenario in which UEs are spread according
to a 2D Gaussian distribution about the point (0, 0) with a
standard deviation of 2 km. For the UAVs we initialize the
position coordinates (u, v, w) drawn uniformly with u, v ∈
[−5 km, 5 km], and w ∈ [100 m, 600 m].

Algorithm 2 PSO for minimization of no. of ABSs
1: function PSO
2: τ ← 0
3: Generate an initial population S(0) composed of P

random particles {W1(0),W2(0), . . .WP (0)} each of di-
mension 3× nb.

4: U ← P̄cov

5: U local
p ← Up(0), ∀p ∈ [1, P ]

6: Uglobal ← max{U1(0), U2(0), . . . , UP (0)}
7: W local

p ←Wp(0), ∀p ∈ [1, P ]
8: W global ←Wp(0) for p such that Up(0) = Uglobal

9: τ ← 1
10: while True do
11: Vp(1)← 0,∀p ∈ [1, P ]
12: for all p in {1,2,. . . ,P} do
13: Compute Vp(τ),Wp(τ), Up(τ)
14: if Up(τ) > U local

p then
15: W local

p ←Wp(τ), U local
p ← Up(τ)

16: if U local
p > Uglobal then

17: W global ←Wp(τ), Uglobal ← Up(τ)
18: end if
19: end if
20: end for
21: if U = P̄cov and U ≥ ξ then
22: U ← R̄
23: end if
24: if U = R̄ and U ≥ β then
25: return (W global, Uglobal)
26: end if
27: τ ← τ + 1
28: end while
29: end function

Environmental parameters
(Eq 2) and (Eq 3)

(urban)

a = 9.61, b = 0.16
c = 3× 108,

ηLoS = 1, ηNLoS = 20
System parameters

(Eq 4)
N0 = −90dBm, γ = −7dB
fc = 2 GHz, B = 20 MHz

Simulation Parameters
(Eq 10) and (Eq 12)

ξ = 0.95, β = 1 Mbps
c1 = 1.3962, c2 = 1.3962,

m = 0.3298

In Fig. 4, we show the variation of per-user coverage prob-
ability and per-user rate with respect to individual transmit
power of the ABSs. Different curves correspond to different
values of carrier frequency fc. We note that the constraints in
Eq 10 for ξ = 0.95 and β = 1 × 106 Hz are simultaneously
satisfied only when Pt is at least greater than 2.5 W. Hence
in the simulations done for the calculations of total power
consumed by the system (Fig. 6), we assume the Pt = 2.5W
for the cases that do not minimize the transmit power Pt.

The effectiveness of our iterative method of performing the
multi-objective optimization can be seen in Fig. 2. We see
that massive improvements can be made in terms of number of
ABSs as well as their individual transmit power. Starting from
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Fig. 2. The shaded region in Pt and nb space is where both the QoS
constraints are satisfied for random ABS locations (averaged over several
UE distributions). To demonstrate the effectiveness of our algorithm, we pick
up random points from this region as starting values and find the optimal
configurations of ABSs where the constraints are satisfies for lower nb and
Pt values. Note that all these final values converge to the bottom left quadrant.

a point (Pt, nb) in the region where both the constraints are
satisfied for many possible UE distributions, we can optimize
considerably in both directions.

This can be more clearly seen in Fig. 3, where we illustrate
the initial and final ABS positions for the two different
optimizations, as well as the result when both are optimized
iteratively. We can see that for 1000 UEs, by minimizing only
Pt we achieve the QoS at total transmit power of 35×0.039 =
1.365 W, whereas minimizing only objective-2 this is only
made possible for total transmit power of 27× 2.5 = 67.5 W.
By minimizing both objectives iteratively, we manage to
reduce the total transmit power to 24 × 0.033 = 0.792 W.

In Fig. 5, we compare the P ∗t against the number of users
per base station, k. We notice that P ∗t increases with k as
expected, and is higher for larger values of carrier frequency
fc. The plot is obtained by averaging over several different
initializations. Note, however, that the P ?t is much smaller
than the Pt required to satisfy the two QoSs (as in Fig 4).

A. Significance in reduction of total power expenditure

Taking power required to hover Phov into account we can
estimate the total power expenditure of the system. To this
effect we consider the model Phov =

√
(2Mg)3/16ρA as

in [11], for M = md + mpl where md is mass of the
drone and mpl is mass of the payload, g = 9.8m s−1 is
acceleration due to gravity, ρ = 1.2 Kgm−3 is density of air,
A = 0.362m2 is the rotor area. Also, we assume a linear
relation mpl ∝ 10 log(1000 ∗ Pt). Notably, typical mass of
a base station emitting 2.5W would be around 1.2Kg [12],
and a drone able to carry such a payload is Phantom [13]
which is 1.5kg in weight (including batteries). In Fig. 6,
we use these relations and find the total power expenditure

(a) random deployment of UAVs
nbPt = 35× 2.5 = 87.5W UEs

UAVs

(b) minimum Pt with fixed nb
nbP

∗
t = 35× 0.039 = 1.365W

(c) iterative minimization of Pt and nb
(nbPt)

∗ = 24× 0.033 = 0.792W

(d) minimization of nb
n∗bPt = 27× 2.5 = 67.5W
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miza

tio
n

of
P t

minimization
of
n
b

Iterative
m

inim
ization

of
P
t

and
n
b

Fig. 3. (a) Initial random deployment of UAVs. (b) and (c) The resulting
system configurations after individual aPSO optimizations. (d) System con-
figurations after iterative application of the two algorithms. We can see that
the iterative approach leads to a much better values for (nbPt)?.
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constraints are satisfied when Pt ≥ 2.5W.
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Fig. 6. Variation of total power consumed by the system with the mass of the
drones. We see that for lighter drones (< 20Kg), the total power consumption
of the system is significantly reduced by minimizing Pt, whereas when the
drones are heavier we see that minimizing nb saves more energy. However
in either case the iterative approach gives a relatively more efficient solution.

of the system, nb(Phov + Pt), before and after optimization
for different masses of drones. For these typical values, the
gains achieved by optimizing Pt is considerable, even when
compared with optimizing nb. It should also be noted that
higher UAV mass md is only needed when the base station
emits at higher power, in which case, the benefits of first
approach would be even more pronounced.

VI. CONCLUSION

In this work, we studied the power minimization problem
in a wireless communication system where unmanned aerial
vehicles (UAVs) are used as aerial base stations (ABSs)
providing downlink connectivity to the ground users. We
define the problem of optimizing the total power consumed by
the system while ensuring target values of per-user coverage

probability and per-user rate with respect to the 3D locations
of the ABSs. We note that the total power expenditure is
dependent on the number of ABSs as well as their transmit
power. We develop algorithms to minimize each of these and
analyse the reduction in total power through simulations. We
notice that an iterative approach where these algorithms are
applied on to the system repeatedly leads to a much more
energy efficient solution to the optimization problem. In our
future works, we plan to explore the theoretical aspects of
this problem. Also, we would like to study optimal locations
of charging points and optimization of trajectories of ABSs to
and from these charging points.
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