About
2,276
Publications
397,894
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
96,656
Citations
Publications
Publications (2,276)
Adolescence is a critical period for neural changes, including maturation of the brain's cognitive networks, but also a period of increased vulnerability to psychopathology. It is well accepted that the brain is functionally organized into multiple interacting networks and extensive literature has demonstrated that the spatial and functional organi...
People affected by psychotic, depressive and developmental disorders are at a higher risk for alcohol and tobacco use. However, the further associations between alcohol/tobacco use and symptoms/cognition in these disorders remain unexplored. We identified multimodal brain networks involving alcohol use (n = 707) and tobacco use (n = 281) via superv...
Neurological symptoms are central to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), yet its underlying neurophysiological mechanisms remain elusive. We examined a neglected aspect of task-based functional MRI, focusing on how blood oxygenation level-dependent (BOLD) signals alter during cognitive tasks in ME/CFS. This prospective obse...
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and debilitating illness with an unknown pathogenesis. Although post-infectious (PI-ME/CFS) and gradual onset ME/CFS (GO-ME/CFS) manifest similar symptoms, it has long been suspected that different disease processes underlie them. However, the lack of biological evidence has l...
Alzheimer's disease (AD) progresses from asymptomatic changes to clinical symptoms, emphasizing the importance of early detection for proper treatment. Functional magnetic resonance imaging (fMRI), particularly dynamic functional network connectivity (dFNC), has emerged as an important biomarker for AD. Nevertheless, studies probing at-risk subject...
Children’s brains dynamically adapt to the stimuli from the internal state and the external environment, allowing for changes in cognitive and mental behavior. In this work, we performed a large-scale analysis of dynamic functional connectivity (DFC) in children aged 9~11 years, investigating how brain dynamics relate to cognitive performance and m...
Schizophrenia (SZ) is a severe brain disorder marked by diverse cognitive impairments, abnormalities in brain structure, function, and genetic factors. Its complex symptoms and overlap with other psychiatric conditions challenge traditional diagnostic methods, necessitating advanced systems to improve precision. Existing research studies have mostl...
Despite increasing interest in the dynamics of functional brain networks, most studies focus on the changing relationships over time between spatially static networks or regions. Here we propose an approach to study dynamic spatial brain networks in human resting state functional magnetic resonance imaging (rsfMRI) data and evaluate the temporal ch...
Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical information in ICA, it leverages the statistical dependence across th...
Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using...
Single photon emission computerized tomography (SPECT) scans have emerged as a useful imaging modality that has been explored in the literature for the last 40 years. To date, little work has focused on studying functional network connectivity utilizing SPECT data. In this study, we present a fully automated, spatially constrained ICA (sc-ICA) appr...
Background
Inferring directional connectivity of brain regions from functional magnetic resonance imaging (fMRI) data has been shown to provide additional insights into predicting mental disorders such as schizophrenia. However, existing research has focused on the magnitude data from complex-valued fMRI data without considering the informative pha...
Background and Hypothesis
Schizophrenia (SZ) is characterized by significant cognitive and behavioral disruptions. Neuroimaging techniques, particularly magnetic resonance imaging (MRI), have been widely utilized to investigate biomarkers of SZ, distinguish SZ from healthy conditions or other mental disorders, and explore biotypes within SZ or acro...
italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Objective:
Both structural and functional brain changes have been individually associated with developing cognitive processes such as reading. However, there is limited research about the combined influence of resting-state functional and structural ma...
italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Objective:
Brain dynamic effective connectivity (dEC), characterizes the information transmission patterns between brain regions that change over time, which provides insight into the biological mechanism underlying brain development. However, most exi...
Background: Trait mindfulness, the tendency to attend to present-moment experiences without judgement, is negatively correlated with adolescent anxiety and depression. Understanding the neural mechanisms underlying trait mindfulness may inform the neural basis of psychiatric disorders. However, few studies have identified brain connectivity states...
Abstract: Deficits in memory performance have been linked to a wide range of neurological and neuropsychiatric conditions. While many studies have assessed the memory impacts of individual conditions, this study considers a broader perspective by evaluating how memory recall is differentially associated with nine common neuropsychiatric conditions...
Testosterone levels sharply rise during the transition from childhood to adolescence and these changes are known to be associated with changes in human brain structure. During this same developmental window, there are also robust changes in the neural oscillatory dynamics serving verbal working memory processing. Surprisingly, whereas many studies...
Background
Schizophrenia (SZ) is a psychiatric condition that adversely affects an individual’s cognitive, emotional, and behavioral aspects. The etiology of SZ, although extensively studied, remains unclear, as multiple factors come together to contribute toward its development. There is a consistent body of evidence documenting the presence of st...
Approaches studying the dynamics of resting-state functional magnetic resonance imaging (rs-fMRI) activity often focus on time-resolved functional connectivity (tr-FC). While many approaches have been proposed, these typically focus on linear approaches like computing the linear correlation at a timestep or within a window. In this work, we propose...
Over the past decade and a half, dynamic functional imaging has revealed low-dimensional brain connectivity measures, identified potential common human spatial connectivity states, tracked the transition patterns of these states, and demonstrated meaningful transition alterations in disorders and over the course of development. Recently, researcher...
Alzheimer's disease (AD) is the most prevalent form of dementia with a progressive decline in cognitive abilities. The AD continuum encompasses a prodormal stage known as Mild Cognitive Impairment (MCI), where patients may either progress to AD or remain stable. In this study, we leveraged structural and functional MRI to investigate the disease-in...
Amyloid-$\beta$ (A$\beta$) plaques in conjunction with hyperphosphorylated tau proteins in the form of neurofibrillary tangles are the two neuropathological hallmarks of Alzheimer's disease (AD). In particular, the accumulation of A$\beta$ plaques, as evinced by the A/T/N (amyloid/tau/neurodegeneration) framework, marks the initial stage. Thus, the...
There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. Brain connectivity of different modalities provides insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multi-modal indepe...
Neural networks, whice have had a profound effect on how researchers study complex phenomena, do so through a complex, nonlinear mathematical structure which can be difficult for human researchers to interpret. This obstacle can be especially salient when researchers want to better understand the emergence of particular model behaviors such as bias...
Schizophrenia (SZ) patients exhibit abnormal static and dynamic functional connectivity across various brain domains. We present a novel approach based on static and dynamic inter-network connectivity entropy (ICE), which represents the entropy of a given network's connectivity to all the other brain networks. This novel approach enables the invest...
Time-resolved functional connectivity (trFC) assesses the time-resolved coupling between brain regions using functional magnetic resonance imaging (fMRI) data. This study aims to compare two techniques used to estimate trFC, to investigate their similarities and differences when applied to fMRI data. These techniques are the sliding window Pearson...
The investigation of brain health development is paramount, as a healthy brain underpins cognitive and physical well-being, and mitigates cognitive decline, neurodegenerative diseases, and mental health disorders. This study leverages the UK Biobank dataset containing static functional network connectivity (sFNC) data derived from resting-state fun...
The most discriminative and revealing patterns in the neuroimaging population are often confined to smaller subdivisions of the samples and features. Especially in neuropsychiatric conditions, symptoms are expressed within micro subgroups of individuals and may only underly a subset of neurological mechanisms. As such, running a whole-population an...
Multi-modal learning has emerged as a powerful technique that leverages diverse data sources to enhance learning and decision-making processes. Adapting this approach to analyzing data collected from different biological domains is intuitive, especially for studying neuropsychiatric disorders. A complex neuropsychiatric disorder like schizophrenia...
In neuroimaging research, understanding the intricate dynamics of brain networks over time is paramount for unraveling the complexities of brain function. One approach commonly used to explore the dynamic nature of brain networks is functional connectivity analysis. However, while functional connectivity offers valuable insights, it fails to consid...
Background
Predicting future brain health is a complex endeavor that often requires integrating diverse data sources. The neural patterns and interactions identified through neuroimaging serve as the fundamental basis and early indicators that precede the manifestation of observable behaviors or psychological states.
New Method
In this work, we in...
Cross-sectional studies have demonstrated strong associations between physical frailty and depression. However, the evidence from prospective studies is limited. Here, we analyze data of 352,277 participants from UK Biobank with 12.25-year follow-up. Compared with non-frail individuals, pre-frail and frail individuals have increased risk for incide...
Emotion perception is essential to affective and cognitive development which involves distributed brain circuits. Emotion identification skills emerge in infancy and continue to develop throughout childhood and adolescence. Understanding the development of the brain’s emotion circuitry may help us explain the emotional changes during adolescence. I...
The underlying brain mechanisms of ketamine in treating chronic suicidality and the characteristics of patients who will benefit from ketamine treatment remain unclear. To address these gaps, we investigated temporal variations of brain functional synchronisation in patients with suicidality treated with ketamine in a 6-week open-label oral ketamin...
Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer’s disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biom...
Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninvasive technique pivotal for understanding human neural mechanisms of intricate cognitive processes. Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest, or dynamic functional connectivity matrices with a sliding window a...
Anxiety and depression in children and adolescents warrant special attention as a public health concern given their devastating and long-term effects on development and mental health. Multiple factors, ranging from genetic vulnerabilities to environmental stressors, influence the risk for the disorders. This study aimed to understand how environmen...
The pituitary gland (PG) plays a central role in the production and secretion of pubertal hormones, with documented links to the emergence and increase in mental health symptoms known to occur during adolescence. Although much of the literature has focused on examining whole PG volume, recent findings suggest that there are associations among puber...
Objective
fMRI and derived measures such as functional connectivity (FC) have been used to predict brain age, general fluid intelligence, psychiatric disease status, and preclinical neurodegenerative disease. However, it is not always clear that all demographic confounds, such as age, sex, and race, have been removed from fMRI data. Additionally, m...
Recent advancements in neuroimaging have led to greater data sharing among the scientific community. However, institutions frequently maintain control over their data, citing concerns related to research culture, privacy, and accountability. This creates a demand for innovative tools capable of analyzing amalgamated datasets without the need to tra...
Background: A fundamental grasp of the variability observed in healthy individuals holds paramount importance in the investigation of neuropsychiatric conditions characterized by sex-related phenotypic distinctions. Functional magnetic resonance imaging (fMRI) serves as a meaningful tool for discerning these differences. Among deep learning models,...
In this work, we propose Salient Sparse Federated Learning (SSFL), a streamlined approach for sparse federated learning with efficient communication. SSFL identifies a sparse subnetwork prior to training, leveraging parameter saliency scores computed separately on local client data in non-IID scenarios, and then aggregated, to determine a global ma...
Objective: Understanding the neurobiology of cognitive dysfunction in psychotic disorders remains elusive, as does developing effective interventions. Limited knowledge about the biological heterogeneity of cognitive dysfunction hinders progress. This study aimed to identify subgroups of patients with psychosis with distinct patterns of functional...
Objective: fMRI and derived measures such as functional connectivity (FC) have been used to predict brain age, general fluid intelligence, psychiatric disease status, and preclinical neurodegenerative disease. However, it is not always clear that all demographic confounds, such as age, sex, and race, have been removed from fMRI data. Additionally,...
Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or early adulthood onset of psychosis, positive and negative symptoms, as well as cognitive impairments. Despite a plethora of studies leveraging functional connectivity (FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and cognitive impairment...
The brain mechanisms underlying the risk of cannabis use disorder (CUD) are poorly understood. Several studies have reported changes in functional connectivity (FC) in CUD, although none have focused on the study of time‐varying patterns of FC. To fill this important gap of knowledge, 39 individuals at risk for CUD and 55 controls, stratified by th...
Structural neuroimaging studies have identified a combination of shared and disorder-specific patterns of gray matter (GM) deficits across psychiatric disorders. Pooling large data allows for examination of a possible common neuroanatomical basis that may identify a certain vulnerability for mental illness. Large-scale collaborative research is alr...
Over the past decade and a half, dynamic functional imaging has revolutionized the neuroimaging field. Since 2009, it has revealed low dimensional brain connectivity measures, has identified potential common human spatial connectivity states, has tracked the transition patterns of these states, and has demonstrated meaningful alterations in these t...