
A survey of Android Application and Malware
Hardening

Vikas Sihaga,b,∗, Manu Vardhanb, Pradeep Singhb

aSardar Patel University of Police, Security and Criminal Justice, Jodhpur, India
bNational Institute of Technology, Raipur, India

Abstract

In the age of increasing mobile and smart connectivity, malware poses an ever
evolving threat to individuals, societies and nations. Anti-malware companies
are often the first and only line of defense for mobile users. Driven by economic
benefits, quantity and complexity of Android malware are increasing, thus mak-
ing them difficult to detect. Malware authors employ multiple techniques (e.g.
code obfuscation, packaging and encryption) to evade static analysis (signature
based) and dynamic analysis (behavior based) detection methods. In this arti-
cle, we present an overview of Android and its state of the art security services.
We then present an exhaustive and analytic taxonomy of Android malware hard-
ening techniques available in the literature. Furthermore, we review and analyze
the code obfuscation and preventive techniques used by malware to evade detec-
tion. Hardening mechanisms are also popular amongst application developers to
fortify against reverse engineering. Based on our in-depth survey, we highlight
the issues related to them and manifest future directions. We believe the need
to examine the effectiveness and efficiency of hardening techniques and their
combination.

Keywords: Android, Malware analysis, Code obfuscation, Evasion techniques

1. Introduction

Smartphone’s pervasive presence has offered new possibilities to life experi-
ences, with its power to compute, sense, connect and to be mobile. Android OS
since its release in 2008, has grown as the most prefered choice in the market
with over 2.5 billion active devices worldwide and 74.13% share in December5

2019 [1]. Android’s success can be ascribed to its free open source code, which
provides smartphone manufacturers with the liberty to transform their devices
with pre-installed applications (aka apps) and customized user-interface for en-
riched customer experience. Google Play Store, Android’s official application

∗Corresponding author
Email addresses: vikas.sihag@policeuniversity.ac.in (Vikas Sihag),

mvardhan.cs@nitrr.ac.in (Manu Vardhan), psingh.cs@nitrr.ac.in (Pradeep Singh)

Preprint submitted to Computer Science Review Jan, 2021



hosting service has over 2.57 million apps generating about 140 million USD [2].10

The popularity of Android, its open environment and well established universal
app distribution model accord to the creation of dangerous attack surfaces for
threat actors targeting user’s security and privacy [3].

Spotted in 2010, the first Android Malware was DroidSMS, which targeted
users by subscribing premium SMS services. Since then multiple genres of mal-15

ware have targeted Android ranging from downloaders to clickers, spyware to
banking trojans and adware to ransomware. Recently CamScanner a popular
document scanning app with more than 100 million downloads on Google Play
store was identified to be infected with AndroidOS.Necro.n dropper, which once
installed attempts to install a payload [4]. Recently, 983 cases of known vul-20

nerabilities and 655 zero-days were found among the top 5,000 free apps (each
with 1M to 500M downloads).

The growing popularity of Android has brought the attention of developers
adopting state of the art application hardening techniques like obfuscation and
protection mechanisms as reflected in figure 1. By application hardening, we re-25

fer to enhancements of an application to deter tampering or reverse engineering.
Malware researchers are propagating obfuscated and encrypted banking trojans,
evading anti-malware scanners. They employ code obfuscation, encryption, dy-
namic loading and native code execution to circumvent Google Play protection
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. App developers, on the other hand, are us-30

ing them to prevent their source code and intellectual property from misuse.
Both extremes, benign and malicious are fighting against app reversal. In com-
puter science vocabulary, reverse engineering also known as back engineering is
the process by which an object or executable file (APK archive for Android) is
deconstructed to reveal its designs and architecture.35

A typical malware scanner, extract features and characteristics of a target
application, which are then used to identify its behavior and thus understand
its internal working. Application features present information about ”What an
application looks like” and ”How an application behaves?”. Features extracted
using static analysis gives insight into the former and features extracted using40

dynamic analysis answers the latter. Static analysis investigates malware with-
out the real code or instructions being executed. It provide basic information
about app functionality and collect technical indicators, which may include file
name, MD5 hashes, file type, file size, API calls, libraries, etc. Dynamic analysis
executes and monitors an application, to track its behavior, understand features45

and identify indicators that can be used as detection signatures. Dynamic anal-
ysis technical indicators can include the location of files, registry keys, domain
names, IP addresses and dynamic libraries [15].

The goal of this survey is to review and classify the existing Android ap-
plication hardening techniques. They are categorized based on their target50

and impact. In particular, we examine mechanisms targeting application APK

file, application code or application execution environment. This survey would
be beneficial to developers and researchers, to understand the current state of
hardening techniques and their effectiveness.

Unlike previous reviews, this survey does not do a general overview of An-55

2



0

100

200

300

400

500

600

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Android + Security Android + Obfuscation Android + Malware Detection

# 
P

ub
lic

at
io

ns

Figure 1: The number of publications over the last decade related to keywords Android,
security, obfuscation and malware detection. Note that the graph only accounts for
publications having the desired keyword(s) in its title or abstract and belonging to the
related field of research.

Table 1: Timeline comparison of surveys and coverage of topics in them. [ 7= little or no
coverage]

Year Surveys Background
Obfuscation
Techniques

Preventive
Techniques

Assessment Tools

2020 This article
android ecosystem +
security framework

comprehensive
coverage

comprehensive
coverage

obfuscation +
preventive

comparative
study

2019 Afianian et al. [16]
Android

debugging
7

anti-debugging +
sandbox evasion only

preventive
(two) only

7

2018 Haupert et al. [11] Threat model
mention studies,

7 details
mention studies,

7 details
preventive

only
7

2017 Bulazel et al. [17]
PC, mobile +
web platforms

7
comprehensive

coverage
preventive

only
7

2017 Tam et al. [18]
Android architecture +

malware analysis
mention studies,

7 details
Anti-emulator +

VM-aware overview
7 7

2016 Xu et al. [19]
Android architecture +

Security framework
Repackaging only 7 7 7

2016 Faruki et al. [7]
Android

architecture
comprehensive

coverage
7

obfuscation
only

comparative
analysis

2015 Maiorca et al. [20]
Android architecture +

Dex file structure
comprehensive

coverage
7

obfuscation
only

7

2014 Apvrille et al. [21]
Malware threat +

evolution
real world
analysis

7 7
comparative

analysis

2014 Freiling et al. [22]
Obfuscation +

Metric Zoo
limited

methods
7

obfuscation
only

7

3



Android Application Hardening
Survey

Hardening
TechniquesAndroid Overview OtherObfuscation

Effectiveness

Android Hardening
Tools

Android
Architecture

APK File Structure

APK Compilation
and Execution

Android Security
Framework

Trivial APK
Techniques

Code Obfuscation

Preventive
Techniques

Other Techniques

Related Work

Future Directions

Conclusion

Figure 2: Layout of the survey

droid malware evolution and detection techniques [16, 11, 17] but in detail fo-
cuses on Android application hardening methods systematically. It differs from
previous surveys as depicted in table 1. Previous works either reviewed code
obfuscation methods or evasion/preventive techniques. The works on obfusca-
tion except a few were limited to popular techniques. This paper assesses the60

effectiveness of obfuscation methods and compares the state of the art tools.
The existing literature on preventive or evasion techniques is constrained to a
few methods (anti-debugging, anti-emulator). This article provides a compre-
hensive view of all preventive measures to the best of our knowledge. This study
fills the gap by presenting an eagle-eye view of application hardening used by65

malware authors and developers.

Organization of the paper

The layout of the survey is illustrated in figure 2. We describe Android archi-
tecture (§ 2), application format, compilation and Android security framework.
We elaborate application hardening techniques (§ 3) employed at various levels70

by both developers and malware authors. Furthermore, we assess effectiveness
of obfuscation techniques (§ 4) and contrast state of the art hardening tools
(§ 5). Subsequently we propose future research directions (§ 7) and conclude
(§ 8).

2. Android overview75

Android was designed by the Open Handset Alliance(OHA), which is a con-
sortium led by Google of companies such as Samsung, Sony, Intel and more to
give services and deploy handsets with Android platform. With the release of
the very first model of Android on Nov 5, 2007, versions are released beneath a
code-name predicated on desserts, such as Apple Pie, Gingerbread, Marshmal-80

low, etc.

4



Smartphone
Hardware

Bluetooth

Processor

Audio I/O

Camera

Wireless

Battery

Sensors

Power Management

.
.
.

Linux Kernel

Audio
Binder
(IPC)

Display Keypad

Blue-
tooth

Camera

USB Wifi

.
.
.

Drivers

Hardware Abstraction
Layer (HAL)

Audio

Bluetooth

Camera

Sensors

.
.
.

I
n
p
u
t
 
/
 
O
u
t
p
u
t
 
R
e
q
u
e
s
t
s

S
y
s
t
e
m
 
C
a
l
l
s

DRM

Storage

Graphics

.so files
Android Runtime

Android
Runtime 
(ART)

Core Libraries

WebKit

OpenMax AL

Media
Framework

Libc

OpenGL ES

.
.
.

A
P
I
 
C
a
l
l
s

C

Content Providers

Java API
Framework

Managers

Java

A
c
t
i
v
i
t
y

N
o
t
i
f
i
c
a
t
i
o
n

R
e
s
o
u
r
c
e

W
i
n
d
o
w

L
o
c
a
t
i
o
n

P
a
c
k
a
g
e

T
e
l
e
p
h
o
n
y

View System

A
P
I
 
C
a
l
l
s

Applications

.dex

Contacts

Dialer

Camera

PlayStore

E Banking

A
R
T
 
V
M

.
.
.

A
R
T
 
V
M

I
P
C

I
P
C

APK

Native C/C++
Libraries

A
R
T
 
V
M

A
R
T
 
V
M

A
R
T
 
V
M

Figure 3: Android architecture

In this section, we discuss the Android architecture, application file struc-
ture, application compilation, execution, and security framework.

2.1. Android Architecture

Android is an open-source software stack of interfaces, with each layer, and85

the corresponding elements within each layer, tightly integrated and carefully
tuned to provide the optimal application execution and development environ-
ment. The interfaces as depicted in figure 3 includes a Linux Kernel, set of
libraries, runtime environment, API framework and applications.

Linux Kernel90

The foundation of the Android platform is the Linux kernel customized for
smart devices with power, memory and computational constraints. For instance,
the Android Runtime (ART) relies on the Linux kernel for inherent functional-
ities like threading and low-level memory control. Using a Linux kernel allows
Android to take advantage of its key security features and allows device manu-95

facturers to develop hardware drivers for a well-known kernel.

Hardware Abstraction Layer (HAL)

On top of Linux kernel, HAL provides standard interfaces that expose device
hardware capabilities to the higher-level Java API framework. It consists of
library modules, each of which implements an interface for a specific hardware100

element, such as Bluetooth or camera module.

Android Run Time(ART)

For Android version 5.0 or higher, each app runs its process with its instance
of the Android Runtime (ART). ART converts the application’s DEX bytecode
into native code at install time. DEX is a Dalvik EXecutable bytecode format105

to execute on dalvik virtual machine for memory-constrained Android devices.

5



ART runs multiple virtual machines (VMs) each with a DEX file executing on
it. Ahead-Of-Time (AOT), Just-In-Time (JIT) compilation, Optimized garbage
collection (GC), compact machine code generation and better debugging sup-
port are some of the considerable features of ART. Dalvik runtime was a virtual110

environment used before Android version 5.0. This change has negatively af-
fected analysis frameworks.

Android Core Libraries

Android contains several Core Runtime Libraries which offer Java program-
ming language functionality, such as database access, interface construction and115

graphics rendering. Some of the leading Android cored libraries open to devel-
opers are: android.app for access to application model, android.database for
content providers data access, android.opengl for graphics rendering, android.os
for access to OS services like inter-process communication, android.text to
manage text display, android.view for building user interface, android.widget120

to access prebuilt user interface widgets and android.webkit to access web
browsing capabilities.

Native C/C++ Libraries

Most key components and utilities of Android system like ART and HAL
are created from native codes that include C and C++ compatible libraries.125

Android provides access to some of these Native C/C++ Libraries using Java
APIs. Native platform libraries can directly be accessed from native code using
Android NDK, which allows implementing parts of an app in native code, using
languages such as C and C++.

Java API framework130

Features of Android are available for developers to write apps easily and
quickly. It includes APIs to design UI, work with databases, handle user in-
teraction, etc. APIs are grouped into modular system services. a) Content
Providers to access or share data to or from other apps; b) View System for
building UI including lists, grids and even internet browsers; and c) Various135

Managers for accessing location, network status, resources like graphics, dis-
playing notification and managing app activities.

System Apps

Android contains a set of preinstalled System Apps to ensure minimum func-
tionalities of SMS, internet browsing, contact management, calendar, music and140

more. These system apps provide vital capabilities that developers can access
from their app, for instance sharing a message by system messaging app.

2.2. APK file structure

Android app is a zip archive with .apk file extension. It generally contains
files and folders required for the application as depicted in figure 4. The purpose145

of them is listed below.

6



ZIP Archive
APK

Assets

lib

META-INF

res

AndroidManifest.xml

classes.dex

resources.arsc

CERT.SF

MANIFEST.MF

CERT.RSA

Figure 4: APK file structure

lib

It contains .so libraries as the code compiled for platforms. The code for
each platform (like armeabi, x86, x86 64) is stored in a subdirectory. While
not mandatory, programs usually have a lib directory150

META-INF

It contains metadata information, which also includes signature and certifi-
cate information used for integrity and identity validation.

- CERT.RSA

It is the certificate of the app. An APK file must be digitally signed with a155

certificate whose private key is owned by the creator of the request in order to
be accepted for download. As a trustworthy certificate authority is not required
to sign the certificate, it is usually not done.

- CERT.SF

It lists application resources with their SHA-1 hashes.160

- MANIFEST.MF

It is the application manifest file.

res

directory is responsible for storing raw resource files (such as images and
audio files), which are later mapped to .R files.165

7



Assets

directory is res like and used in the APK to store external resources (e.g.,
audio, images, and even executable exploits). Developers can build arbitrary
folder hierarchy, unlike the res directory.

AndroidManifest.xml170

stores the configuration information like name, version, required permis-
sions, and components. It is responsible for protecting the system by specifying
permissions to access any protected sections.

classes.dex

contains all the information about the classes in Dalvik Executable bytecode175

format. The data is organized in a way the Dalvik virtual machine can under-
stand and execute. It contains vital information for app reversal and static
analysis.

resources.arsc

provides precompiled application resources and is used to record the rela-180

tionship between the resource files and related resource ID and can be leveraged
to locate specific resources.

2.3. APK compilation and execution

Applications in Android are developed in Java. They are built into the
corresponding .class files with the javac compiler. The .class files contain185

Java Bytecode, which is not directly executable on an Android device. Rather,
Android has a distinct machine code format called Dalvik Bytecode. Figure 5
gives an overview of application compilation process. Java .class files along
with other .jar library files are forwarded to dex converter to convert into a
single classes.dex file. Code listings 1 and 2 illustrates a sample java source190

code and its corresponding dalvik bytecode respectively.

1 public MainActivity () {
2 super();
3 currentPosition = 0;
4 }

Listing 1: Java source code

1 0x0000: iput -object v1, v0 , Lcom/abc/myapp/MainActivity;com.abc.myapp.
MainActivity$2.this$0

2 0x0002: invoke -direct {v0}, void java.lang.Object.<init >()
3 0x0005: return -void

Listing 2: Corresponding Dalvik bytecode

After it has been created, classes.dex file with compiled resources and shared
object (.so) files containing native code are then compressed by the ApkBuilder195

tool into an Android PacKage (APK) file. For authenticating an APK for distri-
bution, it is signed using jarsigner tool followed by zipalign.

8



Java Bytecode

Java Bytecode
Obfuscation

aapt

Source Code
(.java)

Resources
(R.java)

Java classesaidl

Application
Assets

Application
Resources

Application
Manifest

.aidl files

Compiled
Resources

Java
Obfuscation

javac 
Compiler

.class Files

dex

classes.dex

Dex Bytecode
Obfuscation

apkbuilder

Unsigned APK

Dex
Bytecode

3rd Party
Libraries

.so 
libraries

Jarsigner

KeyStone

Compiled
Resources

zipalign
Signed +

Aligned APK

Legend

Output Files

Main Project
Files

Tools

Optional 
Tools

Flow

Input

Figure 5: APK compilation flowchart

9



Application execution in Android is a bit different from execution in a regular
OS. Each application runs as a separate process in its own Dalvik / ART VM.200

Before executing an app, its UID, package names, entry point classes, required
permissions and app components are extracted from the AndroidManifest.xml.
Android at its core runs a process called zygote at startup after init. The
zygote is a half started process with memory space and required core libraries,
but without any of the code. As loading a new process is memory is system205

intensive, a copy of zygote is created using a fork system call to launch the
desired app.

In Android Runtime (ART) during installation, the application byte code in
classes.dex zipped inside APK is extracted and converted using the dex2oat

tool to Executable and Linkable Files (ELF) shared objects which contain210

both DEX and native code. Generation of native code during installation is
known as Ahead Of Time (AOT) compilation. The converted file is stored in
/data/dalvik-cache/... path, which contains package name in the path to
prevent overwriting. ELF (also known as OAT format) OAT format is a ma-
chine code that’s specific to the CPU of the Android device, later mapped to215

the process memory. In Dalvik environment, which is the precursor of ART,
an optimized version of DEX file called Optimized DEX (ODEX) file is gener-
ated. Just In Time (JIT) compilation is used to execute ODEX file. Figure 6
illustrates comparative outline of APK execution in Dalvik and ART architecture
in Android. Apps in ART runtime executes faster and requires less execution220

memory as compared to Dalvik runtime due to pregenerated machine code dur-
ing installation. However, it takes longer for application installation in ART
runtime.

2.4. Android Security Framework

Android platform has been designed with multiple security mechanisms. An-225

droid system has a hierarchical structure, and each layer has its own security
mechanism, namely, traditional access control mechanism, a mechanism based
on inspection of permission, sandbox mechanism, digital signature mechanism
and encryption mechanism.

2.4.1. Linux security230

Android’s Linux kernel incorporates the access control mechanism of tradi-
tional Linux OS. Users access to resources and services is restricted based on
user authentication and authorization. Android has a Mandatory Access Con-
trol (MAC) over traditional Discretionary Access Control(DAC). MAC manages
access control decisions on all access attempts as part of the Linux Security Mod-235

ule (LSM) framework. However, in DAC owner of a particular resource controls
access permissions associated with it. Android’s access control policy greatly
limits the potential damage to compromised machines and accounts. It ensures
apps are running at the minimum privilege level [23]. This approach protects
resource confidentiality and integrity.240

10



Installation

APK

Native CodeDEX File

ODEX file ELF file

Resources

D
a
l
v
i
k
 
V
M A

R
T

Libraries
Libraries
Libraries

Optimized
DEX

Dalvik Native Native ART

DEX and
Native code

dexopt dex2oat

Figure 6: APK execution process

2.4.2. Digital Signature Mechanism

Digital signature is a prerequisite for an app to be hosted on Google Play
Store. It is generated by private key certificate allocated by a certifying author-
ity thus ensuring the integrity of the app and authentication of its developer.
Developers use verified certificates to validate app updation and other sibling245

apps developed by the same developer. If an APK is modified by an attacker, it
needs to be re-signed for validation, which is only possible if the private key of
the original publisher is known to the attacker.

2.4.3. Sandboxing

Android runs each app in an insulated kernel level sandbox environment with250

its memory and resources. This approach protects developer apps and system
apps from malicious ones. As the sandbox is at the kernel, all above software
(OS libraries, applications, framework) runs within the sandbox. Apps are
restricted from interactions. If an app X tries to read application Y’s resources,
it is prevented because of the lack of user privileges. If an app has the permission255

of a resource (e.g., Contacts), the app process is assigned to the corresponding
resource access id. As apps are digitally signed with the developer’s private key,
apps with same developer’s certificate are assigned the same UID (i.e. sandbox)
for resource and permission sharing. Thus malware authors with developer’s
key can design an app with the same certificate to access private resources of260

other sibling apps developed by the same developer.

11



1 <?xml version="1.0" encoding="utf -8"?>
2 <manifest
3 xmlns:android=
4 "http :// schemas.android.com/apk/res/android"
5 package="com.example.helloworld"
6 android:versionCode="1"
7 android:versionName="1.0" >
8 <uses -permission android:name=
9 "android.permission.SEND_SMS" .../>

10 <uses -feature android:name=
11 "android.hardware.sensor.compass"
12 android:required="true" .../>
13 <application ... >
14 <activity android:name=
15 "com.example.helloworld.MainActivity" ... >
16 </activity >
17 <service android:name=".TestService" .../>
18 </application >
19 ...
20 </manifest >

Listing 3: A sample manifest file.

2.4.4. Encryption

User data in Android device is encrypted using symmetric keys to provide
confidentiality and authorized access. All disk write operations on user data
follow after encryption and corresponding read operations precedes decryption.265

An unauthorized access to data, expose the real file content. Android employs
two types of encryption methods to ensure confidentiality [24].

• File Based Encryption (FBE): Files in FBE are encrypted using different
keys, which can be accessed independently. Using Direct Boot feature
FBE enabled devices can boot straight to the lock screen without the270

requirement of user credentials.

• Full Disk Encryption (FDE): In FDE user data partition /data is en-
crypted on block level using a single key generated by user credential.
During boot time the encrypted device is detected and prompted for the
password, which is then used to decrypt the user partition. FDE used 128275

Advanced Encryption Standard (AES) with cipher-block chaining (CBC)
for encryption.

2.4.5. App Manifest

The Android application contains a mandatory manifest configuration file
(AndroidManifest.xml). It specifies essential attributes about the application280

to Android OS. Some of these essential attributes are App’s package name, its
components, permissions requested and required set of hardware & software
features. A sample manifest file is shown in listing 3. A manifest file values are
configured at compile time and cannot be differed at execution. Following are
the important characteristics specified in a manifest file.285

12



Package name. Once an APK is compiled, the package attribute represents an
app’s universally unique application ID, as it is used to identify an app in the
system and Play Store. Listing 3 presents a sample package element name where
com.example.hello world is the action string.

App components. An app is composed of multiple components declared as cor-290

responding XML elements in the manifest file are discussed below:

• Activity : An activity is a user inference component to interact with the
user. Multiple activity components can be declared in the manifest file.
Each activity is allocated a window on the screen for its UI, which can
be of variable size and floating on other windows. One activity is spec-295

ified as ”main” activity displayed during app launching, then may be
followed by other activities based on user interaction. A sample activity
"com.example.helloworld.MainActivity" declaration is shown in list-
ing 3.

• Service: A Service component performs operations in the background300

without the user interface, even when the user switches to a different
application. Application components also use services to interact with the
app and perform interprocess communication (IPC).

• Broadcast Receiver : It is a component which allows apps to register for
application or system generated events. Once registered, the receiver for305

an event is notified by Android runtime upon its occurrence. For example,
application registered for BOOT_COMPLETED system event will be notified
after completion boot process.

• Content Provider : Content provider is a standard interface to access struc-
tured data from within or outside an app. It is primarily intended to be310

used by other apps using provider client object for inter process commu-
nication and secure data access.

String and meta-data information in Android manifest file have also been
used for malware detection [25] [26].

2.4.6. Inter Component Communication (ICC)315

ICC, a key feature of Android is an analogue of Inter Process Communica-
tion (IPC). It allows a component of an application to access data from another
component within the same application, other application within the same de-
vice or an external service. Applications can depend upon others for third party
services by borrowing services. For instance, a package delivery application can320

depend upon Google Map’s for user’s geolocation thus aiding developers.

Intents and intent filters. Activities, services and broadcast receivers, the core
components of an application are invoked through an asynchronous messaging
system called intents. An Intent object principally is a bundle containing in-
formation about action to be taken, data to act on and event that has been325

13



Intent

Activity A
Android
System

Activity B

onCreate()startActivity()

Intent

[1] [2] [3]

Figure 7: Inter Component Communication using intent to start activity: [1] Activity
A creates an Intent with an action description and passes it to startActivity(). [2] The
Android System searches all apps for an intent filter that matches the intent. When a
match is found, [3] the system starts the matching activity (Activity B) by invoking
its onCreate() method and passing it the Intent

announced. Separate mechanisms exist for intent delivery to each type of com-
ponent. Figure 7 depicts starting of an activity using intent.

Intents can be divided into two types:

• Explicit intents are designed for the fixed target component. Only the
component name in intent is considered to identify the target component.330

• Implicit intents are not for a fixed target and are often used to actuate
components in other applications.

Listing 4 declares an activity with an intent filter to receive an ACTION_SEND

intent for text datatype.

335
1 <activity android:name="ShareActivity">
2 <intent -filter >
3 <action android:name="android.intent.action.SEND"/>
4 <category android:name="android.intent.category.DEFAULT"/>
5 <data android:mimeType="text/plain"/>340

6 </intent -filter >
7 </activity >

Listing 4: Sample activity with intent filter in manifest file to receive ACTION SEND intent

The intent filtering mechanism cannot be relied on for security. While im-
plicit intents are tested against intent filters for targeting components, the ex-345

plicit intents can name the components as the target. An explicit intent should
be used for starting a service and developers should prevent from declaring in-
tent filter for service components. Using an implicit intent to start a service
is a security hazard[27]. Intent filters have been used for malware detection.
References [28, 29, 30] have evaluated effectiveness of Android intents (explicit350

and implicit) alone or in combination with other features such as permission for
identifying malicious applications.

14



2.4.7. Permission Model

Android uses permission-based security model to restrict application’s access
using APIs to system resources. Requested permissions to access resources are355

specified using <uses-permission> tags in the manifest file as depicted in listing
3. Android permission model defines four access levels for permissions.

• Normal permissions are required by an app to access data or resources
outside its sandbox to isolated application level features, but with neg-
ligible privacy or security risk. For example, ACCESS_NETWORK_STATE is360

normal permission.

• Dangerous permissions are higher risk permission that request exposure
to user’s private data or device control. Explicit consent from user during
installation is required for them. For example, ability to access calendar
and phone book are dangerous permissions.365

• Signature permissions are used by developer to share resources among
its sibling apps. It is used to access resources between apps signed by
the same developer certificate. For example, INJECT_EVENTS allows an
application to forcibly stop other applications.

• SignatureOrSystem permissions are required to change system setting and370

installation privilege. These are generally given to apps signed by the same
developer certificate as of system image. For example, WRITE_SETTINGS
allows an application to alter system settings.

3. Android Application Hardening

Application developers employ various hardening techniques to prevent anal-375

ysis of their code. With the term stealth, we refer to modifications or enhance-
ments employed by an Android application to make its structure and behavior
inconspicuous, i.e. to deter tampering or reverse engineering.

Hardening technique such as obfuscation is a double-edged sword as it pro-380

tects legit developers against code cloning as well the malware authors against
a range of analysis engines [31]. For this survey, we used search engines and
databases to identify high quality refereed articles from journals and confer-
ence papers. We employed keywords (such as Android obfuscation, hiding,
hardening, protection etc) and regular expression based search for literature385

identification. The research was focused to identify articles in the domain of
Android application hardening. Correspondingly, the application hardening is
classified into Trivial APK techniques, code obfuscation, preventive and other
techniques. Categories and sub-categories are outlined in figure 8. Trivial APK
techniques contains enhancements that modify the structure or packaging of an390

APK file. Code obfuscation in agreement with current literature contains obfus-
cation techniques that target source code or byte code. Preventive techniques
focus on detecting and preventing application execution in a test(i.e. virtual,

15



Android Application Hardening Techniques

Code Obfuscation

Constant Data
Obfuscation Literal Encoding

Mixed Boolean Arithematic
White Box Cryptography

Variable Splitting
Variable Merging
Identifier Renaming
Data Reordering
Array Restructuring
Data Space Randomization

Variable Data
Obfuscation

Code Logic
Obfuscation

Trivial APK
Techniques

Repackaging

Disassembling and
Reassembling

Realignment

Manifest File
Modification

Opaque Predicates
Code Reordering
Instruction Substitution
Dead or Junk Code Insertion
Function Call Addition & Removal
Loop Transformations
Call Indirections
Program Encoding
Encryption
Self Modifying Code
Control Flow Flattening
API Hiding
Java Reflection
Native Code Obfusctation
Library Hiding

Preventive
Techniques

Anti Tampering

Anti Hooking

Anti Debugging

Anti Emulator

Device Binding

Root Detection

Anti Tainting

Anti Keylogger

Anti screen reader

Figure 8: A hierarchal view of existing malware hardening techniques for Android OS.
[8, 11]

emulator, etc.) environment. We have also considered Other techniques, which
consists of strengthening network interaction and resource centric obfuscations,395

where focus is on securing the application communication over the network to
prevent eavesdropping and traffic analysis. And resource centric targets resource
files an application requires for execution.

In the following subsections, existing Android application hardening ap-
proaches are detailed.400

3.1. Trivial APK techniques

Trivial APK techniques are called so because they require less technical skills
and are easier to apply. The purpose of these techniques is to evade applica-
tion detection engines based on signatures of complete or specific segments of
an application. They comprise of transformations which do not require code-405

level modifications but simple operations, like signing the APK file with a new
signature.

Such transformations include unpackaging and repackaging the APK file,
renaming application packages, reassembling the byte code [5, 20].

16



3.1.1. Repackaging410

Anti-malware scanners often rely on APK digests for malware identification.
Repackaging includes unzipping the APK, adding junk code or resources and
rezipping to a functionally identical APK. Malware authors often repackage
popular applications to receive its purchase and advertisement profit [32, 33,
34, 35]. Previous studies have shown that 86% of over 1200 malware families415

were repackaged to induce malicious payloads [36]. Popular applications are
repackaged with malicious payloads in order to steal user information, make
purchases, or send premium SMS [32, 33, 37].

Compilation Packaging Signing

Developer

Market
Place(s)

Unpack

Decompile

Source Code
Modification

Attacker

Recompile

Repack

Signing

Publish

Download

Publish

Figure 9: Attackers uses repackaging to publish forged applications on market places.

As depicted in figure 9 repackaging includes decompilation of DEX file ex-
tracted from the APK using tool baksmali [38]. The decompiled smali code is420

then modified, recompiled and repacked. It is then self signed by the attacker
to generated forged APK to be hosted on market places [39].

Recall from figure 5 that Android applications are signed by developer’s
certificate that will be lost after disassembling and reassembling. A repackaged
APK can be distinguished by comparing its checksum to the original one [5, 13].425

Repackaging is a popular technique employed by malware authors to generate
different instances of the same malicious APK [40, 41].

3.1.2. Disassembling and Reassembling

Disassembling and reassembling of the DEX code (i.e., classes.dex) re-
siding in APK archive also creates a functionally equivalent application yet430

with a different digest like repackaging. Dalvik byte code is disassembled and
reassembled with apktool to generate reordered byte code [14]. Application
identification methods relying on code orders are likely to be ineffective against
it [13]. Malware authors use this technique to generate malware instances with

17



1 <manifest ... package= "com.hDEWJu.oYlCvk.hFYkwc.FgDOHA.UPkmVF" ... >
2 <application android:label="@string/app_name" android:icon="@drawable/

icon">
3 <activity android:label="@string/app_name" android:name= ".LncHMH" ...

>
4 :
5 </activity >
6 <service android:name= "com.rawJbA.DKPTQc.aaMYse.QUivSk" ... />
7 </application >

Listing 5: Manifest file with renamed packages.

different file based and code order based signatures to circumvent detection435

engines.

3.1.3. Realignment

Recall from figure 5, zipalign tool is used to align signed applications.
Zipalign is an alignment tool for APK file optimization. It particularly aligns
uncompressed data such as media and raw files w.r.t. start of the file to be440

matched to 4-byte limits [13]. Realignment reduces RAM consumption during
application execution [27]. Aligning an APK creates a functional equivalent but
slightly different file. Digest of a realigned file is different from its original APK.

3.1.4. Manifest File Modification

As explained in 2.4.5, each application contains AndroidManifest.xml file445

specifying application components, features and permissions [42]. During APK
compilation the manifest is compiled into a binary XML file. This transfor-
mation modifies the XML file by altering permissions, intent filters and com-
ponents. Code listing in 5 illustrates modification in manifest file of Plankton
malware to evade detection as demonstrated in [5]. Package, activity and service450

are renamed to non-readable text. For it to work, components in byte code are
required to be renamed.

A popular technique available in literature is package renaming, which is a
subset of manifest file modification [13, 14, 43]. Android uses the package name
to determine if an application has been installed or not. Usually, packages are455

defined by using hierarchy separated by dots. General package nomenclature fol-
lowed is: <com.companyname.applicationname>. Listing 5 illustrates package
renaming used by Plankton malware. It modifies package name to a predefined
random string format.

3.2. Code Obfuscation460

Code obfuscation is a popular and effective technology to make reverse engi-
neering harder. Code obfuscation was introduced to prevent intellectual prop-
erty violations of the source code [44]. But since then it also has been extensively
employed by malware authors for evasion [45, 46]. Malware authors use obfus-
cation techniques to conceal working and protect information such as strings,465

domain names and web addresses, which may be used as artifacts for detection.

18



The objective of code obfuscation is to make it harder to interpret the code.
It transforms the given code into a functionally identical one of the original but
difficult to follow [13, 47]. The theoretical perspective of code obfuscation is
well studied in [48, 49, 50] to define its limits. To make their apps more difficult470

for analysis, Android application developers use different obfuscation strategies.
First defined by Barak et al. [48], an obfuscator is a program that transforms a
given code or application into a new one satisfying functionality property (must
be functionally equivalent), slowdown property (be polynomially slower than the
original) and virtual black-box property (be as hard to analyze and reverse as a475

black-box version of the application) [51]. Code obfuscation methods accounted
are applicable on java source code or dalvik byte code. We have also included
existing methods which have been applied in other OS environments but can be
applied on Android application source code. The prevailing code obfuscation
methods [8] as outlined in figure 8 are discussed below.480

3.2.1. Constant Data Obfuscation

As the name suggests, this technique targets constants data types. It in-
cludes methods whose objective is to obscure the constant values by different
arithmetic, logical or cryptographic transformations.

Literal Encoding. An easy way to hide a constant is to transform it into a func-485

tion that generates the constant during runtime [52, 53]. The literal encoding
includes an invertible function f , a constant d as an input to f and storage for
the output. The inverse function f −1 is required during runtime to generate the
constant value d from the stored output. Basic literal encoding function induces
low computation overheads [8]. Opaque expressions which always have a certain490

fixed value during program execution can also be used to encode constant value.
For example cos2(x) + sin2(x) is always equal to 1, regardless of the value of x.
Therefore, the literal int flag = 1; can be encoded as shown in listing 6.

1 double x = Math.random ()495

2 double s = Math.sin(x);
3 double c = Math.cos(x);
4 int flag = s*s + c*c;

Listing 6: Literal encoding

Mixed Boolean Arithmetic. Mixed Boolean Arithmetic (MBA) technique for500

code obfuscation is suggested in [54]. MBA encodes data using arithmetic (ad-
dition, multiplication, etc.) and boolean operations (XOR, AND, OR). The
resulting encoding relies on external inputs so that compiler optimization strate-
gies do not deobfuscate it.

For example, a linear MBA expression as A = (x ⊕ y) + 2 × (x ∧ y) which505

simplifies to A = x + y can be used for encoding.

19



White Box Cryptography. An application processing encrypted data needs to
use and manage keys, which are often used to secure a user’s private and transac-
tional information. If an application is reversed with keys exposed, the sensitive
data managed by the application may be bared. An extreme form of code ob-510

fuscation is white-box cryptography, which applies obfuscation, mathematical
transformations and encryption to securely store the secret keys in applications
without hardware keys or third party entities [55, 56]. The fundamental idea
of white-box cryptography is to fuse the key with cipher logic (s-boxes, for ex-
ample) such that the key no longer is found in the application code [57, 53]. It515

aims to provide one-way cryptographic functions, which are easy to encrypt or
decrypt but hard to reverse the key [58]. The first Data Encryption Standard
(DES) and Advanced Encryption Standard (AES) based white box transforma-
tions were implemented by Chow et.al. [59, 55] along with Link and Neumann
2005 [60]; Bringer et al. 2006 [61]. The secret key can be embedded within520

S-boxes and T-boxes for DES and AES based white box transformation respec-
tively. Dual-ciphers, linear encoding and perturbation to the cipher equations
are techniques used to strengthen white-box cryptography [62, 61, 63].

3.2.2. Variable Data Obfuscation

Variable Splitting. In order to make it difficult for analyst to identify variables,525

they can be split into multiple variables. During obfuscation a variable can be
split into two or more variables and then be reconstructed from its split parts
during execution [53]. A boolean variable for instance can be replaced by a
boolean expression. A variable V can be split into k parts v1, v2, . . . , vk . As
illustrated in code snippet 8, boolean variable x is concealed as XOR operation530

on x1 and x2 [64]. If x = 1, it can be split into x1 = 1 & x2 = 0 and reconstructed
using XOR operation.

1 // before
2 boolean x=true;

Listing 7: Before variable spliting

1 boolean x1 = false;
2 boolean x2 = true;
3 boolean x = x1 ^ x2;

Listing 8: After variable spliting

Variable Merging. It involves merging multiple variables into a single variable.535

Variables v1, v2, . . . , vk can be merged into a single variable V . While merg-
ing the selected variables must be of same type [52]. For example two 8-bit
variables x1 = 10101010 and x2 = 11110000 are merged into a 16-bit integer
x = 1010101011110000 .

Identifier Renaming. The names of identifiers contain meaningful expressive540

information about the object they are used for. To avoid scanning engines
relying on nomenclature for detection, it renames original identifiers such as

20



1 2 3 4A:

1 2

3 4

A1:

A2:

Array Spliting

Array Merging

1 2 3 4B:

1 2

3 4

0

1

B:

Array Folding

Array Flattening

Figure 10: Array restructuring transformations

classes, fields, methods and packages names by random or predefined names
[42, 12, 65, 66, 67, 68, 69]. Renaming with meaningless names removes semantic
information and induces more time to analyse an application code [31, 53].545

APK obfuscation tools reuse short meaningless names for identifier renaming
[70, 71, 31]. Code listing 10 illustrates identifier renaming by ProGuard [72].

1 const -string v10 , "profile"
2 const -string v11 , "mount -o remount rw system\nexit\n"
3 invoke -static {v10 , v11}, Lcom/android/root/Setting;->runRootCommand(Ljava/

lang/String;Ljava/lang/String ;)Ljava/lang/String;
4 move -result -object v7

Listing 9: A byte code A code fragment from DroidDream malware

1 const -string v10 , "profile"
2 const -string v11 , "mount -o remount rw system\nexit\n"
3 invoke -static {v10 , v11}, Lcom/hxbvgH/IWNcZs/jFAbKo;->axDnBL(Ljava/lang/

String;Ljava/lang/String ;)Ljava/lang/String;
4 move -result -object v7

Listing 10: Listing 9 after identifier renaming

Data Reordering. Data and code locality plays a significant role during code550

analysis. Thus data reordering is often employed for data delocalization. It
alters the order of data units within a code segment. It is applied to: (a)
Reorder instance variable: randomizes the variable declarations, (b) Reorder
array: Data reordering is also applicable on array [73, 74]. An example of which
is reordering the elements in an array, storing the ith element in a new position555

determined by a function f (i), and (c) Reorder method: Methods within a code
segment are reordered to harden the code reversing. This syntactic change is
helpful in evading scanning engines based on instruction or dalvik opcode order
[13, 75].

Array Restructuring. Arrays as variable are transformed based on their struc-560

tural property into subarrays or merged into one. Array flattening decreases the
dimensions, whereas array folding increases the array dimensions as illustrated
in figure 10. Array reordering as introduced in 3.2.2 decreases the data locality
by permuting the variables in array [76].

21



Data Space Randomization (DSR). DSR was introduced by Bhatkar and Sekar565

in [77]. DSR performs XOR operation on data variables stored in application
memory with masks. Masks are randomly generated at runtime to mask the
data variable. To unmask a data variable, the same mask value is required. DSR
gives protection against targeting process memory during application execution.
Code listings 11 and 12 illustrates obfuscating variables using DSR .570

1 int x = 3;
2 int y = 5;
3 z = x + y;

Listing 11: Addition operation

1 int x_mask = random ();
2 int y_mask = random ();
3 int x = 3 ^ x_mask;
4 int y = 5 ^ y_mask;
5 int mask_z = random ();
6 int sum = ((x ^ mask_x) + (y ^ mask_y)) ^ mask_z

Listing 12: DSR obfuscated addition operation

3.2.3. Code Logic Obfuscation

Code logic obfuscation includes transformations targeting the logic or se-
mantics of the code, thus adding complexity [78, 44].575

Opaque Predicates. A predicate is a function which is called opaque if the out-
come of the function is difficult to predict even after statically analysing it [44].
An opaque predicate is a condition that will make it more complex and difficult
to interpret the code until the condition is executed. This condition is followed
by a conditional jump [53]. Unable to predict opaque predicate, both branches580

of the jump are seen possible even if only one is executed at each run time
[13, 79]. As depicted in figure 11 it is even referred to as a branch that always
executes in one direction, which is known to the author but is unknown to the
analyst. Static properties of opaque predicates prevent the code interpretation
from an analyst. The notion of dynamic opaque predicates was introduced by585

Palsberg et. al. in [80]. It implements a group of interconnected opaque predi-
cates, all computing the same output in a single execution, but to the different
output in other executions. Majumdar and Thomborsom in [81] introduced the
opaque predicates that were temporarily unstable.

Code Reordering. Code reordering modifying the byte code instructions order590

in smali methods of an application [82]. It performs instruction reordering
along with goto instructions to preserve the execution order. Code reordering
is employed by malware authors as a defence against pattern matching based
scanning engines [83]. Dalvik byte code in listing 14 have code reordered from
its original in listing 13 [5]. Code reordering is applied to the methods that595

contain independent instructions and do not have control jumps.

22



y := f(x)

x

y

(a)

y := f(x)

x

y

opaque predicate

dummy code

(b)

Figure 11: Example of opaque predicates: In (a) the code block produces an output y
depending on the input x. (b) presents an obfuscated opaque predicate (that is always
true) and a code block (”dummy code”) that is never executed.

1 const -string v10 , "profile"
2 const -string v11 , "mount -o remount rw system\nexit\n"
3 invoke -static {v10 , v11}, Lcom/android/root/Setting;->runRootCommand(Ljava/

lang/String;Ljava/lang/String ;)Ljava/lang/String;
4 move -result -object v7

Listing 13: A byte code A code fragment from DroidDream malware

1 goto :i_1
2 :i_3
3 invoke -static {v10 , v11}, Lcom/android/root/Setting;->runRootCommand(Ljava/

lang/String;Ljava/lang/String ;)Ljava/lang/String;
4 move -result -object v7
5 goto :i_4 # next instruction
6 :i_2
7 const -string v11 , "mount -o remount rw system\nexit\n"
8 goto :i_3
9 :i_1

10 const -string v10 , "profile"
11 goto :i_2

Listing 14: Reversed byte code of listing 13

Instruction Substitution. Instruction substitution was first introduced in [82].
It is based on the fact that in the instruction set architecture, instructions600

can be replaced by other existing equivalent instruction. Registers can also be
substituted. For example, instruction const/4 v0, #int 0 in listing 13 can be
replaced by const/16 v0, #int 0.

Dead or Junk Code Insertion. As the name suggests, the term dead or junk
code refers to the code which does not execute or cannot be reached during605

execution [52]. Its insertion induces additional complexity for analysis and alters
static file features such as application digest or n-gram based signatures. As
depicted in figure 11, dead code is often supplemented by opaque predicates
(either true predicate or false predicate) to evade its execution [53]. Addition

23



of no-operation, well known as NOP instruction (opcode 0x00 in Dalvik) is610

a simple dead code insertion without any effect to application functionality
[13]. Application scanning engines are usually able to identify code using dead
code insertion alone [14, 84], thus encouraging malware authors to combine it
with other code obfuscation methods. Android however, uses code-shrinking to
remove unused methods, fields, and classes from the application and its libraries.615

Android also employs code optimization to remove unused conditional branches
[85].

Function Call Addition and Removal. Proposed by Cohen [82] addition of func-
tion call implies creating a function of the sequence of instructions and substi-
tuting the original sequence with call to the function. Removal of function call620

implies substituting all calls to a function with the body of the function and
removing the function. Function call addition and removal is also popularly
known as code inlining and outlining [7].

Loop Transformations. Loop transformations were originally designed for per-
formance optimization, but some of them are useful code obfuscation techniques625

as they increase the structural complexity of the code [86]. Popular loop trans-
formations are: (a) Loop unrolling, which replicates the code inside the loop
and decreasing the loop counter; (b) Loop tiling originally designed for code op-
timization creates an inner loop to optimize loop cache behavior; and (c) Loop
fission bifurcates a loop into multiple loops [84].630

Call Indirections. Scanning engines often rely on advanced signatures based on
application call graph to identify or classify a malware. Call indirection aims to
evade it by redirecting a method invocation in the smali code to proxy methods
that then calls the original method [14]. Syntax (argument type, return type,
registers and invocation type) of these proxies are generally kept same as that635

of the original method. Listing 13 and 14 are the original smali code and smali
code with call indirection respectively. A proxy method is inserted at line 5 in
listing 14 with a random identifier.

1 .class public final L<ClassName >;
2 .super Ljava/lang/Object;
3 .source "<ClassName >.java"
4

5 .method public static FogLow(Ljava/lang/String; Ljava/lang/String ;)V
6 .registers 2
7 .prologue
8 invoke -static {p0, p1}, Landroid/util/Log;->d(Ljava/lang/String;Ljava/

lang/String ;)I
9 return -void

10 .end method

Listing 15: Original byte code showing a method.

24



1 .class public final L<ClassName >;
2 .super Ljava/lang/Object;
3 .source "<ClassName >.java"
4 # direct methods
5 .method public static <Identifier >(Ljava/lang/String;Ljava/lang/String ;)I
6 .registers 3
7 .prologue
8 invoke -static {p0, p1}, Landroid/util/Log;->d(Ljava/lang/String;Ljava/

lang/String ;)I
9 move -result v0

10 return v0
11 .end method
12 .method public static FogLow(Ljava/lang/String;Ljava/lang/String ;)V
13 .registers 2
14 .prologue
15 invoke -static {p0, p1}, L<ClassName >;-><Identifier >(Ljava/lang/String;

Ljava/lang/String ;)I
16 return -void
17 .end method

Listing 16: Call indirection: Byte code with proxy method inserted.

640

Program Encoding. Strings and data structures used in an application are stored
in the .dex files. Strings and byte code patterns are used to create detection
signatures for malware identifications [53, 14]. Encoding converts a data or
string representation into a different one with encoding function. The encoded
sequence is deobfuscated during execution [82]. Developers use program en-645

coding techniques such as encryption [87, 88] and compression [89]. Zhou et
al. in [54] introduced a variant of encoding via mixed-mode computation over
boolean-arithmetic algebras. Program encoding induces additional computa-
tional cost, which is relatively high depending upon the type of encoding. A
resilient encoding method is computationally expensive.650

Encryption: It protects the application against static analysis. Encrypted
code is decrypted on-the-fly during runtime. Scanning engines based on byte-
code sequences and string based fingerprinting are futile against it [13]. Popu-
lar encryption techniques employed to strengthen Android applications include
string encryption and class encryption.655

1. String Encryption: Strings are significant data structures often encrypted
to prevent application identification based on string-based features such as
package names and permissions [90, 91, 92]. As a result, string encryption
could effectively hinder hard-coded static scanning by rendering strings
unreadable [31, 93, 20]. The original string is stored in an encrypted660

form and requires an additional decryption function [65, 66, 67, 68, 90].
Listing 17 illustrates application of string encryption and decrypt() sub-
routine at source code level in java. Listing illustrates an instance of string
encryption by DashO, a commercial obfuscator developed by PreEmptive
Solutions. DashO replaces strings with function calls to a decryption func-665

tion. The same decryption function, Activator$2;->getChars, is called
multiple times in the application code [71].

2. Class Encryption: Class encryption is an advanced code obfuscation tech-
nique which encrypts a class. The encrypted class is decrypted and loaded

25



1 String option = "@^@#\x ‘1 m*7 %**9 _!v";
2 this.execute(decrypt(options));

Listing 17: String encryption in java

1 const -string v1 , "\t\u001b\u0002\u0019\u0019\u0001\u0014EX"
2 const /16 v2, 0x79
3 invoke -static {v1, v2}, Lcom/software/app/Activator$2;->getChars(Ljava/lang

/String;I)Ljava/lang/String;
4 move -result -object v1

Listing 18: String encryption by DashO.

at runtime by a separate function. Maiorca et. al. in [20] have created a670

class obfuscation scheme which encrypts and compresses (by GZIP algo-
rithm) each class. During runtime encrypted class is decrypted, unzipped
and loaded in memory. The computational overhead of class encryption
is high along with its resilience against static analysis based reverse engi-
neering [94, 42].675

Self Modifying Code. Malware authors use all tricks to evade scanning engines,
and one of those is called polymorphism or self modifying code. It allows appli-
cation code to change itself without changing its functionality. Polymorphism,
which has successively been exploited over Windows OS, is being used against
Android too. Malware Android.Opfake [95] employs server-side polymorphism680

to modify itself every time it’s updated to evade detection. The polymorphic
code is able to modify itself by variable data changes, file reordering and dummy
file insertion. Polymorphic malwares often use bytecode encryption, which en-
crypts pieces of an application to be decrypted only at runtime [18].

Control Flow Flattening (CFF). Control flow flattening, which hides the control685

flow graph of the application was introduced by Wang et al. [96] and Chow et
al. [97]. It is an effective and deobfuscation resilient method [98, 99]. CFF uses
switch constructs instead of using easily identifiable loops and conditional jumps
to divert control flow. According to Wang et al. in [98] structure of CFF obfus-
cated code contains (a) Prologue: entrance block of the CFF (b) Dispatcher: a690

conditional jumping block such as switch; (c) Return: basic code block which
returns; and (d) Relevant: maintains operation of the original function. Figure
12 illustrates structure of control flow after flattening.

API Hiding. Applications are often characterized as sequences of Application
Programming Interface (API) methods. API calls help in identifying application695

interactions with the operating system applications. Smartphone is a host of pri-
vacy sensitive information such as phone numbers, call details, SMSs, calendar
and location information which are accessed by API calls. Scanning engines of-
ten rely on API calls for malware detection [100, 101, 37, 102, 103].For example,
malware sample using getDeviceId() followed by sendTextMessage() is highly700

26



1 2 3 4

Return

Dispatcher

Prologue

goto

R
e
l
e
v
a
n
t

Figure 12: Control Flow Flattening: Flattened sequence of the original control flow
sequence 1→2→3→4→Return.

probable to leak device’s identifier data. API hiding based code obfuscation is
used by applications to prevent discovery of API usage pattern. API hiding
uses Java reflection mechanism to hide invocations of sensitive APIs, such as
cryptographic functions [42, 6, 104]. Listing 20 show an instance of API hiding
by DexProtector on code listing 19 [42]. API calls getText() and toString()705

are obfuscated using API hiding.

1 const -string v1 , "Hello World"
2 invoke -virtual {v0}, Landroid/widget/TextView;->getText ()Ljava/lang/

CharSequence;
3 move -result -object v2
4 invoke -interface {v2}, Ljava/lang/CharSequence;->toString ()Ljava/lang/

String;

Listing 19: Smali code with a string variable and API calls.

1 const -string v1 , "\ub6e8\ud801\ub2bb"
2 invoke -virtual {v0}, Lcom/dexprotector/ha;->gbeab(Ljava/lang/Object ;) Ljava/

lang/Object;
3 invoke -static {v2}, Lcom/dexprotector/ha;->oodab(Ljava/lang/Object ;)Ljava/

lang/Object;

Listing 20: Smali code with encrypted string variable and API hiding.

Java Reflection. Reflection is a popular feature in Java programming language
to evade static analysis, as it allows object interaction at runtime. Reflection is710

popular among developers to obfuscate sensitive library and API calls [21, 31].
It transfers execution flow to the desired code segment implicitly, thus evading
static analysis techniques. Code listing 21 and 22 illustrate usage of reflection
for code obfuscation.

715

1 Lock myLock = new Lock();
2 key = myLock.getKey ();

Listing 21: Before reflection.

27



1 Class c = Class.forName("me.locklink.RefletiveClass");
2 Object o = c.newInstance ();
3 Method m = c.getMethod("getKey");
4 Object r = m.invoke(c);

Listing 22: Reflection based code obfuscation.

Native Code obfuscation. Android comprises the Android Native Development
Kit (NDK), which allows developers to execute their C and C++ code (called
as native code). Native code is popular amongst developer [105, 106, 107].720

Analysis methods available for byte code are ineffective against native code,
thus making them favorite for malicious payloads [108, 109, 110, 105]. To make
it more difficult for analysts, native code obfuscation exists. Obfuscator-LLVM,
is a popular native code obfuscator for ARM and x86 architecture [111]. It
offers (a)Instruction substitution; (b) Control Flow Flattening and (c) Junk725

code addition at native code level.

Library Hiding. Applications rely on system and third party libraries for fea-
tures and interactions. Libraries are cornerstone of Android ecosystem, as
they provide functionality to developers such as advertisement, authentica-
tion and social networking. An application thus can be classified as mali-730

cious based on its library usage. Various approaches for library detection exists
[112, 113, 114, 115, 116, 117, 118, 119, 120] in literature. These detection meth-
ods are challenged by code obfuscation methods as they mostly rely on nomen-
clature based matching of package or classes [121]. Library class and package
renaming approaches are used for library hiding. Another approach followed by735

some developers is to recreate custom versions of library by merging, splitting
or changing existing libraries [7].

3.3. Preventive Techniques

Preventive techniques comprise of methods which prevent or make difficult
to analyse an application. Scanning engines, application hosting platforms em-740

ploy dynamic analysis methods for malware analysis and detection. Below we
discuss a broad range of prevention techniques used both by malwares and
benignwares to detect and evade analysis environment. Benignwares such as
banking applications use them for primary objective to keep user’s authentica-
tion and transaction information confidential and intact. Prevention techniques745

prime objective to detect analysis environment is based on identifying static
properties of environment, runtime sensor information of Android and other
emulator related properties.

3.3.1. Anti Tampering

Attackers are always trying to reverse popular applications to inject mali-750

cious code. An attacker using the tampered application can get inside smart-
phone to access, manipulate and exchange user data [42, 11, 122]. Anti tamper-
ing popular as Integrity Checking uses methods to ensure that application code
and resources are not altered by a third party. Basic anti tampering is to check

28



1 PackageManager pacman = context.getPackageManager ();
2 List appInfoList = pacman.getInstalledApplications(PackageManager.

GET_META_DATA);
3

4 for(ApplicationInfo appInfo : appInfoLst) {
5 if(appInfo.packageName.equals("de.robv.android.xposed.installer"))
6

7 if(appInfo.packageName.equals("com.saurik.substrate"))
8 }

Listing 23: Anti Hooking: Code snippet to identify presence of hooking frameworks

for integrity or digest at startup. A digest mismatch with the developer’s cer-755

tificate suggests a tampered application [123]. A distributed approach of code
integrity checking using checkers is introduced in [124]. Figure 13 illustrates
multiple checkers responsible for integrity check of code segments are planted
at different locations of an application.

Checker 1 Checker 2 Checker 3 Checker 4

Segment 1

Segment 2

Segment 4

Segment 3

Figure 13: Control Flow Flattening: The original control flow in (a) is flattened to (b)

3.3.2. Anti Hooking760

Application interaction with Android OS and other application is a probable
attack surface. With application code intact, API calls can be hooked to insert
functionality at runtime [125, 11, 126, 127]. Hooking allows an attacker or
analyst to alter method arguments, method return or even a complete method.
Hooking detection is considered difficult as hooks are generally placed from765

higher privilege levels. Anti hooking comprises of the mechanisms for detection
of hooking framework (e.g. Cydia Substrate [128], Frida and Xposed [129]
framework) in memory. Current anti hooking solutions rely on fingerprints
of hooking frameworks for their detection [11]. Code listing 23 illustrates the
identification of Xpose and Cydia Substrate frameworks using package name770

artifact. Jose Lopes in [130] uses file path and stack trace (strace) artifacts to
detect popular Xposed and Cydia Substrate frameworks.

29



3.3.3. Anti Debugging

Debuggers were primarily designed for developers to find bugs in their ap-
plications, and are also used by reverse engineers to perform dynamic analysis775

of an application. Debuggers operate by setting up interrupts at a particular
instruction in an application. Obfuscation methods successful against static
analysis approaches can be countered by debugging. Two kinds of debuggers
can be attached to Android: Native code debugger and JDWP(Java Debug Wire
Protocol) debugger [11, 131]. An application developer or malware author detect780

and evade debugger by anti debugging techniques. A debugger if detected, the
anti debugger can invoke crashes, custom action, data corruption or warning
signal to a remote server. Anti debugging checks for unique artifacts of the
environment to detect and identify the presence of a debugger [124].

Artifacts here include debugger flag and kernel system calls related to de-785

bugging. Listing 24 is code snippet to detect presence of debugging environment
using FLAG_DEBUGGABLE attribute in AndroidManifest.xml.

1 public static boolean checkDebuggable(Context context){
2 return (context.getApplicationInfo ().flags & ApplicationInfo.790

FLAG_DEBUGGABLE) != 0;
3 }

Listing 24: Anti Debugging: Code snippet to identify presence of debugger packages

Anti debugging methods [132, 133, 131] targeting Native code debugger are:
(a) Execution timing mismatch if code is executed in debugger; (b) Interrupt795

signal for an application will be diverted to debugger thus enabling detection;
and (c) Application code integrity check as insertion of breakpoint shall alter
the hash value of the code.

Anti debugging methods [131, 132, 133] targeting JDWP debugger are: (a)
debuggerConnected and debuggerActive member variables in DVMGlobals800

datastructure is 1 in Dalvik VM instance of application for an attached de-
bugger; and (b) The count member of BreakpointSet structure in Dalvik VM
instance represents number of breakpoints set can detect presence of break-
points.

3.3.4. Anti Emulation805

Due to large scale development and evolution of malware, security researchers
are using automated dynamic analysis techniques for detection [127, 134, 135,
136, 137, 138, 139]. Analysts performing dynamic analysis, executes an applica-
tion in a virtual environment, an emulator or a sandbox as it allows them to mon-
itor and inspect application’s state. Several emulators and sandbox detection810

mechanisms are employed by applications to exhibit different behavior on detect-
ing an emulation or virtual environment [126, 11, 127, 140, 141, 142, 143, 144].
Anti emulation is based on the principle that creating a complete and real system
emulator is very difficult. Anti emulation methods are developed by observing
and detecting differences between application interaction with a real and virtual815

system. Anti emulation artifacts or fingerprints thus may be differences due to

30



Table 2: Artifacts to detect presence of an emulator or sandbox

Artifact Types Artifacts

S
T

A
T

IC
H

E
U

R
IS

T
IC

S

Device Identifier Android Device ID; IMEI; IMSI

Current Build
Build.ABI; Build.ABI2; Build.BOARD; Build.BRAND; Build.DEVICE;
Build.FINGERPRINT; Build.HOST; Build.ID;
Build.MANUFACTURER; Build.MODEL; Build.PRODUCT; Build.RADIO; Build.SERIAL; Build.TAGS; Build.USER

Telephony Manager

TelephonyManager.getDeviceId(); TelephonyManager.getLine1Number(); TelephonyManager.getNetworkCountryIso();
TelephonyManager.getNetworkType(); TelephonyManager.getNetworkOperator(); TelephonyManager.getPhoneType();
TelephonyManager.getSimCountryIso(); TelephonyManager.getSimSerial Number(); TelephonyManager.getSubscriberId();
TelephonyManager.getVoiceMailNumber()

Hardware Components
/proc/cpuinfo; /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo min freq;
/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo max freq

D
Y

N
A

M
IC

Sensor information Accelerometer; Light; Magnetic field; Orientation; Proximity sensor; Rotation vector; Gravity; Gyroscope sensor; Temperature

CPU Performance Differential CPU performance analysis

Graphical Performance Emulators exhibit lower Frames Per Second (FPS)

Presence of other apps GoogleLoginService.apk; GoogleServicesFramework.apk; Phonesky.apk; Vending.apk; VZWBackupAssistant.apk

system hardware or software state values or application execution differences
[11].

They are categorized into static heuristics and dynamic heuristics [140].
Static heuristic techniques are based on the static properties which are initial-820

ized to default values in an emulation environment. Whereas dynamic heuristic
techniques are based on the information provided during runtime. Table 2 illus-
trates a compiled list of artifacts employed by applications to detect the presence
of emulation environment.

3.3.5. Device Binding825

Banking applications requires to work only on the installed device with which
the account has been cound. This requirement of application services binded to
the device is known as device binding. Device binding act as a physical second
factor authentication [11, 145]. Device binding fingerprints the device which are
matched during app initialization. Device fingerprinting requires to be unique830

such as device IMEI number and Android Device ID [146].

3.3.6. Anti Rooting

Android device manufacturers limit user control over the operating system
and applications. Every application in Android executes with its context inside
a sandbox. Rooting allows user to attain full privilege over hardware, OS, ap-835

plications and data stored among them [124]. Rooting is achieved by obtaining
persistent root access of the OS [147], which is achieved by installing a cus-
tomized superuser (su) binary. su binary is then used to perform operations as
root such as remove application restrictions and security constraints [148, 149].
Sun et al. in [150], detailed five rooting methods namely: (a) Fastboot or Down-840

load mode; (b) Custom recovery; (c) Bootable SD card; (d) Rooting apps; and
(e) Privileged ADB. A rooted device is a risk for applications transacting sen-
sitive information (such as financial applications) or applications that restrict
user interaction (such as a company’s internal mailing application). High valued
applications perform rooting detection to prevent exposure to a rooted device.845

Techniques and artifacts to detect presence of a rooted device are popularly
categorized into Anti rooting. Depending on how a device is rooted, artifacts

31



Table 3: Artifact list to detect a rooted device

Categories of artifacts Artifacts

Directories
/cache; /data; /dev/data/app; /data/data; /data/dalvik-cache; /data/local; /data/local/bin; /data/local/xbin; /magisk/.core/bin;
/sbin; /su/xbin; /su/bin; /system/app; /system/bin; /system/bin/.ext; /system/bin/failsafe; /system/sd/xbin; /system/usr;
/system/usr/we-need-root; /system/xbin

Rooted device busybox; daemonsu; kingroot; kinguser; supersu; superuser

Root privilege adfree; greenify; kerneladiutor; setcpu; shootme; stericson; titanium

Evading root detection chainfire; rootcloak; rootcloakplus; xposed

Package names
com.devadvance.rootcloak; com.devadvance.rootcloakplus; com.grarak.kerneladiutor; com.jrummy.apps.build.prop.editor;
com.jrummy.root.browserfree; com.jumobile.manager.systemapp; com.koushikdutta.superuser; com.oasisfeng.greenifiy;
com.thirdparty.superuser; de.robv.adnroid.xposed.installer; org.namelessrom.devicecontrol; stericson.busybox

for its detection vary. Table 3 presents a comprehensive view compiled from
existing root detection methods [11, 151, 152].

3.3.7. Anti Tainting850

A recent popular analysis technique known as taint analysis is based on the
data flow from source to sink using tags [9, 153]. For instance, in the case
of sending DeviceID information over the network, method returning DeviceID
is the source and socket’s send method is a sink. Movement of tagged data
in taint analysis is logged, thus enabling the detection of information leakage.855

Taint analysis for Android was introduced in [154]. Evasion of information
flow detection taint analysis is known as Anti Tainting. Hoffmann et al. [9]
and Sarwar et al. [155] experimented anti tainting by monitoring sensitive
sources (such as contact list, location data) and instead of original data sent the
duplicated data or a copy to the sink.860

3.3.8. Anti keylogger

Android offers the feature to install third-party keyboards, which may be
designed to extract user’s sensitive information or credential data during typ-
ing [11]. Few application hardening solutions such as Promon Shield uses anti
key-logging by providing its own keyboard whenever an application is calling865

SecureEditText and SecureKeyboard classes. Another approach followed is to
maintain a whitelist of trusted keyboard applications. An application may quit
on finding the presence of a keyboard not in the whitelist.

3.3.9. Anti-screen Reader

Malicious applications can target for screen captures to eavesdrop user ac-870

tivity and credentials using Android accessibility services [156]. Similar to Anti
Key-logging, Anti screen reader technique try to detect presence of a screen
reader when a critical application such as banking is running. An application
can restrict screen captures by activating FLAG_SECURE, which is a display flag
to treat window content of the application as secure [157].875

3.4. Other Techniques

In this section we consider methods which can not be into above categories.

32



1 URL url = new URL("https ://www.policeuniversity.ac.in");
2 HttpsURLConnection con = (HttpsURLConnection)url.openConnection ();
3 con.connect ();

Listing 25: Sample code in java to open HTTPS connection

3.4.1. Network Communication Hardening

A stealthy network communication lowers the possibility of eavesdropping
over network connection or interfaces. This subsection presents techniques to880

strengthen network communications, which may serve as preliminary network
security by developers [158, 11].

• HTTPS: As most applications use HTTP to transceive data, Android
supports HTTPS client connection using HttpsURLConnection. HTTPS
encrypts traffic to prevent eavesdropping. It provides TLS based confi-885

dentiality and authentication. Listing 25 a sample code to open a client
connection using HTTPS [159].

• DNS: Android 10 and above supports DNS request over TLS using DNS-over-TLS
mode. The API DnsResolver can be used for name resolutions.

• Certificate and Public Key Pinning: Whenever an HTTPS connection is890

made to server, authentication of server certificate is requested by under-
lying TLS connection. Certificates presented by a server are issued and
verified by Certificate Authority (CA). A valid certificate based https con-
nection greatly reduces the chances of man-in-the-middle (MITM) attacks.
Certificate pinning checks the authenticity of server certificate. Only when895

the server is authenticated, the connection is established.

• Sanitization and Validation: Validation is the process of ensuring the data
submitted to server is sensible i.e. it fulfils the constraints of validity. For
example, if server is expecting a 10 digit number then making sure that the
submitted value is 10 digit. It reduces the likelihood of memory corruption900

and injection attacks. Listing 26 illustrates validating a submitted file to
be a JPEG.

• End to End encryption: Limitation with https protection level is that
it provides a confidential communication channel between client and the
server. But there exist scenarios in which an end to end communication905

between two peers going through multiple servers need to be encrypted
(for instance, Whatsapp). It means the intermediary servers or nodes shall
have no information about data content but metadata. End to end en-
cryption solution is specifically designed as per application functionalities.

3.4.2. Resource Centric Obfuscation910

Assets and res directories of an APK are responsible to store resource files
such as audio, images. They are even used by developers to store database files.

33



1 private static boolean isValidJPEG(String path) throws IOException
2 {
3 RandomAccessFile file = null;
4 try{
5 file = new RandomAccessFile(path , "r");
6 long length = file.length ();
7 if (length < 10L){
8 return false; }
9 byte[] head = new byte [2];

10 file.readFully(head);
11 file.seek(length - 2);
12 byte[] tail = new byte [2];
13 file.readFully(tail);
14 return head [0] == -1 && head [1] == -40 && tail [0] == -1 && tail [1] ==

-39;}
15 finally{
16 if (file != null){
17 file.close();} } }

Listing 26: Code to validate JPEG file based on header (FF D8) and footer (FF D9) values

Below we discuss different hardening techniques used by developers to protect
or evade.

Resource renaming. List of resources and their names are defined in the XML915

files in the APK. Scanning engines often identify malicious applications based
on resource files with specific names. This class of obfuscators aims at evading
signatures based on string matching. For example, Android Rootnik malware
can be identified by the presence of secData0.jar file in the assets folder in
APK [108]. In resource renaming protection technique, user defined resource920

identifiers are renamed with random or predefined naming pattern and the same
is updated with respective files. Preda et al. in [13] replaced resource names by
first 8 characters from MD5sum of the file name.

Resource encryption. Resource encryption technique encrypts the file content
of resources and assets. For it to work, subsequent changes are required in byte925

code for resource decryption during execution. For example, secData0.jar in
Rootnik malware is an encrypted resource file [108]. Developers may use existing
popular encryption methods (for e.g. DES, AES and XOR based encoding) or
custom methods for it.

Code and Package hiding. Malware authors often use resource files to hide ma-930

licious elements such as code segments, DEX file and APK inside resource files
[21]. It makes the application look benign upon inspection. For example, Gin-
gerMaster malware hides it malicious script in resources with the extension of
.png [160]. Another malware, Gamex.A!tr contains a ZIP file in Assets under
the name logos.png [21]. Malware even employ steganography to hide mali-935

cious packages and JAR files in valid resource files. The objective is to embed
an executable piece of code or payload to evade detection, static analysis in
particular. Advantage with steganography based obfuscation approach is that
the malicious content is difficult to recognize during the static phase as it is

34



2013 2014 2015 2016 2017 2018 20192012

Repackaging
Reassembly

API hiding
Anti-tainting
Code reordering
Dynamic loading
Identifier renaming
Junk & dead code insertion
Manifest modification
Reflection
Resource encryption
String encryption

Anti emulator
Device binding

Anti tampering
Anti debugging
Class encryption
Library hiding
Native code obfuscation
Root detection

Opaque predicates
Control flow flattening

White box cryptography
Anti hooking

Anti key logger
Anti screen reader

Figure 14: Evolution of obfuscation and preventive techniques.

revealed at execution time only. For example, SmsZombie.A!tr uses jpeg file940

to hide package using steganography. Code and package hiding in combination
with encryption increase the obfuscation level [161, 21].

4. Effectiveness of obfuscation methods

Faruki et al. in [7] discussed obfuscation methods, application protection
and deobfuscation methods specific to Android. Dong et al. in [31] provided945

an understanding into Android code obfuscation and carried out a large scale
investigation on 114,560 samples for its usage.

Obfuscation methods are new normal for both developers and malware au-
thors. Malware authors leverage above discussed techniques such as code ob-
fuscation, anti-debugging, anti-hooking to bypass detection. Developers fur-950

thermore engage them to defend against evasive systems. Never ending cycle
of detection, anti-detection and anti-anti-detection propel innovation in both
detection and evasion. While the effectiveness of detection methods against
ever improving anti-detection is a question to contemplate, limited research in
available literature focuses on it. Evolution of these techniques in the form of a955

timeline is illustrated in figure 14. It has been created based on the introduction
of techniques in the literature over the decade to the best of our knowledge.

Tam et al. [18], Nigam [162] and Suarez-Tangil [161] have extensively dis-
cussed the evolution of Android malware over the last decade. Apvrille and
Nigam in [21] explore the practical usage of stealth techniques by Android960

malware. Christodorescu and Jha in their seminal paper [163] tests the ef-
fectiveness of different code obfuscation methods on desktop malware to evade
popular scanning engines. Moreover, it reasons their low resilience against code
transformations. Mairco et al. in [20] did a comparative evaluation of trivial
obfuscation, string encryption, reflection and class encryption techniques. For965

trivial encryption, it considered class, field, filename, method and package re-
naming followed by repackaging. Furthermore, they assess the cumulative effects
of obfuscation techniques. Preda and Maggi in [13] assess the effectiveness of
mobile anti-virus against particular classes of code transformations. It evaluates
techniques categorized into five classes namely, Trivial techniques(Repackaging,970

Reassembly and Realignment), Simple Control Flow modifications (Junk code

35



Table 4: Comparative analysis of effectiveness of obfuscation techniques.

[ OS: Obfuscation Strength; SO: Size Overhead; Notations from low to high: ]

Obfuscation [164] [20] [13] [94] [14] OS SO

Repackaging X X X X
Reassembly X X X X
Dead Code Insertion X X X
Call Indirection X X X
Code Reordering X X X
Opaque Predicate X
Resource Renaming X X X
Method & Field Renaming X X X X
Package Renaming X X X X
Resource Encryption X X
String Encryption X X X X
Class encryption X X
API Hiding X
Reflection X X X
Combinations X X X

insertion, Debug symbol stripping, Defunct code insertion and Unconditional
jump insertion), Advanced Control Flow modifications (Call indirection, Code
Reordering, Reflection and Opaque predicate insertion), Renaming (Resource
renaming, Identifier renaming and Package renaming) and Encryption (Resource975

encryption, Native code encryption and string encryption). Like Mairco et al.
in [20], it also concludes encryption to be effective in evading all anti-virus prod-
ucts. It used DES based encryption, whereas [20] employed XOR for encryption.

Badhani and Muttoo in [165] calculates control graph based similarity mea-
sure between original and obfuscated apps. It divides code obfuscation into five980

levels based on changes it performs. It uses techniques from [164, 13, 5] for
creating obfuscated apps. It concludes its resilience towards detecting single
level obfuscations, but during multiple obfuscations, similarity was found low.
Cho et al. in [94] propose an obfuscation assessment scheme to evaluate the
obfuscation level. It tries to quantify by calculating obfuscation score based on985

sensitive API usage. Strength of API hiding, Repackaging and Class encryption
obfuscation methods are computed. Table 4 briefs work on detection of obfusca-
tion types. There exist multiple works on obfuscation detection but very limited
methods focus on the detection of specifics. It also compares the obfuscation
strength of each method based on detection results available in the literature. It990

is worth highlighting, that Resource Encryption, String Encryption and Class
Encryption are hardest to detect and most evasive. While they induce code
complexity, they also cause size overhead [20].

5. Android obfuscators and hardening tools

Above discussed techniques are widely used to mitigate automatic analysis,995

reverse engineering and securing the intellectual property from prying analysts
[98, 31]. Multiple frameworks are available in the market providing range and
combination of code obfuscation and application hardening methods [65, 66, 67,
169, 72, 111, 178, 179, 177, 93, 20, 5, 68, 180]. These open source and commercial

36



Table 5: Comparative analysis of Android application hardening tools.

[CO: Code Obfuscation, AD: Anti Debugging, AE: Anti Emulator, AH: Anti Hooking, AR: Anti Rooting, AT: Anti
Tampering, RP: Resource Protection, DB:Device Binding, AK: Anti Keylogger, AS: Anti Screen reader, SN: Secure

Network]

Tools CO AD AE AH AR AT RP DB AK AS SN

Allatori [65] X
APK Protect [166] X X
Arxan [167] X X X X X
Baidu [167] X X
Bangcle [168] X X
CrackProof X X X X
DexGuard [66] X X X X X X X
DashO [169] X X X X X X X X
DexProtector [67] X X X X X X X X
Entersekt Transakt [170] X X X X
Ijiami [171] X X
InsideSecure [172] X X X X
MobileProtector [173] X X X X X X X
ProGuard [72] X
PromonShield [174] X X X X X X X X X X
SecNeo AppShield [175] X X
Stringer [68] X
WhiteCryption [176] X X X X
YGuard [177] X

frameworks differ in scope and obfuscation depth [13]. Code obfuscators target1000

different code levels namely: Java code, bytecode and native code.
We have performed a comprehensive analysis of popular Android application

hardening tools with reference to the features and techniques. Table 5 illustrates
the compiled list.

6. Related works1005

Android is a market mover and popular target amongst malware authors,
various studies on Android application protection and code obfuscation are avail-
able in the literature. A comprehensive Android threat taxonomy is detailed
by Shabtai et al in [181]. Current literature studies focus on evolving harden-
ing techniques; its challenges and improvements [182]; detection [5, 183] and1010

evasion work. Tam et al. [18], Nigam [162] and Suarez-Tangil [184] discussed
evolution of Android malware over the last decade. Apvrille and Nigam in [21]
focussed on practical usage of hardening techniques by Android malwares. In
[53] and [8] authors survey existing obfuscation techniques employed in various
systems. Faruki et al. discussed obfuscation methods, application protection1015

and deobfuscation methods specific to Android in [7].
Dong et al. in [31] provided an understanding into Android code obfus-

cation and carried out a large scale investigation on 114,560 samples for its
usage. Various static and dynamic code obfuscation approaches are presented
in [31, 22, 70, 5, 164, 6] such as renaming, string encryption, control flow obfus-1020

cation and reflections. Furthermore, they also analyze obfuscation at byte-
code. Effectiveness of these hardening measures is also available in litera-
ture [94, 9, 52, 13, 20, 126, 12, 185, 11, 10]. Park et al. in [12], empirically
analyzed application similarity between original software and the one trans-
formed by code obfuscation. Furthermore, it tried to detect obfuscation and1025

check its authenticity. Code obfuscation detection methods are available in
[186, 6, 187, 42, 14, 161, 188]. Cho et al. in [42] introduced DexMonitor a

37



Table 6: Survey on the state-of-the-art Android malware hardening approaches.

[R: Repackaging, CDO: Constant Data Obfuscation, VDO: Variable Data Obfuscation, CLO: Control Logic
Obfuscation, AT: Anti Tampering, AH: Anti Hooking, AD: Anti Debugging, RD: Root Detection, AE: Anti

Emulator, DB: Device Binding, AS: Anti Screen reader, AK: Anti Key, NW: Network, A: Assessment, D: Detection
and E: Evasion]

Year Author RP CDO VDO CLO AT AH AD RD AE DB AK AS NW Objective

2017 T. Cho et al. [94] X X A
2017 A. Arora and S. Peddoju [188] X D
2017 M. Li et al. [120] X D
2017 M. Preda and F. Maggi [13] X X X X E
2017 G. Tangil et al. [161] X D
2017 A. Continella et al. [191] X X X D
2017 L. Vu et al. [151] X D,E
2018 S. Dong et al. [31] X X X A
2018 V. Haupert et al. [11] X X X X X X X X X X X D,E
2018 M. Wong and D. Lie [192] X X E
2018 Y. Wang et al. [121] X X D
2018 J. Garcia et al. [187] X X X D
2018 Y. Moses [71] X X D
2018 H. Cho et al. [42] X X X X D
2018 A. Bacci et al. [14] X X X D
2018 N. Totosis et al. [125] X D
2019 O. Mirzaei et al. [104] X X D
2019 Z. Kan et al. [98] X D
2019 M. Ikram et al. [193] X X D
2019 L. Li et al. [40] X D
2019 J. Zhang et al. [194] X D
2019 A. Ali and F. Faghih [195] X X D
2019 M. Park et al. [196] X X D
2019 B. Kim et al. [197] X D
2019 Z. Li et al. [198] X X D
2019 X. Yang et al. [199] X E
2020 S. Aonzo et al. [200] X X X X E
2020 L.Glanz et al. [201] X X A

Dalvik byte code analysis framework. State of art deobfuscation methods is
discussed in [98, 71, 183, 99].

Haupert et al. presented a comprehensive survey of Runtime Application1030

Self-Protection (RASP) methods for application hardening and analysis envi-
ronment detection [11]. They presented an in-depth study of Promon Shield, a
market leader in RASP tool. Bulazel in [17] experimented a fingerprint based
method for multiple platforms for evasion detection and evasion mitigation.
Furthermore, it presents case studies of defensive and offensive evasion ap-1035

proaches. Other anti-debugging, anti-rooting, anti-emulator and anti-tampering
approaches are evaluated in [131, 150, 151, 127, 140, 47].

Different methods on packaging exist in [189, 70] and the approaches tar-
geting packed applications are evaluated in [41, 40, 39]. Techniques on Assets
and resources are presented and evaluated in [21, 190]. Suarez-Tangil in [190]1040

introduced Stegomalware, an approach to hide executable application compo-
nents within its resources such as audio files. Comparative analysis of state of
the art application hardening approaches in recent years is illustrated in table
6

7. Discussion and Directions for future works1045

In summary, we feel Android application hardening methods are effective
against reverse engineering. Malware detection studies have shown that code
obfuscation hinders the analysis process. Multiple studies about the effective-
ness of commercial anti-malware engines have been tested against obfuscation
and evasion based methods. As mentioned in Section 1, our investigation has1050

yielded an enumeration of challenges to address. Below we provide some di-
rection for future work in the field of Android application hardening and their
detection.

1. Trivial APK techniques being non-complex and incurring low overhead
are popular among developers. Machine learning based approaches are1055

38



likeable in future to ensure scalable detection of them. However, feature
extraction and selection for learning must be carefully crafted to be truly
representative.

2. Combination of code obfuscation techniques results in added space and
code complexity. Thus finding the optimal obfuscation level and combina-1060

tions which are efficient against overhead requires further consideration.

3. A challenge for researchers is the lack of benchmark or standard method-
ology for evaluating the effectiveness and efficiency of code obfuscation
transformations. We conceive the existence of publicly available test
datasets for researchers to benchmark their methods. And present datasets1065

should expand to include new samples on regular basis.

4. Third party libraries often used for location, networking, advertising and
other services are pervasively integrated with applications. A scalable
third party library search can be modeled to identify application semantics
in future.1070

5. More recent malware have introduced runtime based obfuscation (using
reflection and native code) to subvert Android Runtime. With the his-
tory of native code obfuscation effectiveness on x86, we foresee runtime
obfuscation to be more relevant for Android code obfuscation.

6. Polymorphic and metamorphic code obfuscations are successful in x861075

architecture but are not explored by researchers for Android. Dynamic
analysis approaches being used against obfuscation methods can be mit-
igated by polymorphic code which differs on each execution. For a self
modifying code, it needs to have a runtime code transformer.

7. Work on formal analysis of Android hardening is rarely available in the1080

literature, which may be exploited for presenting mathematical solutions
in future.

8. Researchers emulating Android environment faces challenges implement-
ing numerous sensors embedded in real devices (such as camera, GPS,
thermometer, WiFi, cellular, bluetooth, accelerometer, proximity sensors1085

are a few). Generating real-like sensor patterns for emulating sensor read-
ings is a challenge due to their complex interactions also.

9. Game theory based formalization of malware and analysis system model
can be helpful in strengthening both detection and evasion aspects. Mal-
ware can be formulated to follow evasion, while the analysis system to1090

detect it.

10. Device binding on a few occasions can be evaded by using a registered
cloned app. Aggressive signature based on multiple host values is an
approach to mitigate evasion. Another approach can be an asymmetric
key based solution generated in a trusted environment for client identity1095

binding.

11. Hardening of network traffic analysis (e.g., encryption) is a common ap-
proach amongst malware. It is imperative to improve encrypted net-
work traffic analysis based malware identification using methods like deep
packet inspection.1100

39



12. Presence and identification of obfuscation or analysis environment are in-
creasingly getting popular amongst researchers. Side-channel based at-
tacks against hardening techniques are still to be explored for Android, as
has been the case with PCs.

8. Conclusion1105

Android being the most popular smartphone OS is available on various smart
devices. Apps installed on these smart terminal are on the rise. Thus, attract-
ing malware authors and researchers alike with increased research in reversing
techniques. Through surveying the collected literature this paper follows a lit-
erature review process, first to conduct a survey of the existing obfuscation and1110

preventive techniques used in the state of the art literature. Second, to illus-
trate current security services and framework in Android OS. Third, to assess
the effectiveness of obfuscation techniques and hardening tools. Fourth, based
on the survey, we highlight the issues of existing approaches related to them.
Finally, we summarize the trends in application hardening and provide research1115

gap for future works to present a complete picture. We conceive this work
as a complement to existing works by filling research gaps and presenting fu-
ture directions. We trust this survey will cater researchers to identify desirable
hardening techniques and their respective analysis approaches.

References1120

[1] Mobile operating systems’ market share worldwide from january 2012 to
december 2019, [Accessed: 09-Apr-2020].
URL https://www.statista.com/statistics/272698/

global-market-share-held-by-mobile-operating-systems-since-2009/

[2] Number of apps available in leading app stores as of 4th quarter 2019,1125

[Accessed: 09-Apr-2020].
URL https://www.statista.com/statistics/276623/

number-of-apps-available-in-leading-app-stores/

[3] N. Grover, J. Saxena, V. Sihag, Security analysis of onlinecabbooking
android application, in: Proceedings of the International Conference on1130

Data Engineering and Communication Technology, Springer, 2017, pp.
603–611.

[4] K. Team, Malicious android app had more than 100 million downloads in
google play, [Accessed: 09-Apr-2020].
URL https://www.kaspersky.com/blog/1135

camscanner-malicious-android-app/28156

[5] V. Rastogi, Y. Chen, X. Jiang, Catch me if you can: Evaluating android
anti-malware against transformation attacks, IEEE Transactions on In-
formation Forensics and Security 9 (1) (2013) 99–108.

40

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.kaspersky.com/blog/camscanner-malicious-android-app/28156
https://www.kaspersky.com/blog/camscanner-malicious-android-app/28156
https://www.kaspersky.com/blog/camscanner-malicious-android-app/28156
https://www.kaspersky.com/blog/camscanner-malicious-android-app/28156
https://www.kaspersky.com/blog/camscanner-malicious-android-app/28156
https://www.kaspersky.com/blog/camscanner-malicious-android-app/28156


[6] A. Kovacheva, Efficient code obfuscation for android, in: International1140

Conference on Advances in Information Technology, Springer, 2013, pp.
104–119.

[7] P. Faruki, H. Fereidooni, V. Laxmi, M. Conti, M. Gaur, Android code
protection via obfuscation techniques: past, present and future directions,
CoRR abs/1611.10231.1145

[8] S. Banescu, A. Pretschner, A tutorial on software obfuscation, in: Ad-
vances in Computers, Vol. 108, Elsevier, 2018, pp. 283–353.

[9] J. Hoffmann, T. Rytilahti, D. Maiorca, M. Winandy, G. Giacinto, T. Holz,
Evaluating analysis tools for android apps: Status quo and robustness
against obfuscation, in: Proceedings of the Sixth ACM Conference on1150

Data and Application Security and Privacy, 2016, pp. 139–141.

[10] P. Faruki, A. Bharmal, V. Laxmi, M. S. Gaur, M. Conti, M. Rajarajan,
Evaluation of android anti-malware techniques against dalvik bytecode
obfuscation, in: 2014 IEEE 13th International Conference on Trust, Se-
curity and Privacy in Computing and Communications, IEEE, 2014, pp.1155

414–421.

[11] V. Haupert, D. Maier, N. Schneider, J. Kirsch, T. Müller, Honey, i shrunk
your app security: The state of android app hardening, in: International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, Springer, 2018, pp. 69–91.1160

[12] J. Park, H. Kim, Y. Jeong, S.-j. Cho, S. Han, M. Park, Effects of code
obfuscation on android app similarity analysis., JoWUA 6 (4) (2015) 86–
98.

[13] M. Dalla Preda, F. Maggi, Testing android malware detectors against code
obfuscation: a systematization of knowledge and unified methodology,1165

Journal of Computer Virology and Hacking Techniques 13 (3) (2017) 209–
232.

[14] A. Bacci, A. Bartoli, F. Martinelli, E. Medvet, F. Mercaldo, Detection
of obfuscation techniques in android applications, in: Proceedings of the
13th International Conference on Availability, Reliability and Security,1170

2018, pp. 1–9.

[15] F. Wei, Y. Li, S. Roy, X. Ou, W. Zhou, Deep ground truth analysis of
current android malware, in: International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, Springer, 2017,
pp. 252–276.1175

[16] A. Afianian, S. Niksefat, B. Sadeghiyan, D. Baptiste, Malware dynamic
analysis evasion techniques: A survey, ACM Comput. Surv. 52 (6). doi:

10.1145/3365001.

41

http://dx.doi.org/10.1145/3365001
http://dx.doi.org/10.1145/3365001
http://dx.doi.org/10.1145/3365001


[17] A. Bulazel, B. Yener, A survey on automated dynamic malware analysis
evasion and counter-evasion: Pc, mobile, and web, in: Proceedings of the1180

1st Reversing and Offensive-oriented Trends Symposium, 2017, pp. 1–21.

[18] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, L. Cavallaro, The evolution
of android malware and android analysis techniques, ACM Computing
Surveys (CSUR) 49 (4) (2017) 1–41.

[19] M. Xu, C. Song, Y. Ji, M.-W. Shih, K. Lu, C. Zheng, R. Duan, Y. Jang,1185

B. Lee, C. Qian, et al., Toward engineering a secure android ecosystem:
A survey of existing techniques, ACM Computing Surveys (CSUR) 49 (2)
(2016) 1–47.

[20] D. Maiorca, D. Ariu, I. Corona, M. Aresu, G. Giacinto, Stealth attacks:
An extended insight into the obfuscation effects on android malware, Com-1190

puters & Security 51 (2015) 16–31.

[21] A. Apvrille, R. Nigam, Obfuscation in android malware, and how to fight
back, Virus Bulletin (2014) 1–10.

[22] F. C. Freiling, M. Protsenko, Y. Zhuang, An empirical evaluation of
software obfuscation techniques applied to android apks, in: Interna-1195

tional Conference on Security and Privacy in Communication Networks,
Springer, 2014, pp. 315–328.

[23] Android, Selinux concepts, [Accessed: 09-Apr-2020] (2018).
URL https://source.android.com/security/selinux/concepts

[24] Android security features, [Accessed: 09-Apr-2020].1200

URL https://source.android.com/security/features

[25] S. Feldman, D. Stadther, B. Wang, Manilyzer: automated android mal-
ware detection through manifest analysis, in: 2014 IEEE 11th Interna-
tional Conference on Mobile Ad Hoc and Sensor Systems, IEEE, 2014,
pp. 767–772.1205

[26] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, K.-P. Wu, Droidmat: Android
malware detection through manifest and api calls tracing, in: 2012 Seventh
Asia Joint Conference on Information Security, IEEE, 2012, pp. 62–69.

[27] Android, Android developer, [Accessed: 09-Apr-2020].
URL https://developer.android.com1210

[28] J. Song, C. Han, K. Wang, J. Zhao, R. Ranjan, L. Wang, An integrated
static detection and analysis framework for android, Pervasive and Mobile
Computing 32 (2016) 15–25.

[29] K. Xu, Y. Li, R. H. Deng, Iccdetector: Icc-based malware detection on
android, IEEE Transactions on Information Forensics and Security 11 (6)1215

(2016) 1252–1264.

42

https://source.android.com/security/selinux/concepts
https://source.android.com/security/selinux/concepts
https://source.android.com/security/features
https://source.android.com/security/features
https://developer.android.com
https://developer.android.com


[30] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, S. Furnell, An-
drodialysis: Analysis of android intent effectiveness in malware detection,
computers & security 65 (2017) 121–134.

[31] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang,1220

K. Zhang, Understanding android obfuscation techniques: A large-scale
investigation in the wild, in: International Conference on Security and
Privacy in Communication Systems, Springer, 2018, pp. 172–192.

[32] J. Crussell, C. Gibler, H. Chen, Attack of the clones: Detecting cloned
applications on android markets, in: European Symposium on Research1225

in Computer Security, Springer, 2012, pp. 37–54.

[33] H. Huang, S. Zhu, P. Liu, D. Wu, A framework for evaluating mobile app
repackaging detection algorithms, in: International Conference on Trust
and Trustworthy Computing, Springer, 2013, pp. 169–186.

[34] H. Chang, M. J. Atallah, Protecting software code by guards, in: ACM1230

Workshop on Digital Rights Management, Springer, 2001, pp. 160–175.

[35] J. Crussell, C. Gibler, H. Chen, Scalable semantics-based detection of
similar android applications, in: Proc. of ESORICS, Vol. 13, Citeseer,
2013.

[36] Y. Zhou, X. Jiang, Dissecting android malware: Characterization and1235

evolution, in: 2012 IEEE symposium on security and privacy, IEEE, 2012,
pp. 95–109.

[37] R. Xu, H. Säıdi, R. Anderson, Aurasium: Practical policy enforcement for
android applications, in: Presented as part of the 21st {USENIX} Security
Symposium ({USENIX} Security 12), 2012, pp. 539–552.1240

[38] B. Gruver, An assembler(smali) and disassembler(baksmali) for androids
dex format, [Accessed: 09-Apr-2020].
URL https://github.com/JesusFreke/smali

[39] J.-H. Jung, J. Y. Kim, H.-C. Lee, J. H. Yi, Repackaging attack on android
banking applications and its countermeasures, Wireless Personal Commu-1245

nications 73 (4) (2013) 1421–1437.

[40] L. Li, T. F. Bissyandé, J. Klein, Rebooting research on detecting repack-
aged android apps: Literature review and benchmark, IEEE Transactions
on Software Engineering.

[41] L. Luo, Y. Fu, D. Wu, S. Zhu, P. Liu, Repackage-proofing android apps,1250

in: 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), IEEE, 2016, pp. 550–561.

[42] H. Cho, J. H. Yi, G.-J. Ahn, Dexmonitor: Dynamically analyzing and
monitoring obfuscated android applications, IEEE Access 6 (2018) 71229–
71240.1255

43

https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali


[43] P. Schulz, F. Matenaar, Android reverse engineering and defenses, Blue-
box Labs.

[44] C. Collberg, C. Thomborson, D. Low, Manufacturing cheap, resilient, and
stealthy opaque constructs, in: Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 1998, pp.1260

184–196.

[45] M. Musale, T. H. Austin, M. Stamp, Hunting for metamorphic javascript
malware, Journal of Computer Virology and Hacking Techniques 11 (2)
(2015) 89–102.

[46] S. M. Sridhara, M. Stamp, Metamorphic worm that carries its own mor-1265

phing engine, Journal of Computer Virology and Hacking Techniques 9 (2)
(2013) 49–58.

[47] Y. Piao, J.-H. Jung, J. H. Yi, Server-based code obfuscation scheme for
apk tamper detection, Security and Communication Networks 9 (6) (2016)
457–467.1270

[48] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
K. Yang, On the (im) possibility of obfuscating programs, in: Annual
International Cryptology Conference, Springer, 2001, pp. 1–18.

[49] M. Dalla Preda, R. Giacobazzi, Semantics-based code obfuscation by ab-
stract interpretation, Journal of Computer Security 17 (6) (2009) 855–908.1275

[50] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, B. Waters, Candidate
indistinguishability obfuscation and functional encryption for all circuits,
SIAM Journal on Computing 45 (3) (2016) 882–929.

[51] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, A. Pretschner, Code
obfuscation against symbolic execution attacks, in: Proceedings of the1280

32nd Annual Conference on Computer Security Applications, 2016, pp.
189–200.

[52] C. Collberg, C. Thomborson, D. Low, A taxonomy of obfuscating trans-
formations (1997).

[53] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, E. Weippl,1285

Protecting software through obfuscation: Can it keep pace with progress
in code analysis?, ACM Computing Surveys (CSUR) 49 (1) (2016) 1–37.

[54] Y. Zhou, A. Main, Y. X. Gu, H. Johnson, Information hiding in software
with mixed boolean-arithmetic transforms, in: International Workshop on
Information Security Applications, Springer, 2007, pp. 61–75.1290

[55] S. Chow, P. Eisen, H. Johnson, P. C. Van Oorschot, White-box cryptogra-
phy and an aes implementation, in: International Workshop on Selected
Areas in Cryptography, Springer, 2002, pp. 250–270.

44



[56] A. Anand, Securing android code using white box cryptography and ob-
fuscation technique, International journal of computer science and mobile1295

computing 4 (4) (2015) 347–352.

[57] V. Sánchez Ballabriga, Automation of white-box cryptography attacks in
android applications.

[58] B. Wyseur, W. Michiels, P. Gorissen, B. Preneel, Cryptanalysis of white-
box des implementations with arbitrary external encodings, in: Interna-1300

tional Workshop on Selected Areas in Cryptography, Springer, 2007, pp.
264–277.

[59] S. Chow, P. Eisen, H. Johnson, P. C. Van Oorschot, A white-box des im-
plementation for drm applications, in: ACM Workshop on Digital Rights
Management, Springer, 2002, pp. 1–15.1305

[60] H. E. Link, W. D. Neumann, Clarifying obfuscation: improving the secu-
rity of white-box des, in: International Conference on Information Tech-
nology: Coding and Computing (ITCC’05)-Volume II, Vol. 1, IEEE, 2005,
pp. 679–684.

[61] J. Bringer, H. Chabanne, E. Dottax, White box cryptography: Another1310

attempt., IACR Cryptology ePrint Archive 2006 (2006) (2006) 468.

[62] Y. Xiao, X. Lai, A secure implementation of white-box aes, in: 2009
2nd International Conference on Computer Science and its Applications,
IEEE, 2009, pp. 1–6.

[63] M. Karroumi, Protecting white-box aes with dual ciphers, in: Interna-1315

tional Conference on Information Security and Cryptology, Springer, 2010,
pp. 278–291.

[64] Paladion, Code obfuscation - part 2: Obfuscating data structures,
[Accessed: 09-Apr-2020] (2015).
URL https://www.paladion.net/blogs/1320

code-obfuscation-part-2-obfuscating-data-structures

[65] B. Saikoa, Allatori java obfuscator, [Accessed: 09-Apr-2020].
URL http://www.allatori.com/

[66] B. Saikoa, Dexguard.

[67] L. Licel, Dexprotector–cutting edge obfuscator for android apps, [Ac-1325

cessed: 09-Apr-2020].
URL https://dexprotector.com/

[68] L. Licel, Stringer java obfuscator, [Accessed: 09-Apr-2020].
URL https://jfxstore.com/stringer/

45

https://www.paladion.net/blogs/code-obfuscation-part-2-obfuscating-data-structures
https://www.paladion.net/blogs/code-obfuscation-part-2-obfuscating-data-structures
https://www.paladion.net/blogs/code-obfuscation-part-2-obfuscating-data-structures
https://www.paladion.net/blogs/code-obfuscation-part-2-obfuscating-data-structures
http://www.allatori.com/
http://www.allatori.com/
https://dexprotector.com/
https://dexprotector.com/
https://jfxstore.com/stringer/
https://jfxstore.com/stringer/


[69] Z. Tang, X. Chen, D. Fang, F. Chen, Research on java software protection1330

with the obfuscation in identifier renaming, in: 2009 Fourth International
Conference on Innovative Computing, Information and Control (ICICIC),
IEEE, 2009, pp. 1067–1071.

[70] M. Kühnel, M. Smieschek, U. Meyer, Fast identification of obfuscation
and mobile advertising in mobile malware, in: 2015 IEEE Trustcom/Big-1335

DataSE/ISPA, Vol. 1, IEEE, 2015, pp. 214–221.

[71] Y. Moses, Y. Mordekhay, Android app deobfuscation using static-dynamic
cooperation, VB2018.

[72] G. Square, Proguard, [Accessed: 09-Apr-2020].
URL https://www.guardsquare.com/en/products/proguard1340

[73] M. Dalla Preda, Code obfuscation and malware detection by abstract
interpretation, PhD diss.), http://profs. sci. univr. it/dallapre/MilaDal-
laPreda PhD. pdf.

[74] D. Low, Java control flow obfuscation, Ph.D. thesis, Citeseer (1998).

[75] V. Sihag, A. Mitharwal, M. Vardhan, P. Singh, Opcode n-gram based1345

malware classification in android, in: 2020 Fourth World Conference on
Smart Trends in Systems, Security and Sustainability (WorldS4), IEEE,
2020, pp. 645–650.

[76] C. Collberg, C. Thomborson, D. Low, Breaking abstractions and unstruc-
turing data structures, in: Proceedings of the 1998 International Con-1350

ference on Computer Languages (Cat. No. 98CB36225), IEEE, 1998, pp.
28–38.

[77] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, B. Waters, Candidate
indistinguishability obfuscation and functional encryption for all circuits,
SIAM Journal on Computing 45 (3) (2016) 882–929.1355

[78] T.-W. Hou, H.-Y. Chen, M.-H. Tsai, Three control flow obfuscation meth-
ods for java software, IEE Proceedings-Software 153 (2) (2006) 80–86.

[79] M. Dalla Preda, R. Giacobazzi, Control code obfuscation by abstract in-
terpretation, in: Third IEEE International Conference on Software Engi-
neering and Formal Methods (SEFM’05), IEEE, 2005, pp. 301–310.1360

[80] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, Y. Zhang,
Experience with software watermarking, in: Proceedings 16th Annual
Computer Security Applications Conference (ACSAC’00), IEEE, 2000,
pp. 308–316.

[81] A. Majumdar, C. Thomborson, Manufacturing opaque predicates in dis-1365

tributed systems for code obfuscation, in: Proceedings of the 29th Aus-
tralasian Computer Science Conference-Volume 48, Australian Computer
Society, Inc., 2006, pp. 187–196.

46

https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/proguard


[82] F. B. Cohen, Operating system protection through program evolution.,
Computers & Security 12 (6) (1993) 565–584.1370

[83] I. You, K. Yim, Malware obfuscation techniques: A brief survey, in: 2010
International conference on broadband, wireless computing, communica-
tion and applications, IEEE, 2010, pp. 297–300.

[84] C. S. Collberg, C. D. Thomborson, D. W. K. Low, Obfuscation techniques
for enhancing software security, uS Patent 6,668,325 (2003).1375

[85] A. Studio, Shrink, obfuscate, and optimize your app, [Accessed: 09-Apr-
2020].
URL https://developer.android.com/studio/build/shrink-code

[86] D. F. Bacon, S. L. Graham, O. J. Sharp, Compiler transformations for
high-performance computing, ACM Computing Surveys (CSUR) 26 (4)1380

(1994) 345–420.

[87] Z. Vrba, cryptexec: Next-generation runtime binary encryp-
tion using on-demand function extraction, Phrak 0x0b (0x3f).#
0x0d of 0x14.[online] http://www. phrack. org/archives/63/p63-
0x0d Next Generation Runtime Binary Encryption. txt.1385

[88] J. Cappaert, B. Preneel, B. Anckaert, M. Madou, K. De Bosschere, To-
wards tamper resistant code encryption: Practice and experience, in: In-
ternational Conference on Information Security Practice and Experience,
Springer, 2008, pp. 86–100.

[89] M. F. Oberhumer, Upx the ultimate packer for executables, http://upx.1390

sourceforge. net/.

[90] Y. Aafer, W. Du, H. Yin, Droidapiminer: Mining api-level features for
robust malware detection in android, in: International conference on se-
curity and privacy in communication systems, Springer, 2013, pp. 86–103.

[91] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, C. Siemens,1395

Drebin: Effective and explainable detection of android malware in your
pocket., in: Ndss, Vol. 14, 2014, pp. 23–26.

[92] M. Lindorfer, M. Neugschwandtner, C. Platzer, Marvin: Efficient and
comprehensive mobile app classification through static and dynamic anal-
ysis, in: 2015 IEEE 39th annual computer software and applications con-1400

ference, Vol. 2, IEEE, 2015, pp. 422–433.

[93] Z. Cai, R. H. Yap, Inferring the detection logic and evaluating the effec-
tiveness of android anti-virus apps, in: Proceedings of the Sixth ACM
Conference on Data and Application Security and Privacy, 2016, pp. 172–
182.1405

47

https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code


[94] T. Cho, H. Kim, J. H. Yi, Security assessment of code obfuscation based
on dynamic monitoring in android things, Ieee Access 5 (2017) 6361–6371.

[95] S. S. Response, Server-side polymorphic android applications, [Accessed:
09-Apr-2020] (2012).
URL https://www.symantec.com/connect/blogs/1410

server-side-polymorphic-android-applications

[96] C. Wang, J. Davidson, J. Hill, J. Knight, Protection of software-based sur-
vivability mechanisms, in: 2001 International Conference on Dependable
Systems and Networks, IEEE, 2001, pp. 193–202.

[97] S. Chow, Y. Gu, H. Johnson, V. A. Zakharov, An approach to the obfus-1415

cation of control-flow of sequential computer programs, in: International
Conference on Information Security, Springer, 2001, pp. 144–155.

[98] Z. Kan, H. Wang, L. Wu, Y. Guo, G. Xu, Deobfuscating android native
binary code, in: Proceedings of the 41st International Conference on Soft-
ware Engineering: Companion Proceedings, ICSE 19, IEEE Press, 2019,1420

pp. 322–323. doi:10.1109/ICSE-Companion.2019.00135.
URL https://doi.org/10.1109/ICSE-Companion.2019.00135

[99] S. K. Udupa, S. K. Debray, M. Madou, Deobfuscation: Reverse engineer-
ing obfuscated code, in: 12th Working Conference on Reverse Engineering
(WCRE’05), IEEE, 2005, pp. 10–pp.1425

[100] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai, K. MacNamara, T. R.
Magrino, E. X. Wu, M. Rinard, D. X. Song, Contextual policy enforcement
in android applications with permission event graphs., in: NDSS, 2013, p.
234.

[101] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, W. Zou, Smartdroid:1430

an automatic system for revealing ui-based trigger conditions in android
applications, in: Proceedings of the second ACM workshop on Security
and privacy in smartphones and mobile devices, 2012, pp. 93–104.

[102] L. K. Yan, H. Yin, Droidscope: Seamlessly reconstructing the {OS} and
dalvik semantic views for dynamic android malware analysis, in: Pre-1435

sented as part of the 21st {USENIX} Security Symposium ({USENIX}
Security 12), 2012, pp. 569–584.

[103] A. Amamra, C. Talhi, J.-M. Robert, Smartphone malware detection:
From a survey towards taxonomy, in: 2012 7th International Conference
on Malicious and Unwanted Software, IEEE, 2012, pp. 79–86.1440

[104] O. Mirzaei, J. M. de Fuentes, J. Tapiador, L. Gonzalez-Manzano, An-
drodet: An adaptive android obfuscation detector, Future Generation
Computer Systems 90 (2019) 240–261.

48

https://www.symantec.com/connect/blogs/server-side-polymorphic-android-applications
https://www.symantec.com/connect/blogs/server-side-polymorphic-android-applications
https://www.symantec.com/connect/blogs/server-side-polymorphic-android-applications
https://www.symantec.com/connect/blogs/server-side-polymorphic-android-applications
https://doi.org/10.1109/ICSE-Companion.2019.00135
https://doi.org/10.1109/ICSE-Companion.2019.00135
https://doi.org/10.1109/ICSE-Companion.2019.00135
http://dx.doi.org/10.1109/ICSE-Companion.2019.00135
https://doi.org/10.1109/ICSE-Companion.2019.00135


[105] V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupé, M. Polino, P. de Geus,
C. Kruegel, G. Vigna, Going native: Using a large-scale analysis of android1445

apps to create a practical native-code sandboxing policy, in: The Network
and Distributed System Security Symposium, 2016, pp. 1–15.

[106] S. Alam, Z. Qu, R. Riley, Y. Chen, V. Rastogi, Droidnative, Comput.
Secur. 65 (C) (2017) 230–246. doi:10.1016/j.cose.2016.11.011.
URL https://doi.org/10.1016/j.cose.2016.11.0111450

[107] M. Sun, G. Tan, Nativeguard: Protecting android applications from third-
party native libraries, in: Proceedings of the 2014 ACM conference on
Security and privacy in wireless & mobile networks, 2014, pp. 165–176.

[108] K. Lu, Deep analysis of android rootnik malware using advanced anti-
debug and anti-hook, [Accessed: 09-Apr-2020] (2017).1455

URL https://www.fortinet.com/blog/threat-research/

deep-analysis-of-android-rootnik-malware-using-advanced-anti-debug-and-anti-hook-part-i-debugging-in-the-scope-of-native-layer.

html

[109] M. T. R. Team, Zniu: First android malware to exploit dirty cow
vulnerability, [Accessed: 09-Apr-2020] (2017).1460

URL https://blog.trendmicro.com/trendlabs-security-intelligence/

zniu-first-android-malware-exploit-dirty-cow-vulnerability/

[110] M. Stone, Unpacking the packed unpacker: Reversing an android anti-
analysis native library.

[111] P. Junod, J. Rinaldini, J. Wehrli, J. Michielin, Obfuscator-llvm–software1465

protection for the masses, in: 2015 IEEE/ACM 1st International Work-
shop on Software Protection, IEEE, 2015, pp. 3–9.

[112] M. Backes, S. Bugiel, E. Derr, Reliable third-party library detection in
android and its security applications, in: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,1470

pp. 356–367.

[113] K. Chen, P. Liu, Y. Zhang, Achieving accuracy and scalability simultane-
ously in detecting application clones on android markets, in: Proceedings
of the 36th International Conference on Software Engineering, 2014, pp.
175–186.1475

[114] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma, A. Wang,
Y. Zhang, W. Zou, Following devil’s footprints: Cross-platform analysis
of potentially harmful libraries on android and ios, in: 2016 IEEE Sym-
posium on Security and Privacy (SP), IEEE, 2016, pp. 357–376.

[115] J. Crussell, C. Gibler, H. Chen, Andarwin: Scalable detection of android1480

application clones based on semantics, IEEE Transactions on Mobile Com-
puting 14 (10) (2014) 2007–2019.

49

https://doi.org/10.1016/j.cose.2016.11.011
http://dx.doi.org/10.1016/j.cose.2016.11.011
https://doi.org/10.1016/j.cose.2016.11.011
https://www.fortinet.com/blog/threat-research/deep-analysis-of-android-rootnik-malware-using-advanced-anti-debug-and-anti-hook-part-i-debugging-in-the-scope-of-native-layer.html
https://www.fortinet.com/blog/threat-research/deep-analysis-of-android-rootnik-malware-using-advanced-anti-debug-and-anti-hook-part-i-debugging-in-the-scope-of-native-layer.html
https://www.fortinet.com/blog/threat-research/deep-analysis-of-android-rootnik-malware-using-advanced-anti-debug-and-anti-hook-part-i-debugging-in-the-scope-of-native-layer.html
https://www.fortinet.com/blog/threat-research/deep-analysis-of-android-rootnik-malware-using-advanced-anti-debug-and-anti-hook-part-i-debugging-in-the-scope-of-native-layer.html
https://www.fortinet.com/blog/threat-research/deep-analysis-of-android-rootnik-malware-using-advanced-anti-debug-and-anti-hook-part-i-debugging-in-the-scope-of-native-layer.html
https://www.fortinet.com/blog/threat-research/deep-analysis-of-android-rootnik-malware-using-advanced-anti-debug-and-anti-hook-part-i-debugging-in-the-scope-of-native-layer.html
https://www.fortinet.com/blog/threat-research/deep-analysis-of-android-rootnik-malware-using-advanced-anti-debug-and-anti-hook-part-i-debugging-in-the-scope-of-native-layer.html
https://www.fortinet.com/blog/threat-research/deep-analysis-of-android-rootnik-malware-using-advanced-anti-debug-and-anti-hook-part-i-debugging-in-the-scope-of-native-layer.html
https://blog.trendmicro.com/trendlabs-security-intelligence/zniu-first-android-malware-exploit-dirty-cow-vulnerability/
https://blog.trendmicro.com/trendlabs-security-intelligence/zniu-first-android-malware-exploit-dirty-cow-vulnerability/
https://blog.trendmicro.com/trendlabs-security-intelligence/zniu-first-android-malware-exploit-dirty-cow-vulnerability/
https://blog.trendmicro.com/trendlabs-security-intelligence/zniu-first-android-malware-exploit-dirty-cow-vulnerability/
https://blog.trendmicro.com/trendlabs-security-intelligence/zniu-first-android-malware-exploit-dirty-cow-vulnerability/
https://blog.trendmicro.com/trendlabs-security-intelligence/zniu-first-android-malware-exploit-dirty-cow-vulnerability/


[116] L. Glanz, S. Amann, M. Eichberg, M. Reif, B. Hermann, J. Lerch,
M. Mezini, Codematch: obfuscation won’t conceal your repackaged app,
in: Proceedings of the 2017 11th Joint Meeting on Foundations of Software1485

Engineering, 2017, pp. 638–648.

[117] M. C. Grace, W. Zhou, X. Jiang, A.-R. Sadeghi, Unsafe exposure analysis
of mobile in-app advertisements, in: Proceedings of the fifth ACM confer-
ence on Security and Privacy in Wireless and Mobile Networks, 2012, pp.
101–112.1490

[118] Z. Ma, H. Wang, Y. Guo, X. Chen, Libradar: fast and accurate detec-
tion of third-party libraries in android apps, in: Proceedings of the 38th
international conference on software engineering companion, 2016, pp.
653–656.

[119] H. Wang, Y. Guo, Z. Ma, X. Chen, Wukong: A scalable and accurate two-1495

phase approach to android app clone detection, in: Proceedings of the
2015 International Symposium on Software Testing and Analysis, 2015,
pp. 71–82.

[120] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, W. Huo, Libd:
scalable and precise third-party library detection in android markets, in:1500

2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE), IEEE, 2017, pp. 335–346.

[121] Y. Wang, H. Wu, H. Zhang, A. Rountev, Orlis: Obfuscation-resilient
library detection for android, in: 2018 IEEE/ACM 5th International
Conference on Mobile Software Engineering and Systems (MOBILESoft),1505

IEEE, 2018, pp. 13–23.

[122] C. Ren, K. Chen, P. Liu, Droidmarking: resilient software watermarking
for impeding android application repackaging, in: Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering,
2014, pp. 635–646.1510

[123] J. Qiu, B. Yadegari, B. Johannesmeyer, S. Debray, X. Su, Identifying and
understanding self-checksumming defenses in software, in: Proceedings of
the 5th ACM Conference on Data and Application Security and Privacy,
2015, pp. 207–218.

[124] I. S. Systems, Application shielding with intertrust’s whitecryption code1515

protection, [Accessed: 09-Apr-2020] (2018).
URL https://www.infosecurityeurope.com/__novadocuments/

594809

[125] N. Totosis, C. Patsakis, Android hooking revisited, in: 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl1520

Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), IEEE, 2018, pp. 552–559.

50

https://www.infosecurityeurope.com/__novadocuments/594809
https://www.infosecurityeurope.com/__novadocuments/594809
https://www.infosecurityeurope.com/__novadocuments/594809
https://www.infosecurityeurope.com/__novadocuments/594809
https://www.infosecurityeurope.com/__novadocuments/594809
https://www.infosecurityeurope.com/__novadocuments/594809


[126] D. Maier, T. Müller, M. Protsenko, Divide-and-conquer: Why android
malware cannot be stopped, in: 2014 Ninth International Conference on1525

Availability, Reliability and Security, IEEE, 2014, pp. 30–39.

[127] T. Vidas, N. Christin, Evading android runtime analysis via sandbox de-
tection, in: Proceedings of the 9th ACM symposium on Information, com-
puter and communications security, 2014, pp. 447–458.

[128] L. SaurikIT, Cydia substrate, the powerful code modification platform1530

behind cydia (2016).

[129] X. Framework, The xposed framework source code (2017).

[130] J. Lopes, Who owns your runtime? (01 2017).
URL https://labs.nettitude.com/blog/

ios-and-android-runtime-and-anti-debugging-protections/1535

[131] H. Cho, J. Lim, H. Kim, J. H. Yi, Anti-debugging scheme for protecting
mobile apps on android platform, the Journal of Supercomputing 72 (1)
(2016) 232–246.

[132] S. Cesare, Linux anti-debugging techniques, Security Focus, Jan, 1999.

[133] M. N. Gagnon, S. Taylor, A. K. Ghosh, Software protection through anti-1540

debugging, IEEE Security & Privacy 5 (3) (2007) 82–84.

[134] Amat: Android malware analysis toolkit, [Accessed: 09-Apr-2020].
URL http://sourceforge.net/projects/amatlinux/

[135] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio,
V. van der Veen, C. Platzer, Andrubis: Android malware under the mag-1545

nifying glass, Vienna University of Technology, Tech. Rep. TR-ISECLAB-
0414-001 (2014) 1–10.

[136] K. Tam, S. J. Khan, A. Fattori, L. Cavallaro, Copperdroid: Automatic
reconstruction of android malware behaviors., in: Ndss, 2015.

[137] A. Desnos, P. Lantz, Droidbox: An android application sandbox for dy-1550

namic analysis, Tech. Rep.

[138] B. R. Team, et al., Sanddroid: An apk analysis sandbox, Xi’an jiaotong
university.

[139] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, S. Albayrak, An
android application sandbox system for suspicious software detection, in:1555

2010 5th International Conference on Malicious and Unwanted Software,
IEEE, 2010, pp. 55–62.

[140] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, S. Ioannidis,
Rage against the virtual machine: hindering dynamic analysis of android
malware, in: Proceedings of the Seventh European Workshop on System1560

Security, 2014, pp. 1–6.

51

https://labs.nettitude.com/blog/ios-and-android-runtime-and-anti-debugging-protections/
https://labs.nettitude.com/blog/ios-and-android-runtime-and-anti-debugging-protections/
https://labs.nettitude.com/blog/ios-and-android-runtime-and-anti-debugging-protections/
https://labs.nettitude.com/blog/ios-and-android-runtime-and-anti-debugging-protections/
http: //sourceforge.net/projects/amatlinux/
http: //sourceforge.net/projects/amatlinux/


[141] P. Ferrie, Attacks on more virtual machine emulators. symantec technol-
ogy exchange 2007 (2017).

[142] R. Paleari, L. Martignoni, G. F. Roglia, D. Bruschi, A fistful of red-
pills: How to automatically generate procedures to detect cpu emula-1565

tors, in: Proceedings of the USENIX Workshop on Offensive Technologies
(WOOT), Vol. 41, 2009, p. 86.

[143] J. Rutkowska, Redpill: Detect vmm using (almost) one cpu instruction,
http://invisiblethings. org/papers/redpill. html.

[144] Y. Jing, Z. Zhao, G.-J. Ahn, H. Hu, Morpheus: automatically generating1570

heuristics to detect android emulators, in: Proceedings of the 30th Annual
Computer Security Applications Conference, 2014, pp. 216–225.

[145] A. Bianchi, E. Gustafson, Y. Fratantonio, C. Kruegel, G. Vigna, Exploita-
tion and mitigation of authentication schemes based on device-public in-
formation, in: Proceedings of the 33rd Annual Computer Security Appli-1575

cations Conference, 2017, pp. 16–27.

[146] V. Haupert, T. Müller, On app-based matrix code authentication in online
banking., in: ICISSP, 2018, pp. 149–160.

[147] Cecilia, 80% china’s mobile users rooted smartphones in 2014, [Accessed:
09-Apr-2020] (2015).1580

URL https://www.chinainternetwatch.com/12926/

80-china-smartphone-users-rooted/

[148] A. P. Felt, M. Finifter, E. Chin, S. Hanna, D. Wagner, A survey of mobile
malware in the wild, in: Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices, 2011, pp. 3–14.1585

[149] D. R. Thomas, A. R. Beresford, A. Rice, Security metrics for the android
ecosystem, in: Proceedings of the 5th Annual ACM CCS Workshop on
Security and Privacy in Smartphones and Mobile Devices, 2015, pp. 87–98.

[150] S.-T. Sun, A. Cuadros, K. Beznosov, Android rooting: Methods, detec-
tion, and evasion, in: Proceedings of the 5th Annual ACM CCS Workshop1590

on Security and Privacy in Smartphones and Mobile Devices, 2015, pp.
3–14.

[151] L. Nguyen-Vu, N.-T. Chau, S. Kang, S. Jung, Android rooting: An arms
race between evasion and detection, Security and Communication Net-
works 2017.1595

[152] V. Sihag, A. Swami, M. Vardhan, P. Singh, Signature based malicious
behavior detection in android, in: International Conference on Computing
Science, Communication and Security, Springer, 2020, pp. 251–262.

52

https://www.chinainternetwatch.com/12926/80-china-smartphone-users-rooted/
https://www.chinainternetwatch.com/12926/80-china-smartphone-users-rooted/
https://www.chinainternetwatch.com/12926/80-china-smartphone-users-rooted/
https://www.chinainternetwatch.com/12926/80-china-smartphone-users-rooted/


[153] E. J. Schwartz, T. Avgerinos, D. Brumley, All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might1600

have been afraid to ask), in: 2010 IEEE symposium on Security and
privacy, IEEE, 2010, pp. 317–331.

[154] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, A. N. Sheth, Taintdroid: an information-flow tracking sys-
tem for realtime privacy monitoring on smartphones, ACM Transactions1605

on Computer Systems (TOCS) 32 (2) (2014) 1–29.

[155] G. Sarwar, O. Mehani, R. Boreli, M. A. Kaafar, On the effectiveness of
dynamic taint analysis for protecting against private information leaks on
android-based devices., in: SECRYPT, Vol. 96435, 2013.

[156] Y. Fratantonio, C. Qian, S. P. Chung, W. Lee, Cloak and dagger: from1610

two permissions to complete control of the ui feedback loop, in: 2017 IEEE
Symposium on Security and Privacy (SP), IEEE, 2017, pp. 1041–1057.

[157] A. Developer, Display, [Accessed: 09-Apr-2020].
URL https://developer.android.com/reference/android/view/

Display.html1615

[158] K. Sturt, Securing communications on android, [Accessed: 09-Apr-2020]
(2018).
URL https://code.tutsplus.com/tutorials/

securing-communications-on-android--cms-31596

[159] P. Sharma, V. K. Sihag, Hybrid single sign-on protocol for lightweight1620

devices, in: 2016 IEEE 6th International Conference on Advanced Com-
puting (IACC), IEEE, 2016, pp. 679–684.

[160] G. Suarez-Tangil, J. E. Tapiador, F. Lombardi, R. Di Pietro, Alterdroid:
differential fault analysis of obfuscated smartphone malware, IEEE Trans-
actions on Mobile Computing 15 (4) (2015) 789–802.1625

[161] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, L. Cav-
allaro, Droidsieve: Fast and accurate classification of obfuscated android
malware, in: Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, 2017, pp. 309–320.

[162] R. Nigam, A timeline of mobile botnets, Virus Bulletin, March, 2015.1630

[163] M. Christodorescu, S. Jha, Testing malware detectors, ACM SIGSOFT
Software Engineering Notes 29 (4) (2004) 34–44.

[164] M. Zheng, P. P. Lee, J. C. Lui, Adam: an automatic and extensible plat-
form to stress test android anti-virus systems, in: International confer-
ence on detection of intrusions and malware, and vulnerability assessment,1635

Springer, 2012, pp. 82–101.

53

https://developer.android.com/reference/android/view/Display.html
https://developer.android.com/reference/android/view/Display.html
https://developer.android.com/reference/android/view/Display.html
https://developer.android.com/reference/android/view/Display.html
https://code.tutsplus.com/tutorials/securing-communications-on-android--cms-31596
https://code.tutsplus.com/tutorials/securing-communications-on-android--cms-31596
https://code.tutsplus.com/tutorials/securing-communications-on-android--cms-31596
https://code.tutsplus.com/tutorials/securing-communications-on-android--cms-31596


[165] S. Badhani, S. K. Muttoo, Analyzing android code graphs against code
obfuscation and app hiding techniques, Journal of Applied Security Re-
search 14 (4) (2019) 489–510.

[166] Apk protect: Android apk security protection (2013).1640

URL https://sourceforge.net/projects/apkprotect/

[167] Baidu inc.
URL http://app.baidu.com

[168] Bangcle inc.,.
URL http://www.bangcle.com1645

[169] P. Solutions, Dasho: Java & android obfuscator & runtime protection.

[170] Transakt, entersekt mobile app security.
URL https://www.entersekt.com/

[171] Ijiami inc.,.
URL http://www.ijiami.cn1650

[172] Inside secure code & application protection.
URL https://www.insidesecure.com/us/Products/

Mobile-and-IoT-Security/Applications-Protection/

Code-Protection

[173] Mobile protector by gemalto, a thales company.1655

URL https://thales-protector-oath-sdk.docs.stoplight.io/

releases/5.2.0/general/overview

[174] Promon shield — in-app protection & application shielding.
URL https://promon.co

[175] Secneo, the professional service provider for the mobile application secu-1660

rity.
URL https://www.secneo.com/

[176] Source code protection — whitecryption.
URL https://www.intertrust.com/products/

application-shielding/code-protection/1665

[177] yworks, yguard - java bytecode obfuskator and shrinker, [Accessed: 09-
Apr-2020].
URL https://www.yworks.com/products/yguard

[178] H. OHUCHI, jarg-java archiver grinder, http://jarg. sourceforge. net/in-
dex. en.1670

[179] J. Hoenicke, Jode, URL http://jode. sourceforge. net.

54

https://sourceforge.net/projects/apkprotect/
https://sourceforge.net/projects/apkprotect/
http://app.baidu.com
http://app.baidu.com
http://www.bangcle.com
http://www.bangcle.com
https://www.entersekt.com/
https://www.entersekt.com/
http://www.ijiami.cn
http://www.ijiami.cn
https://www.insidesecure.com/us/Products/Mobile-and-IoT-Security/Applications-Protection/Code-Protection
https://www.insidesecure.com/us/Products/Mobile-and-IoT-Security/Applications-Protection/Code-Protection
https://www.insidesecure.com/us/Products/Mobile-and-IoT-Security/Applications-Protection/Code-Protection
https://www.insidesecure.com/us/Products/Mobile-and-IoT-Security/Applications-Protection/Code-Protection
https://www.insidesecure.com/us/Products/Mobile-and-IoT-Security/Applications-Protection/Code-Protection
https://www.insidesecure.com/us/Products/Mobile-and-IoT-Security/Applications-Protection/Code-Protection
https://thales-protector-oath-sdk.docs.stoplight.io/releases/5.2.0/general/overview
https://thales-protector-oath-sdk.docs.stoplight.io/releases/5.2.0/general/overview
https://thales-protector-oath-sdk.docs.stoplight.io/releases/5.2.0/general/overview
https://thales-protector-oath-sdk.docs.stoplight.io/releases/5.2.0/general/overview
https://promon.co
https://promon.co
https://www.secneo.com/
https://www.secneo.com/
https://www.secneo.com/
https://www.secneo.com/
https://www.intertrust.com/products/application-shielding/code-protection/
https://www.intertrust.com/products/application-shielding/code-protection/
https://www.intertrust.com/products/application-shielding/code-protection/
https://www.intertrust.com/products/application-shielding/code-protection/
https://www.yworks.com/products/yguard
https://www.yworks.com/products/yguard


[180] W. Zhou, Z. Wang, Y. Zhou, X. Jiang, Divilar: Diversifying intermediate
language for anti-repackaging on android platform, in: Proceedings of the
4th ACM conference on Data and application security and privacy, 2014,
pp. 199–210.1675

[181] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, C. Glezer, Google
android: A comprehensive security assessment, IEEE Security & Privacy
8 (2) (2010) 35–44.

[182] J. Shu, J. Li, Y. Zhang, D. Gu, Android app protection via interpretation
obfuscation, in: 2014 IEEE 12th International Conference on Dependable,1680

Autonomic and Secure Computing, IEEE, 2014, pp. 63–68.

[183] B. Bichsel, V. Raychev, P. Tsankov, M. Vechev, Statistical deobfuscation
of android applications, in: Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, 2016, pp. 343–355.

[184] G. Suarez-Tangil, G. Stringhini, Eight years of rider measurement in the1685

android malware ecosystem, IEEE Transactions on Dependable and Se-
cure Computing (2020) 1–1.

[185] V. Balachandran, D. J. Tan, V. L. Thing, et al., Control flow obfuscation
for android applications, Computers & Security 61 (2016) 72–93.

[186] Y. Wang, A. Rountev, Who changed you? obfuscator identification for1690

android, in: 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft), IEEE, 2017, pp. 154–
164.

[187] J. Garcia, M. Hammad, S. Malek, Lightweight, obfuscation-resilient de-
tection and family identification of android malware, ACM Transactions1695

on Software Engineering and Methodology (TOSEM) 26 (3) (2018) 1–29.

[188] A. Arora, S. K. Peddoju, Minimizing network traffic features for android
mobile malware detection, in: Proceedings of the 18th International Con-
ference on Distributed Computing and Networking, 2017, pp. 1–10.

[189] F. Zhang, H. Huang, S. Zhu, D. Wu, P. Liu, Viewdroid: Towards1700

obfuscation-resilient mobile application repackaging detection, in: Pro-
ceedings of the 2014 ACM conference on Security and privacy in wireless
& mobile networks, 2014, pp. 25–36.

[190] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, Stegomalware: Playing
hide and seek with malicious components in smartphone apps, in: Interna-1705

tional conference on information security and cryptology, Springer, 2014,
pp. 496–515.

[191] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand,
C. Kruegel, G. Vigna, Obfuscation-resilient privacy leak detection for mo-
bile apps through differential analysis., in: NDSS, 2017.1710

55



[192] M. Y. Wong, D. Lie, Tackling runtime-based obfuscation in android with
{TIRO}, in: 27th {USENIX} Security Symposium ({USENIX} Security
18), 2018, pp. 1247–1262.

[193] M. Ikram., P. Beaume., M. A. Kaafar., Dadidroid: An obfuscation re-
silient tool for detecting android malware via weighted directed call graph1715

modelling, in: Proceedings of the 16th International Joint Conference on
e-Business and Telecommunications - Volume 2: SECRYPT,, INSTICC,
SciTePress, 2019, pp. 211–219. doi:10.5220/0007834602110219.

[194] J. Zhang, A. R. Beresford, S. A. Kollmann, Libid: reliable identification of
obfuscated third-party android libraries, in: Proceedings of the 28th ACM1720

SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 55–65.

[195] A. Aghamohammadi, F. Faghih, Lightweight versus obfuscation-resilient
malware detection in android applications, Journal of Computer Virology
and Hacking Techniques (2019) 1–15.1725

[196] M. Park, G. You, S.-j. Cho, M. Park, S. Han, A framework for identifying
obfuscation techniques applied to android apps using machine learning.,
J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl. 10 (4)
(2019) 22–30.

[197] B. Kim, J. Jung, S. Han, S. Jeon, S.-j. Cho, J. Choi, A new technique1730

for detecting android app clones using implicit intent and method infor-
mation, in: 2019 Eleventh International Conference on Ubiquitous and
Future Networks (ICUFN), IEEE, 2019, pp. 478–483.

[198] Z. Li, J. Sun, Q. Yan, W. Srisa-an, Y. Tsutano, Obfusifier: Obfuscation-
resistant android malware detection system, in: International Conference1735

on Security and Privacy in Communication Systems, Springer, 2019, pp.
214–234.

[199] X. Yang, L. Zhang, C. Ma, Z. Liu, P. Peng, Android control flow obfus-
cation based on dynamic entry points modification, in: 2019 22nd Inter-
national Conference on Control Systems and Computer Science (CSCS),1740

IEEE, 2019, pp. 296–303.

[200] S. Aonzo, G. C. Georgiu, L. Verderame, A. Merlo, Obfuscapk: An open-
source black-box obfuscation tool for android apps, SoftwareX 11 (2020)
100403.

[201] L. Glanz, P. Müller, L. Baumgärtner, M. Reif, S. Amann, P. Anthonysamy,1745

M. Mezini, Hidden in plain sight: Obfuscated strings threatening your
privacy, ASIA CCS ’20, Association for Computing Machinery, New York,
NY, USA, 2020. doi:10.1145/3320269.3384745.

56

http://dx.doi.org/10.5220/0007834602110219
http://dx.doi.org/10.1145/3320269.3384745

	Introduction
	Android overview
	Android Architecture
	APK file structure
	APK compilation and execution
	Android Security Framework
	Linux security
	Digital Signature Mechanism
	Sandboxing
	Encryption
	App Manifest
	Inter Component Communication (ICC)
	Permission Model


	Android Application Hardening
	Trivial APK techniques
	Repackaging
	Disassembling and Reassembling
	Realignment
	Manifest File Modification

	Code Obfuscation
	Constant Data Obfuscation
	Variable Data Obfuscation
	Code Logic Obfuscation

	Preventive Techniques
	Anti Tampering
	Anti Hooking
	Anti Debugging
	Anti Emulation
	Device Binding
	Anti Rooting
	Anti Tainting
	Anti keylogger
	Anti-screen Reader

	Other Techniques
	Network Communication Hardening
	Resource Centric Obfuscation


	Effectiveness of obfuscation methods
	Android obfuscators and hardening tools
	Related works
	Discussion and Directions for future works
	Conclusion

