
Vijay Kumar- MVJ College of Engineering
Vijay Kumar
- MVJ College of Engineering
About
644
Publications
110,891
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
37,880
Citations
Current institution
Publications
Publications (644)
Although the integration of large language models (LLMs) into robotics has unlocked transformative capabilities, it has also introduced significant safety concerns, ranging from average-case LLM errors (e.g., hallucinations) to adversarial jailbreaking attacks, which can produce harmful robot behavior in real-world settings. Traditional robot safet...
We consider the problem of safe real-time navigation of a robot in a dynamic environment with moving obstacles of arbitrary smooth geometries and input saturation constraints. We assume that the robot detects and models nearby obstacle boundaries with a short-range sensor and that this detection is error-free. This problem presents three main chall...
We address the challenge of task-oriented navigation in unstructured and unknown environments, where robots must incrementally build and reason on rich, metric-semantic maps in real time. Since tasks may require clarification or re-specification, it is necessary for the information in the map to be rich enough to enable generalization across a wide...
We propose an online iterative algorithm to optimize a convex cover to under-approximate the free space for autonomous navigation to delineate Safe Flight Corridors (SFC). The convex cover consists of a set of polytopes such that the union of the polytopes represents obstacle-free space, allowing us to find trajectories for robots that lie within t...
We present a novel approach for enhancing human-robot collaboration using physical interactions for real-time error correction of large language model (LLM) powered robots. Unlike other methods that rely on verbal or text commands, the robot leverages an LLM to proactively executes 6 DoF linear Dynamical System (DS) commands using a description of...
We present the first static-obstacle avoidance method for quadrotors using just an onboard, monocular event camera. Quadrotors are capable of fast and agile flight in cluttered environments when piloted manually, but vision-based autonomous flight in unknown environments is difficult in part due to the sensor limitations of traditional onboard came...
The recent introduction of large language models (LLMs) has revolutionized the field of robotics by enabling contextual reasoning and intuitive human-robot interaction in domains as varied as manipulation, locomotion, and self-driving vehicles. When viewed as a stand-alone technology, LLMs are known to be vulnerable to jailbreaking attacks, wherein...
As robots become increasingly capable, users will want to describe high-level missions and have robots fill in the gaps. In many realistic settings, pre-built maps are difficult to obtain, so execution requires exploration and mapping that are necessary and specific to the mission. Consider an emergency response scenario where a user commands a rob...
Automated persistent and fine-grained monitoring of orchards at the individual tree or fruit level helps maximize crop yield and optimize resources such as water, fertilizers, and pesticides while preventing agricultural waste. Towards this goal, we present a 4D spatio-temporal metric-semantic mapping method that fuses data from multiple sensors, i...
We propose a framework for active mapping and exploration that leverages Gaussian splatting for constructing information-rich maps. Further, we develop a parallelized motion planning algorithm that can exploit the Gaussian map for real-time navigation. The Gaussian map constructed onboard the robot is optimized for both photometric and geometric qu...
Traditionally, unmanned aerial vehicles (UAVs) rely on CMOS-based cameras to collect images about the world below. One of the most successful applications of UAVs is to generate orthomosaics or orthomaps, in which a series of images are integrated together to develop a larger map. However, the use of CMOS-based cameras with global or rolling shutte...
Coordinating the motion of multiple robots in cluttered environments remains a computationally challenging task. We study the problem of minimizing the execution time of a set of geometric paths by a team of robots with state-dependent actuation constraints. We propose a Time-Optimal Path Parameterization (TOPP) algorithm for multiple car-like agen...
Neural Radiance Fields (NeRFs) have shown significant promise in 3D scene reconstruction and novel view synthesis. In agricultural settings, NeRFs can serve as digital twins, providing critical information about fruit detection for yield estimation and other important metrics for farmers. However, traditional NeRFs are not robust to challenging lig...
In this paper, we propose a hierarchical Large Language Models (LLMs) in-the-loop optimization framework for real-time multi-robot task allocation and target tracking in an unknown hazardous environment subject to sensing and communication attacks. We formulate multi-robot coordination for tracking tasks as a bi-level optimization problem, with LLM...
Tracking controllers enable robotic systems to accurately follow planned reference trajectories. In particular, reinforcement learning (RL) has shown promise in the synthesis of controllers for systems with complex dynamics and modest online compute budgets. However, the poor sample efficiency of RL and the challenges of reward design make training...
The multi-objective coverage control problem requires a robot swarm to collaboratively provide sensor coverage to multiple heterogeneous importance density fields (IDFs) simultaneously. We pose this as an optimization problem with constraints and study two different formulations: (1) Fair coverage, where we minimize the maximum coverage cost for an...
Many practical applications of optimal control are subject to real-time computational constraints. When applying model predictive control (MPC) in these settings, respecting timing constraints is achieved by limiting the number of iterations of the optimization algorithm used to compute control actions at each time step, resulting in so-called subo...
Multi-robot collaboration for target tracking presents significant challenges in hazardous environments, including addressing robot failures, dynamic priority changes, and other unpredictable factors. Moreover, these challenges are increased in adversarial settings if the environment is unknown. In this paper, we propose a resilient and adaptive fr...
Trajectory generation in dynamic environments presents a significant challenge for quadrotors, particularly due to the non-convexity in the spatial-temporal domain. Many existing methods either assume simplified static environments or struggle to produce optimal solutions in real-time. In this work, we propose an efficient safe interval motion plan...
Obtaining accurate and timely predictions of the wind through an urban environment is a challenging task, but has wide-ranging implications for the safety and efficiency of autonomous aerial vehicles in future urban airspaces. Prior work relies strongly on global information about the environment, such as a precise map of the city and in-situ wind...
Constraint-aware estimation of human intent is essential for robots to physically collaborate and interact with humans. Further, to achieve fluid collaboration in dynamic tasks intent estimation should be achieved in real-time. In this paper, we present a framework that combines online estimation and control to facilitate robots in interpreting hum...
Mapping and navigation have gone hand-in-hand since long before robots existed. Maps are a key form of communication, allowing someone who has never been somewhere to nonetheless navigate that area successfully. In the context of multi-robot systems, the maps and information that flow between robots are necessary for effective collaboration, whethe...
This paper develops a real-time decentralized metric-semantic Simultaneous Localization and Mapping (SLAM) approach that leverages a sparse and lightweight object-based representation to enable a heterogeneous robot team to autonomously explore 3D environments featuring indoor, urban, and forested areas without relying on GPS. We use a hierarchical...
We propose an online iterative algorithm to find a suitable convex cover to under-approximate the free space for autonomous navigation to delineate Safe Flight Corridors (SFC). The convex cover consists of a set of polytopes such that the union of the polytopes represents obstacle-free space, allowing us to find trajectories for robots that lie wit...
We demonstrate the capabilities of an attention-based end-to-end approach for high-speed quadrotor obstacle avoidance in dense, cluttered environments, with comparison to various state-of-the-art architectures. Quadrotor unmanned aerial vehicles (UAVs) have tremendous maneuverability when flown fast; however, as flight speed increases, traditional...
This paper presents a novel learning-based trajectory planning framework for quadrotors that combines model-based optimization techniques with deep learning. Specifically, we formulate the trajectory optimization problem as a quadratic programming (QP) problem with dynamic and collision-free constraints using piecewise trajectory segments through s...
In this letter, we address the problem of exploration and metric-semantic mapping of multi-floor GPS-denied indoor environments using swap constrained aerial robots. Most previous work in exploration assumes that robot localization is solved. However, neglecting the state uncertainty of the agent can ultimately lead to cascading errors both in the...
We consider the setting where a team of robots is tasked with tracking multiple targets with the following property: approaching the targets enables more accurate target position estimation, but also increases the risk of sensor failures. Therefore, it is essential to address the trade-off between tracking quality maximization and risk minimization...
In this letter, we address the design of tracking controllers that drive a mechanical system’s state asymptotically towards a reference trajectory. Motivated by aerospace and robotics applications, we consider fully-actuated systems evolving on the broad class of homogeneous spaces (encompassing all vector spaces, Lie groups, and spheres of any fin...
Mapping and navigation have gone hand-in-hand since long before robots existed. Maps are a key form of communication, allowing someone who has never been somewhere to nonetheless navigate that area successfully. In the context of multi-robot systems, the maps and information that flow between robots are necessary for effective collaboration, whethe...
Despite the prevalence of wireless connectivity in urban areas around the globe, there remain numerous and diverse situations where connectivity is insufficient or unavailable. To address this, we introduce
mobile wireless infrastructure on demand
, a system of UAVs that can be rapidly deployed to establish an ad-hoc wireless network. This networ...
Many practical applications of optimal control are subject to real-time computational constraints. When applying model predictive control (MPC) in these settings, respecting timing constraints is achieved by limiting the number of iterations of the optimization algorithm used to compute control actions at each time step, resulting in so-called subo...
This paper addresses the problem of active collaborative localization in heterogeneous robot teams with unknown data association. It involves positioning a small number of identical unmanned ground vehicles (UGVs) at desired positions so that an unmanned aerial vehicle (UAV) can, through unlabelled measurements of UGVs, uniquely determine its globa...
We consider joint trajectory generation and tracking control for under-actuated robotic systems. A common solution is to use a layered control architecture, where the top layer uses a simplified model of system dynamics for trajectory generation, and the low layer ensures approximate tracking of this trajectory via feedback control. While such laye...
Simulators play a critical role in aerial robotics both in and out of the classroom. We present RotorPy, a simulation environment written entirely in Python intentionally designed to be a lightweight and accessible tool for robotics students and researchers alike to probe concepts in estimation, planning, and control for aerial robots. RotorPy simu...
The problem of multi-robot target tracking asks for actively planning the joint motion of robots to track targets. In this article, we focus on such target tracking problems in adversarial environments, where attacks or failures may deactivate robots' sensors and communications. In contrast to the previous works that consider no attacks or sensing...
Accurate and robust state estimation is critical for autonomous navigation of robot teams. This task is especially challenging for large groups of size, weight, and power (SWAP) constrained aerial robots operating in perceptually-degraded GPS-denied environments. We can, however, actively increase the amount of perceptual information available to s...
Differential flatness enables efficient planning and control for underactuated robotic systems, but we lack a systematic and practical means of identifying a flat output (or determining whether one exists) for an arbitrary robotic system. In this work, we leverage recent results elucidating the role of symmetry in constructing flat outputs for free...
In this work, we give sufficient conditions for the almost global asymptotic stability of a cascade in which the inner loop and the unforced outer loop are each almost globally asymptotically stable. Our qualitative approach relies on the absence of chain recurrence for non-equilibrium points of the unforced outer loop, the hyperbolicity of equilib...
Convolutional neural network (CNN) based object detection has achieved very high accuracy, e.g. single-shot multi-box detectors (SSD) can efficiently detect and localize various objects in an input image. However, they require a high amount of computation and memory storage, which makes it difficult to perform efficient inference on resource-constr...
In this work, we study the problem of decentralized multi-agent perimeter defense that asks for computing actions for defenders with local perceptions and communications to maximize the capture of intruders. One major challenge for practical implementations is to make perimeter defense strategies scalable for large-scale problem instances. To this...
In this work, we study the problem of decentralized multi-agent perimeter defense that asks for computing actions for defenders with local perceptions and communications to maximize the capture of intruders. One major challenge for practical implementations is to make perimeter defense strategies scalable for large-scale problem instances. To this...
In this letter, we give sufficient conditions for the almost global asymptotic stability of a cascade in which the subsystems are only almost globally asymptotically stable. The result is extended to upper triangular systems of arbitrary size. In particular, if the unforced subsystems are almost globally asymptotically stable and their only chain r...
Active target sensing is the task of discovering and classifying an unknown number of targets in an environment and is critical in search-and-rescue missions. This paper develops a deep reinforcement learning approach to plan informative trajectories that increase the likelihood for an uncrewed aerial vehicle (UAV) to discover missing targets. Our...
We study the problem that requires a team of robots to perform joint localization and target tracking task while ensuring team connectivity and collision avoidance. The problem can be formalized as a nonlinear, non-convex optimization program, which is typically hard to solve. To this end, we design a two-staged approach that utilizes a greedy algo...
In this work, we present an end-to-end heterogeneous multi-robot system framework where ground robots are able to localize, plan, and navigate in a semantic map created in real time by a high-altitude quadrotor. The ground robots choose and deconflict their targets independently, without any external intervention. Moreover, they perform cross-view...
We propose a new formulation for the multi-robot task planning and allocation problem that incorporates (a) precedence relationships between tasks; (b) coordination for tasks allowing multiple robots to achieve increased efficiency; and (c) cooperation through the formation of robot coalitions for tasks that cannot be performed by individual robots...
In recent years Landmark Complexes have been successfully employed for localization-free and metric-free autonomous exploration using a group of sensing-limited and communication-limited robots in a GPS-denied environment. To ensure rapid and complete exploration, existing works make assumptions on the density and distribution of landmarks in the e...
Mechanical systems naturally evolve on principal bundles describing their inherent symmetries. The ensuing factorization of the configuration manifold into a symmetry group and an internal shape space has provided deep insights into the locomotion of many robotic and biological systems. On the other hand, the property of differential flatness has e...
We address the problem of efficient 3-D exploration in indoor environments for micro aerial vehicles with limited sensing capabilities and payload/power constraints. We develop an indoor exploration framework that uses learning to predict the occupancy of unseen areas, extracts semantic features, samples viewpoints to predict information gains for...
Traditional approaches for active mapping focus on building geometric maps. For most real-world applications, however, actionable information is related to semantically meaningful objects in the environment. We propose an approach to the active metric-semantic mapping problem that enables multiple heterogeneous robots to collaboratively build a map...
Consensus algorithms form the foundation for many distributed algorithms by enabling multiple robots to converge to consistent estimates of global variables using only local communication. However, standard consensus protocols can be easily led astray by non-cooperative team members. As such, the study of resilient forms of consensus is necessary f...
In this paper, we present an online adaptive planning strategy for a team of robots with heterogeneous sensors to sample from a latent spatial field using a learned model for decision making. Current robotic sampling methods seek to gather information about an observable spatial field. However, many applications, such as environmental monitoring an...
We consider the setting where a team of robots is tasked with tracking multiple targets with the following property: approaching the targets enables more accurate target position estimation, but also increases the risk of sensor failures. Therefore, it is essential to address the trade-off between tracking quality maximization and risk minimization...
The multi-robot adaptive sampling problem aims at finding trajectories for a team of robots to efficiently sample the phenomenon of interest within a given endurance budget of the robots. In this paper, we propose a robust and scalable approach using decentralized Multi-Agent Reinforcement Learning for cooperated Adaptive Sampling (MARLAS) of quasi...
In this work, we present an end-to-end heterogeneous multi-robot system framework where ground robots are able to localize, plan, and navigate in a semantic map created in real time by a high-altitude quadrotor. The ground robots choose and deconflict their targets independently, without any external intervention. Moreover, they perform cross-view...
In this letter we propose a data-driven approach to optimizing the algebraic connectivity of a team of robots. While a considerable amount of research has been devoted to this problem, we lack a method that scales in a manner suitable for online applications for more than a handful of agents. To that end, we propose a supervised learning approach w...
Semantic maps represent the environment using a set of semantically meaningful objects. This representation is storage-efficient, less ambiguous, and more informative, thus facilitating large-scale autonomy and the acquisition of actionable information in highly unstructured, GPS-denied environments. In this letter, we propose an integrated system...
We consider a scenario where a team of robots with heterogeneous sensors must track a set of targets or hazards which may induce sensory failures on the robots. In particular, the likelihood of failures depends on the proximity between the targets and the robots. We propose a control framework that explicitly addresses the competing objectives of t...
Currently, GPS is by far the most popular global localization method. However, it is not always reliable or accurate in all environments. SLAM methods enable local state estimation but provide no means of registering the local map to a global one, which can be important for inter-robot collaboration or human interaction. In this work, we present a...
Fast, autonomous flight in unstructured, cluttered environments such as forests is challenging because it requires the robot to compute new plans in realtime on a computationally-constrained platform. In this paper, we enable this capability with a search-based planning framework that adapts sampling density in realtime to find dynamically-feasible...
This work presents an explicit–implicit procedure to compute a model predictive control (MPC) law with guarantees on recursive feasibility and asymptotic stability. The approach combines an offline-trained fully-connected neural network with an online primal active set solver. The neural network provides a control input initialization while the pri...
Mobile robots such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) are increasingly used for precision agriculture. While UGVs have larger payload capabilities and longer operation time, they are limited to 2-D space. This makes UAVs better suited for tasks that require fast coverage, harsh terrain traversal, and high altitud...
In this work we propose a data-driven approach to optimizing the algebraic connectivity of a team of robots. While a considerable amount of research has been devoted to this problem, we lack a method that scales in a manner suitable for online applications for more than a handful of agents. To that end, we propose a supervised learning approach wit...
This paper presents design, mathematical analysis, and measurement of low noise single-stage transimpedance amplifier (TIA) with scalable bandwidth using 130 nm bipolar complementary metal-oxide-semiconductor (BiCMOS) silicon-germanium (SiGe) process. Common-emitter (CE) shunt-shunt feedback topology with active inductor peaking has been used in th...
Homotopy classes of trajectories, arising due to the presence of obstacles, are defined as sets of trajectories that can be transformed into each other by gradual bending and stretching without colliding with obstacles. The problem of exploring/finding the different homotopy classes in an environment and the problem of finding least-cost paths rest...
In this letter, we propose an integrated autonomous flight and semantic SLAM system that can perform long-range missions and real-time semantic mapping in highly cluttered, unstructured, and GPS-denied under-canopy environments. First, tree trunks and ground planes are detected from LIDAR scans. We use a neural network and an instance extraction al...