Degradation

S-Scheme α -Fe₂O₃/g-C₃N₄ Nanocomposites as Heterojunction Photocatalysts for Antibiotic Degradation

Viet Van Pham, Thao Kim Truong, Le Viet Hai, Ha Phan Phuong La, Hoang Thai Nguyen, Vinh Quang Lam, Hien Duy Tong, Thang Quoc Nguyen, Amr Sabbah, Kuei-Hsien Chen, Sheng-Jie You, and Thi Minh Cao*

property, thanks to magnetic materials. Empirical results indicate that S-scheme $Fe_2O_3/g-C_3N_4$ photocatalysts can degrade commercial cefalexin and amoxicillin (20

mg L^{-1}) under visible light, with five and nine times higher performance than that of

 $g-C_3N_4$, respectively. Furthermore, the detailed evidence to propose S-scheme Fe₂O₃/ $g-C_3N_4$ heterojunctions and comparison of photocatalytic performance in antibiotic degradation have also been mentioned in this study.

KEYWORDS: α -Fe₂O₃, g-C₃N₄, photocatalysis, α -Fe₂O₃/g-C₃N₄, S-scheme, antibiotic degradation

1. INTRODUCTION

Antibiotics such as cefalexin and amoxicillin have been extensively used for various disease treatments for humans and animals. However, these antibiotics are often incompletely metabolized, leading to significant excretion into the wastewater.^{1,2} The long-term accumulation of these antibiotics can lead to severe consequences, for instance, the development of antibiotic-resistant bacteria, harm the human health, and damage the health-beneficial healthy bacteria.³⁻⁶ Apparently, the conventional wastewater treatment approaches such as filtration, adsorption, and biodegradation cannot totally degrade the antibiotics because of their high stability and low biodegradability.^{7,8}

Recently, nanomaterial-based semiconducting photocatalysis, which uses the endless solar energy source as input energy, is considered as an energy-effective, sustainable, environmentally friendly, and low-cost strategy for the degradation of organic pollutants.^{9–11} In various semiconductor photocatalysts, graphite carbon nitride (g-C₃N₄) is considered one of the most potential candidates, owing to its unique properties such as high chemical and thermal stability and suitable band structure for the photooxidation applications.^{12–16} However, the rapid recombination of g-C₃N₄ materials restricted their practical applications.^{17–19} Recently, various efforts have been made, such as constructing heterojunctions, nanostructure design, doping with other elements, protonating with acid, and engineering nitrogen-deficiency defects.^{17–20} Among them, the coupling of magnetic photocatalysts with g-C₃N₄ to form hybrid materials helps enable the material collection more easily utilizing a magnetic field.¹⁹ As an expectation, α -Fe₂O₃, a semiconductor with a narrow band gap (2.0-2.2 eV), has prospective merits such as the most stable iron oxide, low corrosion, and accessible synthesis with low cost.^{21,22} In addition, the narrow-band gap semiconductor of α -Fe₂O₃ harvests light effectively and expands the solar spectral response into the visible light region that constitutes 45-50% of the solar spectrum. Furthermore, α -Fe₂O₃ can contribute as active centers to improve the photocatalytic activity.²³ Consequently, α -Fe₂O₃-modified g-C₃N₄ is considered as a highlight approach to create low-cost, efficient, ecofriendly environmental photocatalysts. Many reports showed that composite materials of α -Fe₂O₃/g-C₃N₄ Z-scheme photocatalysts remarkably enhance the photocatalytic efficiency in water splitting for H_2 generation, $^{24-27}$ CO₂ reduction,^{18,28-30} Cr(VI) and As removal,^{31,32} organic dye degradation,³³⁻³⁸ NO oxidation,³⁹ and so forth. In general, previous studies on Fe₂O₃/g-C₃N₄ nanocomposites indicated that combining these two materials created a Z-scheme photocatalyst, which led to superior charge transportation

S-Scheme α -Fe₂O₃/g-C₃N₂

Received: February 17, 2022 Accepted: February 25, 2022

and reduced recombination, leading to improved photocatalytic activity. However, a thorough understanding of the photocatalytic model of this material system is still a big challenge and needs to be investigated. Recently, Xu et al. proposed a direct Z-scheme charge transfer route with bending band energy edges of these two semiconductors, which can proceed over the Fe₂O₃/g-C₃N₄ composites, enhancing photocatalytic performance in H₂ generation.²⁴ This is considered as a premise for us to expand our survey and confirm the S-scheme photocatalyst model of α -Fe₂O₃/g-C₃N₄ heterojunctions. Moreover, the high photocatalytic degradation of commercial antibiotics (cefalexin and amoxicillin) with a high concentration in water is still a challenge, and developing S-scheme α -Fe₂O₃/g-C₃N₄ heterojunctions has high a scientific and practical value. In addition, the S-scheme photocatalyst model will be more helpful in understanding the separation and transformation of the charge carriers than the Z-scheme photocatalyst model. In detail, in the S-scheme model, we could easily understand the role of the internal electric field, band bending, and Coulombic attraction force, which contribute to the increase in the separation of electronhole pairs in the α -Fe₂O₃ and g-C₃N₄ materials, leading to their enhanced photocatalytic ability.^{16,40-42}

In this study, we synthesized α -Fe₂O₃-modified g-C₃N₄, with different α -Fe₂O₃ contents (as shown in Scheme 1) and

Scheme 1. Synthesis Process of α -Fe₂O₃/g-C₃N₄ Nanocomposites

investigated the photocatalytic degradation of antibiotics cefalexin and amoxicillin at high concentration for the purpose of understanding the photocatalytic activity of α -Fe₂O₃/g-C₃N₄ heterojunctions. The modification of g-C₃N₄ with α -Fe₂O₃ substantially improved the photocatalytic activity for high degradation of commercial cefalexin and amoxicillin (20 mg L⁻¹). The photocatalytic S-scheme mechanism of α -Fe₂O₃/g-C₃N₄ composites was confirmed from their considerably enhanced photocatalytic activity and the optical and electrochemical analyses. This study delivers a potential approach for pharmaceutical wastewater treatment employing direct S-scheme hybrid composite photocatalysts under visible light conditions.

2. RESULTS AND DISCUSSION

2.1. Characterizations of \alpha-Fe₂O₃/g-C₃N₄. The morphology and microstructure of the as-prepared catalysts were observed using HRTEM images and the selected-area electron diffraction (SAED) pattern (Figure 1). As could be observed in Figure 1a,b, g-C₃N₄ shows a lamellar structure, while \alpha-Fe₂O₃ is in the form of nanoparticles with a diameter of 10 nm. The morphology of \alpha-Fe₂O₃, g-C₃N₄, and 5% \alpha-Fe₂O₃/g-C₃N₄ composites is also presented in SEM images (Figure S1). Furthermore, HRTEM images of the \alpha-Fe₂O₃/g-C₃N₄ sample, verifying the good coupling between the two constituent

Figure 1. TEM images (a,b), HRTEM image (c), SAED pattern (d), HAADF-STEM image (e), and elemental mappings of α -Fe₂O₃/g-C₃N₄ (f-j).

materials via adhering together. From the HRTEM image (Figure 1c), an interplanar spacing of 0.27 nm, which corresponds to the (104) plane of α -Fe₂O₃²⁶ is identified. Also, the diffraction rings in the SAED pattern (Figure 1d) of the composite could be indexed to the (104), (113), (1010), and (220) planes of α -Fe₂O₃ crystals. Moreover, as can be observed in the high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) image (Figure 1e) and elemental mappings (Figure 1f-j), elements in g-C₃N₄ (C, N) and α -Fe₂O₃ (Fe, O) are uniformly distributed. Figure 2a presents XRD patterns of the as-synthesized α - Fe_2O_3 , g-C₃N₄, and 5% α -Fe₂O₃ samples (which will be referred to as α -Fe₂O₃/g-C₃N₄ henceforth). For α -Fe₂O₃, the peaks located at 24.2, 33.1, 35.6, 40.9, 49.5, 54.1, 57.6, 62.5, 64.1, 71.9, and 75.5° are well-consistent with those of hematite (α -Fe₂O₃, JCPDS no. 33-0664) without the existence of a secondary phase. This result is so far well-consistent with SAED pattern results presented in Figure 1d. The $g-C_3N_4$ shows two characteristic peaks situated at 13.0° and 27.5°, corresponding to (100) and (002) planes of the $g-C_3N_4$ structure, respectively.⁴³ Furthermore, the peak belonging to the (100) plane of g- C_3N_4 suggests that the as-synthesized g- C_3N_4 is primarily made up of heptazine units rather than the s-

Figure 2. XRD patterns (a) and FTIR spectra (b) of α -Fe₂O₃, g-C₃N₄, and α -Fe₂O₃/g-C₃N₄.

triazine-based structure.⁴⁴ For the composite sample, the presence of characteristic diffraction peaks of both α -Fe₂O₃ and g-C₃N₄ is observed. Besides, the diffraction peak locations are not shifted, indicating unaffected crystal structures of α -Fe₂O₃ and g-C₃N₄ after composite construction.

The characteristic functional groups and bond vibrations of the as-prepared catalysts were investigated by FTIR spectroscopy (Figure 2b). The Fe₂O₃ presents two peaks at 469 and 542 cm⁻¹, which are assigned to Fe–O stretching modes.⁴⁵ The FTIR spectrum of g-C₃N₄ possesses three regions of typical vibrations. The first broad peak populated at 3000-3700 cm⁻¹ is attributed to N-H and O-H stretching vibrations. The second region around 1210-1640 cm⁻¹ is characteristic of C-N and C=N stretching modes of aromatic ring systems of the g-C3N4 principal structure.⁴⁶ The sharp peak at 810 cm⁻¹ corresponds to the out-of-plane bending vibration belonging to heptazine rings.^{47,48} For α -Fe₂O₃/g- C_3N_4 , all typical vibration peaks of α -Fe₂O₃ and g-C₃N₄ concurrently exist, confirming the successful construction of the $Fe_2O_3/g-C_3N_4$ nanocomposite along with the above XRD results.

To further study the surface chemical composition and status of elements in the as-prepared materials, XPS survey spectrum analysis was carried out and is expressed in Figure S2. In detail, the XPS survey spectrum of $g-C_3N_4$ shows typical peaks of C 1s and N 1s, and Fe 2p and O 1s signals additionally appear in the XPS spectrum of the α -Fe₂O₃/g- C_3N_4 composite. For the C 1s region (Figure 3a), the XPS spectrum of g-C₃N₄ displays two major peaks at 284.8 and 288.1 eV, which are consistent with the C–C/C=C and N= C–N bonds, respectively.^{26,48} The same result is observed in the XPS spectrum of α -Fe₂O₃/g-C₃N₄, where two peaks are fitted and located at 284.8 and 288.2 eV. However, the appearance of the C-O peak at around 285.9 eV in the composite spectrum is ascribed to carbon contamination. In the high-resolution spectra of N 1s exhibited in Figure 3b, the three peaks attributed to sp^2 -hybridized nitrogen C=N-C, tertiary nitrogen $N-(C)_{3}$, and uncondensed terminal amino groups C-N-H are situated at 398.6, 400.0, and 401.1 eV, respectively, in g-C₃N₄.⁴⁹ For α -Fe₂O₃/g-C₃N₄, N-(C)₃ and C-N-H peaks shift slightly to the lower-binding energy region. In N 1s XPS spectra, the negative peak shift of α - $Fe_2O_3/g-C_3N_4$ compared to that of $g-C_3N_4$ reveals the formation of the composite structure. Moreover, due to the conjugated aromatic structure of g-C₃N₄, extended delocalized electrons could give rise to satellite signals $(\pi - \pi^*)$ in higherbinding energy ranges of the main C 1s and N 1s peaks. As presented in Figure 3c, the O 1s XPS spectrum of g-C₃N₄ shows the main peak centered at 531.5 eV, which is ascribed to the surface hydroxyl groups.²⁶ In the spectrum of the α -Fe₂O₃/

Figure 3. High-resolution XPS spectra of C 1s (a), N 1s (b), and O 1s (c).

g-C₃N₄ composite, three fitted peaks are represented, which are characteristic of lattice oxygen in α -Fe₂O₃ (530.1 eV), the surface hydroxyl groups (532.0 eV),^{15,50} and chemisorbed H₂O (533.3 eV).⁵¹ The results of XPS analyses supported the SAED and XRD results to confirm the existence of the α -Fe₂O₃ and graphitic structure of C₃N₄ in the composite sample.

The optical absorption properties of materials were characterized by UV–Vis DRS. As shown in Figure 4a, α -Fe₂O₃ and g-C₃N₄ samples have absorption edges at 676 and 433 nm, respectively. Moreover, the integration of α -Fe₂O₃ with g-C₃N₄ causes a red shift in the absorption edge of α -Fe₂O₃/g-C₃N₄ to 452 nm. This is explained by the synergetic effect between α -Fe₂O₃ and g-C₃N₄, which expands the light

Figure 4. UV–vis DRS spectra (a), Tauc plots (b), Mott–Schottky plots at a frequency of 1 kHz (c), and schematic band structure (d) of α -Fe₂O₃, g-C₃N₄, and α -Fe₂O₃/g-C₃N₄.

absorption range of composite material and affirms its good utilization of visible light. For optical band gap determination from UV–Vis DRS spectra and Tauc plots (Figure 4b) were drawn employing Tauc relation

$$\alpha h\nu = A(h\nu - E_{\rm g})^{1/n} \tag{1}$$

where α is the absorption coefficient, $h\nu$ is the photon energy, A is the proportionality constant, and E_g is the band gap energy. Depending on whether the nature of transition in the semiconductor is direct or indirect, the value of n is 1/2 or 2, respectively. By extrapolating linear regions to the abscissa, the band gap of α -Fe₂O₃ and g-C₃N₄ is about 1.97 and 2.74 eV, respectively.

To determine the flat-band potential $(V_{\rm fb})$, which is considered to be too close to the conduction band (CB) edge potential of n-type semiconductors,¹⁰ the Mott–Schottky plot was measured. As illustrated in Figure 4c, the tendency of n-type semiconductors was shown via positive slopes in Mott-Schottky plots of both α -Fe₂O₃ and g-C₃N₄ materials. V_{fb} can be extrapolated from the x-intercept of the linear area of the Mott-Schottky plot via the Mott-Schottky relation. The calculated $V_{\rm fb}$ is 0.37 and -0.49 V versus RHE for α -Fe₂O₃ and $g-C_3N_4$, respectively (Figure 4c,d). Based on DRS spectra and Mott-Schottky plots, the band structure of the α -Fe₂O₃/g-C₃N₄ composite photocatalyst can be diagramed as shown in Figure 4d. Therein, combining a relatively small band gap (1.97 eV) of α -Fe₂O₃ and a medium band gap (2.74 eV) of g-C₃N₄ will create an advantage in the S-Scheme photocatalyst model established that will be discussed and determined using the following empirical results.

2.2. Photocatalytic Activity Assessment of α -Fe₂O₃/g- C_3N_4 . To evaluate the photocatalytic activity and determine the S-scheme model of α -Fe₂O₃/g-C₃N₄, commercial antibiotic pharmaceuticals including cefalexin and amoxicillin were used as contaminant models. The change in typical absorption peaks of cefalexin (260 nm wavelength) and amoxicillin (228 nm wavelength) is recorded and expressed in Figures S3 and S4. In general, all typical absorption peaks of cefalexin and amoxicillin are almost insignificantly shifted during the photocatalytic reaction under visible light irradiation. Figure 5a,b exhibits the photocatalytic degradation of cefalexin over pure g-C₃N₄ and α -Fe₂O₃/g-C₃N₄ with different percentages of α -Fe₂O₃. The photolysis of cefalexin and amoxicillin was also tested in the absence of catalysts, and the results indicated that these antibiotics are quite stable and insignificantly degraded without the presence of photocatalysts under visible light illumination. There seems to be a general rule in the photocatalysis of cefalexin and amoxicillin. In detail, the photocatalytic activity of both pure α -Fe₂O₃ and g-C₃N₄ is not good for the degradation of both cefalexin and amoxicillin. This could be explained due to the rapid recombination of photoinduced electron-hole pairs in narrow-band gap materials such as α - Fe_2O_3 (1.97 eV).²⁵ Although the band gap of g-C₃N₄ (2.74 eV) is larger than that of α -Fe₂O₃, valence band (VB) edge potential position (Figure 4d) of g-C₃N₄ is still disadvantageous for the degradation of cephalexin, leading to a weak activity (23.9%). When α -Fe₂O₃ is modified with g-C₃N₄, the photocatalytic activity of g-C₃N₄ is significantly improved, and the best activity is achieved with 5% α -Fe₂O₃. The enhancement in photocatalytic performance is due to the synergetic effect between α -Fe₂O₃ and g-C₃N₄, which helps photoinduced carriers to separate effectively and broadens the light

www.acsanm.org

Figure 5. Photocatalytic degradation of cefalexin (a) and amoxicillin (b) over α -Fe₂O₃, g-C₃N₄, and α -Fe₂O₃/g-C₃N₄ composites with various α -Fe₂O₃ percentages and initial pH dependence on the photocatalytic degradation of cefalexin (c) and amoxicillin (d) over α -Fe₂O₃/g-C₃N₄ ([pharmaceuticals]₀ = 20 mg L⁻¹ and [photocatalyst]₀ = 0.33 g L⁻¹]); photocatalytic removal of cefalexin (e) and amoxicillin (f) with various amounts of α -Fe₂O₃/g-C₃N₄ ([pharmaceuticals]₀ = 20 mg L⁻¹).

absorption range of the composite material. However, when α -Fe₂O₃ content in the composites exceeds 5 wt %, the photocatalytic performance tends to decrease. This could be explained by the light-shield effect caused by α -Fe₂O₃, which inhibits the light harvesting of matrix material g-C3N4. The investigation on photocatalytic degradation of cefalexin and amoxicillin was also carried out with the same approach, indicating a superior performance of the α -Fe₂O₃/g-C₃N₄ composites in the cefalexin degradation that is more efficient than that of the amoxicillin case. Furthermore, the pseudo-firstorder kinetics following the Langmuir-Hinshelwood (L-H) model of the degradation processes of cefalexin and amoxicillin are also calculated and presented in Figure S5. It was found that the photocatalytic reaction rate constant (k) values for the photocatalytic degradation of cefalexin (a) and amoxicillin achieved the maximum value 112.80×10^{-4} min⁻¹ and $40.20 \times$ 10^{-4} min⁻¹ over 5% α -Fe₂O₃/g-C₃N₄, respectively (Table S1). From these investigations, we choose the 5% α -Fe₂O₃/g-C₃N₄ composite to survey for the subsequent experiments. For instance, the effect of the pH value of the antibiotic solution on the photocatalytic activity of the 5% α -Fe₂O₃/g-C₃N₄ composite is tested and displayed in Figure 5c. The photocatalytic activity of α -Fe₂O₃/g-C₃N₄ for cefalexin degradation at various pH values indicated that the best

photocatalytic system	antibiotic	antibiotic conc. $(mg L^{-1})$	catalyst dosage (g L ⁻¹)	irradiation time (min)	photocatalytic efficiency (%)	refs
g-C ₃ N ₄ @ZnO/sunlight	cefalexin	10	0.3	60	98.9	54
CuWO ₄ /Bi ₂ S ₃ /Vis	cefalexin	10	0.8	150	76	55
g-C ₃ N ₄ /ZnFe/Vis	cefalexin	10	0.05	300	91	56
$N{-}TiO_2/ZnFe_2O_4/zeolite/UV{-}vis$	cefalexin	100	2	120	74	57
Bi ₂ WO ₆ /CNT/TiO ₂ /sunlight	cefalexin	20	0.75	70	89.7	58
α -Fe ₂ O ₃ /g-C ₃ N ₄ /vis	cefalexin	20	0.33	120	71	this work
				180	98	
mesoporous g-C ₃ N ₄ /vis	amoxicillin	2	1	60	96	59
CQDs/K2Ti6O13/vis	amoxicillin	1	2	90	73.6	60
WO ₃ /vis	amoxicillin	1.2	0.104	180	99.99	61
α -Fe ₂ O ₃ /g-C ₃ N ₄ /vis	amoxicillin	20	0.33	180	46	this work

Table 1. Comparison	of Some Photocatalytic	Systems Degrading	Cefalexin and Amoxicillin
---------------------	------------------------	-------------------	---------------------------

degradation efficiency (97.8%) of cefalexin is obtained at pH 7, which is 1.5, 1.3, and 2.2 times higher than that at pH 3 (67.1%), pH 5 (72.9%), and pH 9 (44.2%). For amoxicillin, the optimal pH value for photocatalytic degradation over α - $Fe_2O_3/g-C_3N_4$ is also confirmed to be neutral (Figure 5d). These results verify that α -Fe₂O₃/g-C₃N₄ works well in the wide environmental pH range. Therein, the neutral solution is the best medium for the photocatalysis of α -Fe₂O₃/g-C₃N₄ that also showed a reaction rate of $112.80 \times 10^{-4} \text{ min}^{-1}$ and $40.20 \times 10^{-4} \text{ min}^{-1}$ for cefalexin and amoxicillin degradation, respectively (Table S2). In addition, the influence of catalyst amount on the photocatalytic removal process is also studied in this study. As presented in Figure 5e,f, the increase in α - $Fe_2O_3/g-C_3N_4$ amount is accompanied by the enhancement in photocatalytic degradation of antibiotics. This could be primarily explained by the increase in target molecules (O_{2}) H₂O, and antibiotics) adsorbed on the photocatalyst surface. Meanwhile, under visible light conditions, the generation of active species should also be boosted. These results indicate that the amount of catalysts also plays a critical role in photocatalytic activity. In addition, the constant rate k of the degradation processes of cefalexin and amoxicillin is also calculated and presented in Figure S6 and Table S3.

In addition to photocatalytic performance, photocatalyst stability is also of vital importance for potential practical application. The photocatalytic recycling stability after five cycles of α -Fe₂O₃/g-C₃N₄ for the degradation of cefalexin and amoxicillin solution, respectively, is shown in Figure S7a,b. The α -Fe₂O₃/g-C₃N₄ exhibits a relatively stable photocatalytic removal of the antibiotics, which declines only slightly after five photocatalytic cycles. Additionally, the FITR spectrum of the material after the reusability test (Figure S7c) is presented in the Supporting Information. Additionally, a comparison of some photocatalytic systems degrading cefalexin and amoxicillin is shown in Table 1. In addition, the Fe-ion concentration in samples before and after the photocatalytic reaction has been determined by inductively coupled plasmaatomic emission spectrometry (ICP-EOS). Therein, the Fe-ion concentration in samples before and after the photocatalytic reaction is less changed with 3.28 and 3.49%, respectively. Clearly, the α -Fe₂O₃/g-C₃N₄ composite is a potential material for the efficient degradation of the high concentration of antibiotics with a small amount of the catalysts.

2.3. Empirical Evidence for an S-Scheme Photocatalyst Model of α -Fe₂O₃/g-C₃N₄. To further determine the active species that mainly function in the photocatalytic degradation of cefalexin and amoxicillin, the active-species trapping tests were carried out. Figure 6a illustrates the decreases in antibiotic removal after the addition of $K_2Cr_2O_7$,

Figure 6. Influence of scavengers on photocatalytic degradation of cefalexin (a) and amoxicillin (b) over α -Fe₂O₃/g-C₃N₄ ([photocatalyst]₀ = 0.33 g L⁻¹ and [pharmaceuticals]₀ = 20 mg L⁻¹) and DMPO- $^{\bullet}$ O₂⁻ (c) and DMPO- $^{\bullet}$ OH (d) EPR spectra over g-C₃N₄ and α -Fe₂O₃/g-C₃N₄.

KI, IPA, and ascorbic acid as electron (e^{-}) , hole (h^{+}) , ${}^{\bullet}OH$, and ${}^{\bullet}O_{2}^{-}$ quenchers, respectively, which reveal that the visible light-induced photocatalytic activity of the α -Fe₂O₃/g-C₃N₄ composite is governed by e^- , h^+ , ${}^{\bullet}OH$, and ${}^{\bullet}O_2^-$. The considerable decreases in the removal of the antibiotics (Figure 6a,b) and the rate constant k (Figure S8) triggered by KI also indicate that h⁺ radicals primarily dominate photocatalytic reactions. It is easy to see that ascorbic acid and KI significantly decreased the photocatalytic ability of the α -Fe₂O₃/g-C₃N₄ composite for both cefalexin and amoxicillin degradation. The rate constant of the photocatalytic reaction was also calculated (Table S4) and demonstrated that the existence of all scavengers inhibited the breakdown of antibiotic compounds. From the active-radical trapping test results, we can conclude that the ${}^{\bullet}O_{2}^{-}$ and h⁺ are primary parameters for the photocatalytic degradation of cefalexin and amoxicillin. Besides, Figure 6c,d shows the DMPO spintrapping EPR spectra of $g-C_3N_4$ and α -Fe₂O₃/g-C₃N₄ with almost no signal in the dark. Under visible light, the signals of $^{\circ}O_{2}^{-}$ and $^{\circ}OH$ are clearer, proving the existence of these active species in the photocatalytic systems containing g-C₃N₄ and α -Fe₂O₃/g-C₃N₄. Notably, the $^{\circ}O_{2}^{-}$ and $^{\circ}OH$ signals are sharper for the composite spectrum than for the g-C₃N₄ spectrum. This finding reinforces the proposed S-scheme charge transfer mechanism in α -Fe₂O₃/g-C₃N₄, which is beneficial for the photocatalytic efficiency of the composites compared with the raw constituent materials.

When absorbing light energy greater than or equal to the band gap of each component photocatalyst, photogenerated charge carriers are produced in their respective CB and VB. However, the unfavorable CB edge energy for the reduction of molecular O_2 to ${}^{\bullet}O_2^-$ of α -Fe₂ O_3 and the VB edge position are more negative than the redox potential of $H_2O/^{\bullet}OH$ of g- C_3N_4 , making them poor photocatalysts.²⁴ Therefore, a typical type-II charge transfer process that causes the transfer of photoinduced holes (h⁺) from the VB of α -Fe₂O₃ to the VB of $g-C_3N_4$ and electrons (e⁻) from the CB of $g-C_3N_4$ down to that of α -Fe₂O₃ could even hinder the photocatalytic activity of the composite compared to the pristine materials. From the results in Figure 4d, an arrangement of band structures of α - Fe_2O_3 and $g-C_3N_4$ is an advantage for suggesting an S-scheme mechanism for the degradation of antibiotics over the α - $Fe_2O_3/g-C_3N_4$ composite, as regards the above experimental results (Figure 7). As g-C₃N₄ with lower work functions and α -

Figure 7. Proposed mechanism for photocatalytic degradation of antibiotics over S-scheme $\alpha\text{-}Fe_2O_3/g\text{-}C_3N_4.$

Fe₂O₃ with higher work functions come in contact,^{24,52} electrons in g-C₃N₄ will flow to α -Fe₂O₃ until their new Fermi level is aligned at equilibrium. Consequently, the formation of positively charged g-C₃N₄ and negatively charged α -Fe₂O₃ at the α -Fe₂O₃/g-C₃N₄ interface took place, which formed an internal electric field. Meanwhile, the band edge bending occurred for two semiconductors. Therein, g-C₃N₄ will bend the band edge uphill while α -Fe₂O₃ will curve its band edge downhill. This S-scheme charge transfer process orients efficiently the movement of electron-hole pairs, which facilitates the recombination of useless photogenerated e- in the α -Fe₂O₃ CB and h⁺ in the g-C₃N₄ VB via d-p conjugation and retains useful charge carriers within each component material. In addition, α -Fe₂O₃ also contributes to the photocatalytic reaction throughout the reduction of Fe³⁺ to Fe^{2+} to form the [•]OH active radical (eq 7) that has been reported by Meng et al.⁵³ Thus, the photocatalytic efficiency is significantly improved. The photoinduced electrons in the g- C_3N_4 CB and holes in the α -Fe₂O₃ VB will migrate to their surface to participate in the O₂ reduction and be consumed in H_2O oxidation, respectively, to produce ${}^{\bullet}O_2^{-}$ and ${}^{\bullet}OH$ active radicals that involved in the antibiotic degradation (eqs 2-8). The α -Fe₂O₃/g-C₃N₄ heterojunction has improved the carrier separation efficiency, thereby reducing the possibility of electron-hole recombination, which is expressed in Figure S10. Therein, the photocurrent density of α -Fe₂O₃/g-C₃N₄ is five times higher than that of the individual α -Fe₂O₃ under visible light illumination. Figure 6 demonstrates the formation of primary reactive radicals of ${}^{\bullet}O_{2}^{-}$ and ${}^{\bullet}OH$, which makes this S-scheme model superior in charge transport during photocatalysis. Moreover, the degradation of amoxicillin and cefalexin over Fe₂O₃/g-C₃N₄ is nearly complete, which was demonstrated by HPLC-MS chromatograms of amoxicillin and cefalexin before and after the photocatalytic reaction (Figure S11). After the photocatalytic reaction, the primary compounds of amoxicillin and cefalexin almost disappeared and formed products with smaller molecular formulas. This proves that the α -Fe₂O₃/g-C₃N₄ nanocomposite has very high efficiency in decomposing antibiotics.

$$\alpha - \mathrm{Fe}_2 \mathrm{O}_3/\mathrm{g} - \mathrm{C}_3 \mathrm{N}_4 + hv \rightarrow \alpha - \mathrm{Fe}_2 \mathrm{O}_3/\mathrm{g} - \mathrm{C}_3 \mathrm{N}_4 (\mathrm{e}^- + \mathrm{h}^+)$$
(2)

 \rightarrow antibiotics⁻(direct oxidation of antibiotics) (3)

$$e^- + O_2 \to {}^{\bullet}O_2^{-} \tag{4}$$

$${}^{\bullet}O_2^{-} + e^- + 2H^+ \to H_2O_2$$
 (5)

$$\mathrm{Fe}^{3+} + \mathrm{H}_2\mathrm{O} \to \mathrm{Fe}^{2+} + \mathrm{HO}^{\bullet} + \mathrm{H}$$
(6)

$$H_2O_2 + e^- \to HO^{\bullet} + HO^-$$
(7)

 h^+ + antibiotics

 \rightarrow antibiotics⁺(direct oxidation of antibiotics) (8)

3. CONCLUSIONS

In conclusion, α -Fe₂O₃/g-C₃N₄ nanocomposites were successfully prepared by two-step simple processes, and this material is used to degrade commercial cefalexin and amoxicillin for the first time. Modifying 5% wt α -Fe₂O₃ significantly improves the photocatalytic activity of g-C₃N₄ with a fivefold and ninefold enhancement in performance for commercial cefalexin and amoxicillin degradation compared to that by only using g-C₃N₄. In addition, the ${}^{\bullet}O_{2}^{-}$ and ${}^{\bullet}OH$ radicals are the primary active species in the photocatalytic degradation of commercial cefalexin and amoxicillin. This is an empirical result to confirm the performance an S-scheme α -Fe₂O₃/g-C₃N₄ heterojunction. Moreover, the high stability of the α -Fe₂O₃/g-C₃N₄ photocatalyst is also an advantage that can be applied under practical conditions.

4. EXPERIMENTAL PROCEDURES

4.1. Chemicals and Materials. All chemicals, iron(III) nitrate nonahydrate (Fe(NO₃)₃·9H₂O), gelatin ($C_{102}H_{151}O_{39}N_{31}$), melamine ($C_3H_6N_6$), ethanol (C_2H_6O), potassium dichromate ($K_2Cr_2O_7$), potassium iodide (KI), isopropyl alcohol (IPA; C_3H_8O), ascorbic acid ($C_6H_8O_6$), and deionized water (DI), were of high purity and used without further purification. The commercial cefalexin and amoxicillin originated from the DHG Pharmaceutical Joint Stock Company (Vietnam).

4.2. Preparation of g-C_3N_4. Melamine was employed as a precursor to prepare $g-C_3N_4$ through a thermal polycondensation approach. In detail, 2 g of melamine was added to a ceramic crucible

4.3. Synthesis of \alpha-Fe₂O₃. \alpha-Fe₂O₃ was synthesized by a sol-gel method, in which Fe(NO₃)₃·9H₂O and gelatin were utilized as a precursor and a polymerization agent, respectively. First, 4 g of Fe(NO₃)₃·9H₂O was dissolved in 100 mL of DI for 30 min to form solution A. Solution B consisted of 1.5 g of gelatin in 100 mL of DI and stirred for 30 min. Second, solution B was slowly poured into solution A and continuously stirred for 1 h for gel formation. Third, the gel mixture was dried at 60 °C for 6 h. Finally, the obtained powder was calcined at 600 °C for 1 h in the air.

4.4. Synthesis of α -Fe₂O₃/g-C₃N₄ Nanocomposites. α -Fe₂O₃/ g-C₃N₄ photocatalysts were synthesized, referencing the previous report of Houli et al.³⁵ Briefly, g-C₃N₄ powder was uniformly dispersed in ethanol by sonication. α -Fe₂O₃ and a Nafion solution were then added to the above suspension and further sonicated for 1 h. The resulting mixtures of α -Fe₂O₃/g-C₃N₄ were centrifuged, washed, and dried at 60 °C for 12 h. The composite samples with different theoretical weight percentages of α -Fe₂O₃ were denoted as *x* % α -Fe₂O₃ (*x* = 0.5, 1, 3, 7, and 10).

4.5. Sample Characterizations. X-ray powder diffraction (XRD) patterns of the as-prepared materials were recorded using an X-ray powder diffractometer (Bruker D8 Advance with Cu-K α radiation). The characteristic bond vibrations of photocatalysts were determined using a JASCO-4700 Fourier-transform infrared (FTIR) spectrometer. The oxidation states of samples were analyzed using an X-ray photoelectron spectrometer (XPS) (K-Alpha, Thermo Fisher Scientific). The ultraviolet-visible diffuse reflectance spectra (UVvis DRS) characterization of powder samples was conducted employing a JASCO V-550 spectrophotometer. The surface morphology of materials was observed through scanning electron microscopy (SEM, JEOL JSM-IT500) and high-resolution transmission electron microscopy (HRTEM, JEOL JEM-2100). Electron paramagnetic resonance (EPR) measurement was carried out on a Bruker EMXPlus EPR spectrometer with X-band capabilities. The electrochemical experiments were performed on a galvanostat (BioLogic SP-200), with a three-electrode system [the as-prepared sample working electrode with an area of 0.5 \times 1 cm², a Pt wire counter electrode, and an Ag/AgCl (3.0 M KCl) reference electrode]. 0.5 M Na₂SO₄ solution was used as the electrolyte. The Fe-ion concentration in water before and after photocatalytic degradation was determined by inductively coupled plasma-atomic emission spectrometry (ICP-EOS).

4.6. Photocatalytic Degradation Experiment. Photocatalytic activities of the as-prepared samples were assessed by degrading the commercial antibiotic pharmaceuticals cefalexin and amoxicillin under visible light illumination at room temperature. In a typical experiment, 0.02 g of the catalyst was dispersed into 60 mL of pharmaceutical solution (20 mg L^{-1}). Before shining the light, the adsorption process was conducted for 120 min in the dark to obtain adsorptiondesorption equilibrium (Figure S12). After that, the suspension was irradiated under a solar simulator (OSRAM ULTRA VITALUX 300W with a UV cutoff filter, $\lambda > 420$ nm) as a visible light source. The suspension was sampled at regular intervals of 30 min and centrifuged to acquire a clear liquid. The remaining concentrations of pharmaceuticals were detected using a UV-vis spectrophotometer (Hitachi U-2910). For the assessment of pH-dependent photocatalytic activity, initial pH values of pharmaceutical solution were adjusted with the solution of H₂SO₄ and NaOH.

Active-species trapping tests were performed similar to the photocatalytic degradation experiment, with the addition of $K_2Cr_2O_7$, KI, IPA, and ascorbic acid as the scavengers. For appraising the stability and reusability of material, the photocatalyst was separated from the photoreactor after each cycle and photocatalytic degradation processes were repeated under the same conditions. The mineral level and the possible degradation of antibiotics were identified by liquid chromatography–mass spectrometry (HPLC-MS) over an Agilent 6200 Series TOF system and a 6500 Series Q-TOF LC/MS system.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsanm.2c00741.

SEM images of α -Fe₂O₃, g-C₃N₄, and α -Fe₂O₃/g-C₃N₄; XPS survey spectra of g-C₃N₄ and α -Fe₂O₃/g-C₃N₄; UV-vis absorption spectra for the typical degradation process of cefalexin and amoxicillin under visible light; pseudo-first order kinetic fitting curves and calculation data tables for the photocatalysis; photocatalytic degradation toward cefalexin and amoxicillin after five cycles; FTIR spectra of α -Fe₂O₃/g-C₃N₄ before and after recycling test; photocurrent response of materials; adsorption ability of cefalexin and amoxicillin over the surface of materials; and HPLC-MS chromatograms of amoxicillin and cefalexin in the before case and after photocatalytic reaction (PDF)

AUTHOR INFORMATION

Corresponding Author

Thi Minh Cao – HUTECH University, Ho Chi Minh City 700000, Vietnam; o orcid.org/0000-0001-9323-2326; Email: cmthi@hutech.edu.vn

Authors

- Viet Van Pham University of Science, VNU-HCM, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
 orcid.org/0000-0002-8697-7095
- Thao Kim Truong University of Science, VNU-HCM, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; orcid.org/0000-0003-0145-2415
- Le Viet Hai University of Science, VNU-HCM, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Ha Phan Phuong La University of Science, VNU-HCM, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Hoang Thai Nguyen University of Science, VNU-HCM, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Vinh Quang Lam Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- **Hien Duy Tong** Faculty of Engineering, Vietnamese-German University (VGU), Thu Dau Mot City, Binh Duong Province 75000, Vietnam
- Thang Quoc Nguyen Institute of Atomic and Molecular Science, Academia Sinica, Taipei 16017, Taiwan
- Amr Sabbah Institute of Atomic and Molecular Science, Academia Sinica, Taipei 16017, Taiwan
- Kuei-Hsien Chen Institute of Atomic and Molecular Science, Academia Sinica, Taipei 16017, Taiwan; Orcid.org/0000-0002-9397-2516
- Sheng-Jie You Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan

Complete contact information is available at: https://pubs.acs.org/10.1021/acsanm.2c00741

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors would like to thank Vietnam National University-Ho Chi Minh City (VNU-HCM) for the financial support. We sincerely thank Nguyen Thi Thuy Vy for the initial experimental setup.

REFERENCES

(1) Wang, B.; Li, H.; Liu, T.; Guo, J. Enhanced removal of cephalexin and sulfadiazine in nitrifying membrane-aerated biofilm reactors. *Chemosphere* **2021**, *263*, 128224.

(2) Bian, X.; Xia, Y.; Zhan, T.; Wang, L.; Zhou, W.; Dai, Q.; Chen, J. Electrochemical removal of amoxicillin using a Cu doped PbO2 electrode: Electrode characterization, operational parameters optimization and degradation mechanism. *Chemosphere* **2019**, 233, 762–770.

(3) Blaser, M. J. Antibiotic use and its consequences for the normal microbiome. *Science* **2016**, 352, 544–545.

(4) Yang, Y.; Song, W.; Lin, H.; Wang, W.; Du, L.; Xing, W. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. *Environ. Int.* **2018**, *116*, 60–73.

(5) Brown, E. D.; Wright, G. D. Antibacterial drug discovery in the resistance era. *Nature* **2016**, *529*, 336–343.

(6) Abellán, M. N.; Giménez, J.; Esplugas, S. Photocatalytic degradation of antibiotics: The case of sulfamethoxazole and trimethoprim. *Catal. Today* **2009**, *144*, 131–136.

(7) Moradi, M.; Hasanvandian, F.; Isari, A. A.; Hayati, F.; Kakavandi, B.; Setayesh, S. R. CuO and ZnO co-anchored on $g-C_3N_4$ nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin. *Appl. Catal., B* **2021**, *285*, 119838.

(8) Yang, C.; You, X.; Cheng, J.; Zheng, H.; Chen, Y. A novel visiblelight-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. *Appl. Catal., B* **2017**, *200*, 673–680.

(9) Sun, X.; He, W.; Yang, T.; Ji, H.; Liu, W.; Lei, J.; Liu, Y.; Cai, Z. Ternary TiO₂/WO₃/CQDs nanocomposites for enhanced photocatalytic mineralization of aqueous cephalexin: Degradation mechanism and toxicity evaluation. *Chem. Eng. J.* **2021**, *412*, 128679.

(10) Truong, T. K.; Nguyen, T. Q.; Phuong La, H. P.; Le, H. V.; Van Man, T.; Cao, T. M.; Van Pham, V. Insight into the degradation of pnitrophenol by visible-light-induced activation of peroxymonosulfate over Ag/ZnO heterojunction. *Chemosphere* **2021**, *268*, 129291.

(11) Truong, T. K.; Van Doan, T.; Tran, H. H.; Van Le, H.; Lam, V. Q.; Tran, H. N.; Cao, T. M.; Van Pham, V. Effect of Cr Doping on Visible-Light-Driven Photocatalytic Activity of ZnO Nanoparticles. *J. Electron. Mater.* **2019**, *48*, 7378–7388.

(12) Niu, P.; Li, L. Photocatalytic overall water splitting of carbon nitride by band-structure modulation. *Matter* **2021**, *4*, 1765–1767.

(13) Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z. Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. *ACS Catal.* **2018**, *8*, 2253–2276.

(14) Thang, N. Q.; Sabbah, A.; Chen, L.-C.; Chen, K.-H.; Hai, L. V.; Thi, C. M.; Viet, P. V. Localized surface plasmonic resonance role of silver nanoparticles in the enhancement of long-chain hydrocarbons of the CO_2 reduction over Ag-gC₃N₄/ZnO nanorods photocatalysts. *Chem. Eng. Sci.* **2021**, *229*, 116049.

(15) Thang, N. Q.; Sabbah, A.; Chen, L.-C.; Chen, K.-H.; Thi, C. M.; Van Viet, P. High-efficient photocatalytic degradation of commercial drugs for pharmaceutical wastewater treatment prospects: A case study of $Ag/g-C_3N_4/ZnO$ nanocomposite materials. *Chemosphere* **2021**, 282, 130971.

(16) Van Pham, V.; Mai, D.-Q.; Bui, D.-P.; Van Man, T.; Zhu, B.; Zhang, L.; Sangkaworn, J.; Tantirungrotechai, J.; Reutrakul, V.; Cao, T. M. Emerging 2D/0D g- C_3N_4/SnO_2 S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visiblelight-driven NO degradation. *Environ. Pollut.* **2021**, 286, 117510. (17) Wang, W.; Fang, J.; Shao, S.; Lai, M.; Lu, C. Compact and uniform TiO2@g-C₃N₄ core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. *Appl. Catal., B* **2017**, 217, 57–64.

(18) Guo, H.; Chen, M.; Zhong, Q.; Wang, Y.; Ma, W.; Ding, J. Synthesis of Z-scheme α -Fe₂O₃/g-C₃N₄ composite with enhanced visible-light photocatalytic reduction of CO₂ to CH₃OH. *J. CO2 Util.* **2019**, 33, 233–241.

(19) Mamba, G.; Mishra, A. K. Graphitic carbon nitride $(g-C_3N_4)$ nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. *Appl. Catal., B* **2016**, *198*, 347–377.

(20) Liu, W.; Sun, M.; Ding, Z.; Gao, B.; Ding, W. Ti_3C_2 MXene embellished g- C_3N_4 nanosheets for improving photocatalytic redox capacity. *J. Alloys Compd.* **2021**, 877, 160223.

(21) Van Viet, P.; Van Chuyen, D.; Hien, N. Q.; Duy, N. N.; Thi, C. M. Visible-light-induced photo-Fenton degradation of rhodamine B over Fe_2O_3 -diatomite materials. *J. Sci.: Adv. Mater. Devices* **2020**, *5*, 308–315.

(22) Cui, H.; Liu, Y.; Ren, W. Structure switch between α -Fe₂O₃, γ -Fe₂O₃ and Fe₃O₄ during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles. *Adv. Powder Technol.* **2013**, *24*, 93–97.

(23) Malato-Rodríguez, S. Solar Detoxification and Disinfection. Encyclopedia of Energy; Elsevier Academic Press, 2004; pp 587–596. (24) Xu, Q.; Zhu, B.; Jiang, C.; Cheng, B.; Yu, J. Constructing 2D/ 2D Fe₂O₃/g-C₃N₄ Direct Z-Scheme Photocatalysts with Enhanced H₂ Generation Performance. Sol. RRL **2018**, 2, 1800006.

(25) She, X.; Wu, J.; Xu, H.; Zhong, J.; Wang, Y.; Song, Y.; Nie, K.; Liu, Y.; Yang, Y.; Rodrigues, M.-T. F.; Vajtai, R.; Lou, J.; Du, D.; Li, H.; Ajayan, P. M. High Efficiency Photocatalytic Water Splitting Using 2D α -Fe₂O₃/g-C₃N₄ Z-Scheme Catalysts. *Adv. Energy Mater.* **2017**, *7*, 1700025.

(26) Li, Y.; Zhu, S.; Liang, Y.; Li, Z.; Wu, S.; Chang, C.; Luo, S.; Cui, Z. Synthesis of α -Fe₂O₃/g-C₃N₄ photocatalyst for high-efficiency water splitting under full light. *Mater. Des.* **2020**, *196*, 109191.

(27) Arzaee, N. A.; Mohamad Noh, M. F.; Mohd Ita, N. S. H.; Mohamed, N. A.; Mohd Nasir, S. N. F.; Nawas Mumthas, I. N.; Ismail, A. F.; Mat Teridi, M. A. Nanostructure-assisted charge transfer in alpha-Fe₂O₃/g-C₃N₄ heterojunctions for efficient and highly stable photoelectrochemical water splitting. *Dalton Trans.* **2020**, *49*, 11317– 11328.

(28) Jiang, Z.; Wan, W.; Li, H.; Yuan, S.; Zhao, H.; Wong, P. K. A Hierarchical Z-Scheme alpha-Fe₂O₃/g-C₃N₄ Hybrid for Enhanced Photocatalytic CO₂ Reduction. *Adv. Mater.* **2018**, *30*, 1706108.

(29) Duan, B.; Mei, L. A Z-scheme $Fe_2O_3/g-C_3N_4$ heterojunction for carbon dioxide to hydrocarbon fuel under visible illuminance. *J. Colloid Interface Sci.* **2020**, 575, 265–273.

(30) Shen, Y.; Han, Q.; Hu, J.; Gao, W.; Wang, L.; Yang, L.; Gao, C.; Shen, Q.; Wu, C.; Wang, X.; Zhou, X.; Zhou, Y.; Zou, Z. Artificial Trees for Artificial Photosynthesis: Construction of Dendrite-Structured α -Fe₂O₃/g-C₃N₄ Z-Scheme System for Efficient CO₂ Reduction into Solar Fuels. ACS Appl. Energy Mater. **2020**, 3, 6561–6572.

(31) Xiao, D.; Dai, K.; Qu, Y.; Yin, Y.; Chen, H. Hydrothermal synthesis of α -Fe₂O₃/g-C3N4 composite and its efficient photocatalytic reduction of Cr(VI) under visible light. *Appl. Surf. Sci.* **2015**, 358, 181–187.

(32) Sun, S.; Ji, C.; Wu, L.; Chi, S.; Qu, R.; Li, Y.; Lu, Y.; Sun, C.; Xue, Z. Facile one-pot construction of α -Fe₂O₃/g-C₃N₄ heterojunction for arsenic removal by synchronous visible light catalysis oxidation and adsorption. *Mater. Chem. Phys.* **2017**, *194*, 1–8.

(33) Christoforidis, K. C.; Montini, T.; Bontempi, E.; Zafeiratos, S.; Jaén, J. J. D.; Fornasiero, P. Synthesis and photocatalytic application of visible-light active β -Fe₂O₃/g-C₃N₄ hybrid nanocomposites. *Appl. Catal.*, B **2016**, 187, 171–180.

(34) Singh, J.; Basu, S. Synthesis of mesoporous magnetic $Fe_2O_3/g-C_3N_4$ monoliths for Rhodamine B removal. *Microporous Mesoporous Mater.* **2020**, 303, 110299.

(35) Zhang, H.; Zhu, C.; Cao, J.; Tang, Q.; Li, M.; Kang, P.; Shi, C.; Ma, M. Ultrasonic-Assisted Synthesis of 2D α -Fe₂O₃@g-C₃N₄ Composite with Excellent Visible Light Photocatalytic Activity. *Catalysts* **2018**, *8*, 457.

(36) Zuo, S.; Xia, D.; Guan, Z.; Yang, F.; Zhang, B.; Xu, H.; Huang, M.; Guo, X.; Li, D. The polarized electric field on $Fe_2O_3/g-C_3N_4$ for efficient peroxymonosulfate activation: A synergy of 1O_2 , electron transfer and pollutant oxidation. *Sep. Purif. Technol.* **2021**, *269*, 118717.

(37) Wang, T.; Huang, M.; Liu, X.; Zhang, Z.; Liu, Y.; Tang, W.; Bao, S.; Fang, T. Facile one-step hydrothermal synthesis of α -Fe₂O₃/ g-C₃N₄ composites for the synergistic adsorption and photodegradation of dyes. *RSC Adv.* **2019**, *9*, 29109–29119.

(38) Xu, Y.; Huang, S.; Xie, M.; Li, Y.; Xu, H.; Huang, L.; Zhang, Q.; Li, H. Magnetically separable $Fe_2O_3/g-C_3N_4$ catalyst with enhanced photocatalytic activity. *RSC Adv.* **2015**, *5*, 95727–95735.

(39) Geng, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Z-Scheme 2D/2D α -Fe₂O₃/g-C₃N₄ heterojunction for photocatalytic oxidation of nitric oxide. *Appl. Catal., B* **2021**, *280*, 119409.

(40) Bui, D.-P.; Nguyen, T.-D.; Le Vo, T. T.; Cao, T. M.; You, S.-J.; Pham, V. V. SnO_{2-x} Nanoparticles Decorated on Graphitic Carbon Nitride as S-Scheme Photocatalysts for Activation of Peroxymono-sulfate. *ACS Appl. Nano Mater.* **2021**, *4*, 9333–9343.

(41) Bao, Y.; Song, S.; Yao, G.; Jiang, S. S-Scheme Photocatalytic Systems. *Sol. RRL* **2021**, *5*, 2100118.

(42) Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-Scheme Heterojunction Photocatalyst. *Chem* **2020**, *6*, 1543–1559.

(43) Fina, F.; Callear, S. K.; Carins, G. M.; Irvine, J. T. S. Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction. *Chem. Mater.* **2015**, *27*, 2612–2618.

(44) Gao, J.; Zhou, Y.; Li, Z.; Yan, S.; Wang, N.; Zou, Z. High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity. *Nanoscale* **2012**, *4*, 3687–3692.

(45) Shi, M.; Wu, T.; Song, X.; Liu, J.; Zhao, L.; Zhang, P.; Gao, L. Active Fe_2O_3 nanoparticles encapsulated in porous g- C_3N_4 /graphene sandwich-type nanosheets as a superior anode for high-performance lithium-ion batteries. *J. Mater. Chem. A* **2016**, *4*, 10666–10672.

(46) Ma, L.; Fan, H.; Fu, K.; Lei, S.; Hu, Q.; Huang, H.; He, G. Protonation of Graphitic Carbon Nitride $(g-C_3N_4)$ for an Electrostatically Self-Assembling Carbon@g-C₃N₄ Core-Shell Nanostructure toward High Hydrogen Evolution. ACS Sustainable Chem. Eng. **2017**, *5*, 7093–7103.

(47) Thaweesak, S.; Wang, S.; Lyu, M.; Xiao, M.; Peerakiatkhajohn, P.; Wang, L. Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting. *Dalton Trans.* **2017**, *46*, 10714–10720.

(48) Zhao, D.; Wang, Y.; Dong, C.-L.; Huang, Y.-C.; Chen, J.; Xue, F.; Shen, S.; Guo, L. Boron-doped nitrogen-deficient carbon nitridebased Z-scheme heterostructures for photocatalytic overall water splitting. *Nat. Energy* **2021**, *6*, 388–397.

(49) Babar, S.; Gavade, N.; Shinde, H.; Gore, A.; Mahajan, P.; Lee, K. H.; Bhuse, V.; Garadkar, K. An innovative transformation of waste toner powder into magnetic $g-C_3N_4$ -Fe₂O₃ photocatalyst: Sustainable e-waste management. *J. Environ. Chem. Eng.* **2019**, *7*, 103041.

(50) Han, T.; Wei, Y.; Jin, X.; Jiu, H.; Zhang, L.; Sun, Y.; Tian, J.; Shang, R.; Hang, D.; Zhao, R. Hydrothermal self-assembly of α -Fe₂O₃ nanorings@graphene aerogel composites for enhanced Li storage performance. *J. Mater. Sci.* **2019**, *54*, 7119–7130.

(51) Zhu, B.; Xia, P.; Li, Y.; Ho, W.; Yu, J. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g- C_3N_4/Ag_2WO_4 photocatalyst. *Appl. Surf. Sci.* **2017**, *391*, 175–183.

(52) Bandaru, S.; Saranya, G.; Liu, W. W.; English, N. J. Firstprinciples studies on α -Fe₂O₃ surface slabs and mechanistic elucidation of a g-C₃N₄/ α -Fe₂O₃ heterojunction. *Catal. Sci. Technol.* **2020**, *10*, 1376–1384.

(53) Meng, F.; Song, M.; Song, B.; Wei, Y.; Cao, Q.; Cao, Y. Enhanced degradation of Rhodamine B via alpha-Fe₂O₃ microspheres induced persulfate to generate reactive oxidizing species. *Chemosphere* **2020**, 243, 125322.

www.acsanm.org

(54) Li, N.; Tian, Y.; Zhao, J.; Zhang, J.; Zuo, W.; Kong, L.; Cui, H. Z-scheme 2D/3D g- $C_3N_4@ZnO$ with enhanced photocatalytic activity for cephalexin oxidation under solar light. *Chem. Eng. J.* **2018**, 352, 412–422.

(55) Askari, N.; Beheshti, M.; Mowla, D.; Farhadian, M. Synthesis of $CuWO_4/Bi_2S_3$ Z-scheme heterojunction with enhanced cephalexin photodegradation. J. Photochem. Photobiol., A **2020**, 394, 112463.

(56) Nguyen, X. S.; Pham, T. D.; Vo, H. T.; Ngo, K. D. Photocatalytic degradation of cephalexin by $g-C_3N_4/Zn$ doped Fe₃O₄ under visible light. *Environ. Technol.* **2021**, *42*, 1292–1301.

(57) Aram, M.; Farhadian, M.; Solaimany Nazar, A. R.; Tangestaninejad, S.; Eskandari, P.; Jeon, B.-H. Metronidazole and Cephalexin degradation by using of Urea/ $TiO_2/ZnFe_2O_4/Clinopti-$ loite catalyst under visible-light irradiation and ozone injection. *J. Mol. Liq.* **2020**, *304*, 112764.

(58) Rabanimehr, F.; Farhadian, M.; Nazar, A. R. S.; Moghadam, M. Fabrication of Z-scheme $Bi_2WO_6/CNT/TiO_2$ heterostructure with enhanced cephalexin photodegradation: Optimization and reaction mechanism. *J. Mol. Liq.* **2021**, 339, 116728.

(59) Dou, M.; Wang, J.; Gao, B.; Xu, C.; Yang, F. Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous $g-C_3N_4$: Mechanism, degradation pathway and DFT calculation. *Chem. Eng. J.* **2020**, *383*, 123134.

(60) Chen, Q.; Chen, L.; Qi, J.; Tong, Y.; Lv, Y.; Xu, C.; Ni, J.; Liu, W. Photocatalytic degradation of amoxicillin by carbon quantum dots modified $K_2 Ti_6 O_{13}$ nanotubes: Effect of light wavelength. *Chin. Chem. Lett.* **2019**, 30, 1214–1218.

(61) Nguyen, T. T.; Nam, S.-N.; Son, J.; Oh, J. Tungsten Trioxide (WO₃)-assisted Photocatalytic Degradation of Amoxicillin by Simulated Solar Irradiation. *Sci. Rep.* **2019**, *9*, 9349.

