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Abstract
Currently there are a wide variety of devices with dif-
ferent screen resolutions, color support, processing
power, and network connectivity, capable of receiv-
ing streaming video from the Internet. In order to serve
different multimedia content to all these devices, mid-
dleware proxy servers which transcode content to fit
different types of devices are becoming popular. In this
paper, we present result of several tests conducted with
different combination of video encoding parameters
and show their impact on network, CPU and energy re-
source usage of a transcoding server. For this purpose,
we implemented a dynamic video trancoding server,
which enables dynamic changes in different trancoding
parameters during a video streaming session.

Categories and Subject Descriptors C.2.m [Computer-
Communication Networks]: Miscellaneous

General Terms Design, Experimentation, Measure-
ment, Performance.

Keywords Dynamic video transcoding, middleware,
network bandwidth, processor load, streaming video

1. Introduction
Today there are wide ranges of devices with varying
features such as screen size, color depth, and process-
ing power. These devices may have different means by
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which they connect to the Internet: some may connect
through wired 100Mbps connections, some may use
wireless technology like CDMA, 1xEV-DO, EDGE,
and GPRS, while others may use 802.11b or 802.11g.
Hence, the available bandwidth per connection also
varies. These conditions make it impractical for content
servers to provide different formats of the same content
to all different types of devices. Therefore, middleware
proxy servers capable of transcoding content for vari-
ous devices are becoming popular[15, 10, 9, 8].

Due to increase in bandwidth availability, video
streaming is becoming a popular method of deliver-
ing video content to Internet enabled devices. Popu-
lar video streaming services such as Yahoo Launch-
cast, MSN Video, and MSNBC news web-cast are few
such examples. Video streaming can also be used for
web-casting lectures or presentations to a number of
online attendees at the same time. Client device het-
erogeneity in terms of screen size, processing capabil-
ities and network connectivity should be handled by a
video transcoding server. Moreover, a video transcod-
ing server must be able to address the following sce-
narios:

1. Switching between different devices: Some ubiqui-
tous computing applications allow transferring of a
video streaming session from a small PDA device
to big screen TV and vice versa. In this case, it is
required for transcoding server to change the frame
size of the video stream dynamically, which in turn
results into change in network and CPU load on the
server. Changes in frame size can be disconcerting
to the viewer, and so these changes would not be
continuous but would only be at isolated discrete
moments.



2. Varying network bandwidth at wireless client: For
devices that are connected in wireless environments,
perceived bandwidth changes continuously due to
varying characteristics of wireless channels, e.g.
fading, interference. This should be handled by
changing the transcoding of the content on server
dynamically, which results in to increase or decrease
in CPU load on the server.

3. Varying content access patterns: Access patterns to
Internet web sites are highly unpredictable and can
have spikes, which may be caused by a particular
event like an important sports match or breaking
news. For example during a crisis a large number
of clients will access streaming clips from a news
website. This scenario also results in drastic change
in CPU and network load on transcoding server.

Above scenarios indicate that transcoding server is
subject to varying network and CPU loads under dif-
ferent circumstances. Since transcoding servers have
fixed amount of computing resource and network band-
width, it should use dynamic transcoding capability to
balance the required network and CPU resources with
available network and CPU resources without discon-
necting the existing client or denying access to new
clients. Work in [4, 7] also indicates that energy con-
sumption in server farms is becoming more important
as the number of servers increases. This indicates that
energy consumption at transcoding server for different
transcoding paramters is an interesting relationship to
study. One can design an transcoding control algorithm
which optimizes the transcoding server resources while
serving to maximum number of clients at their accept-
able video stream quality. This requires establishing re-
lationship of different transcoding parameters of video
stream with network, CPU and energy resources of
transcoding servers.

In our work, we perform a systematic evaluation of
a transcoding server system by measuring impact of
different transcoding parameters such as q-scale, frame
size, and color depth on CPU, network and energy re-
source consumption at the trancoding server and a com-
parison of transcoding different video content. We also
describe our design and implementation of a dynamic
video transcoding proxy that we used for this evalua-
tion.

The rest of the paper is organized as follows. Sec-
tion 2 talks about related works. Section 3 describes

the design and implementation of the dynamic video
transcoding proxy we have used. Section 4 has ex-
perimental results, which show the effect of different
transcoding parameters on consumption of transcoding
server resources. We conclude in section 5.

2. Related Work
Substantial work has been done in the area of mid-
dleware servers. In [5], the authors present a mid-
dleware architecture to handle heterogeneous mobile
client problems. [3] presents a middleware-oriented so-
lution to the application session handoff problem. Mid-
dlware servers have been used to improve scalability in
[14]. Seminal work on proxy-based content adaptation
is BARWAN project [9]. The argument for adapting
data on the fly was made there. A middleware archi-
tecture specifically for dynamic video transcoding was
presented in [22]. They present a control algorithm,
which adapts transcoding to the varying network band-
width of a 3G-network device. Their algorithm relies
on experimental relationship between encoding bit rate
and frame rate for a given quantization scale, but lacks
data on proxy resource consumption in determining
desired transcoding.

We use the cascaded pixel domain transcoding (CPDT)
algorithm that was proposed in [16]. The authors of
[2] propose a frequency domain transcoding algorithm
which significantly reduced computational complex-
ity compared to the CPDT approach. [6] proposes a
video transcoding algorithm that integrates error con-
trol schemes into the transcoding. They present a two-
pass video transcoding scheme that allocates bits be-
tween source coding and channel coding.

The effect of transcoding on visual quality has also
been studied in literature. A number of studies [11]
prove the intuition that sequences with lots of motion
require higher frame rate is wrong. Another study [21]
shows that large quantization steps should be avoided.

Our work presents experimental measurements of a
real transcoding server and can be used in conjunction
with these results for designing algorithms for the mod-
ule that controls transcoding parameters.

3. Design and Implementation
In this section, we describe the design and implementa-
tion of an open source based dynamic video transcod-
ing proxy. The design of video transcoding proxy sys-
tem leverages middleware architecture previously used
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Figure 1. Transcoding architecture

in many transcoding proxy designs. Following is an
overview of the transcoding proxy design.

3.1 Design Overview
The design of our video transcoding proxy is illustrated
in Figure 1. The system consists of following three
components.

1. The content server provides high quality video
streams to the transcoding proxy. The content server
is typically a network of file servers with load
balancing mechanisms. Examples of such content
servers are CNBC News web-cast server or MSN
video server.

2. The transcoding proxy is responsible for perform-
ing dynamic transcoding of the video content as
per the client preferences and different transcoding
parameters supplied by a control mechanism. The
proxy uses the Cascaded Pixel Domain Transcoder
(CPDT) scheme initially proposed in [16], which
consists of an encoder connected to a decoder. This
particular transcoding scheme is flexible since the
frame is fully decoded to raw pixels before re-
encoding, which makes dynamic change in transcod-
ing parameters easier. The controller module con-
trols transcoding by changing the frame size, Q-
scale (or quantization scale) and color transcod-
ing parameters for encoder. These parameters can
be changed using a control algorithm, which takes
client device’s profile, user’s preferences, proxy
server resource usage, and network bandwidth avail-
able at the client device into consideration.

The controller can have access to client device’s
profile and user preferences from user database or it

can get that information along with the content re-
quest. The controller module may get client’s avail-
able network bandwidth information directly from
client device or some by monitoring network condi-
tions. The dotted line in Figure 1 between the client
device and the controller is an optional communica-
tion link between those modules. Note that design
of the control logic as well as control channel com-
munication is a very complex issue and is not ad-
dressed in this paper. We are studying the relation-
ship between different transcoding parameters and
their impact on transcoding server resource usage,
which can be utilized in design of the transcoding
control algorithm.

3. The client device is used by end user to view the
video streaming and is characterized by its screen
size, color depth, processing power and network
connectivity. Laptops, PDAs and cellphones are ex-
amples of some such client devices.

3.2 Transcoding Parameters
Following is the description of the transcoding param-
eters that can be changed dynamically in our current
design.

3.2.1 Frame Size
This is the size of the video frame. It can be initially
specified based on the clients screen size. In section 3,
we have taken measurements of streaming video with
different frame sizes and the results show that smaller
frame sizes can take up considerably less network
bandwidth. If the client is experiencing network con-
gestion while streaming a video, the parameter on the



transcoding proxy can be dynamically changed so that
the size of the frame is reduced and the client receives
continuous streaming, but with smaller frame size (Fig-
ure 2). If the network conditions improve, frame size
can be converted back to size the session started with.
One could extend the proxy further to support hand-
offs between devices, where the dynamic scaling of
the frame size would be very useful for devices with
different screen sizes. MPEG standard requires a fresh
restart of the video stream in order to change the frame
size. In order to circumvent this limitation we keep the
original frame size, but insert a black band around the
video content as shown in Figure 2.

Figure 2. Frame Scaling for width and height by 50%

3.2.2 Color Depth
MPEG standard specifies a single pixel format where
each pixel is represented in the YUV scheme, where
Y is the luminance, and U and V specifies the chromi-
nance. [12] Because each pixel is represented always
with 12 bits (e.g. 4:2:0 planar format), we are only ex-
pecting minimal performance improvements by chang-
ing the video to gray scale.

3.2.3 Q-scale
The Q-scale is a parameter used to compress a given
block of a video frame. Each block is a 8 × 8 pixel
square to which a DCT (Discrete Cosine Transform)
is applied (similar to JPEG encoding). The coefficients
Cij of each block are then divided by a quantization
matrix Mij and a quantization scale q:

C ′
ij =

Cij

q ·Mij
(1)

The encoder quantizes to zero the values of C ′
ij that

are below a certain threshold. Each block is then fed
into a RLE module (Run Length Encoder) that does
zigzag encoding to achieve better compression. A very
high Q-Scale will give a “pixilated” look to a frame
(Figure 3) due to the loss of high frequency components

in each frame block. Q-Scale value can be changed
from 1 to 31, where 1 indicates highest quality video
and 31 indicates lowest quality video.

Figure 3. Transcoding operation with a high Q-scale.

3.3 Implementation Details
The video transcoding proxy was implemented us-
ing Tinyproxy [20] and FFserver [17]. Tinyproxy is
a lightweight http proxy server licensed under GPL.
FFserver is a streaming server for both audio and video
licensed under LGPL.

FFserver provides two codec libraries (libavcodec
and libavformat) that can be used to encode and de-
code MPEG video. We modified tinyproxy and inte-
grated it with the FFmpeg libraries so that it would be
able to decode and encode a video stream.

The transcoding process is initiated by the client by
sending its device specification, along with the request
for a video to the proxy. If transcoding is required,
the proxy begins to get the requested video stream and
decodes each frame, and then re-encodes it applying
the parameters specified by the client during encoding
and streams it to the client device. We implemented Q-
scaling, frame scaling, and altering color depth while
re-encoding the frame at the proxy. The transcoding
then works as follows: Tinyproxy has one parent pro-
cess, which spawns multiple http server processes that
will serve incoming http requests from clients. We
modified tinyproxy so that in addition it spawns an
additional child, which serves as a dynamic transcod-
ing request handler. The controller shown in Figure 1
connects to this request handler on the proxy. The con-
troller can dynamically change the video transcoding
parameters while streaming.

The algorithm for the transcoder is shown in the
flowchart in Figure 4. If the input frame satisfies the
transcoding requirements, it is directly sent to the
output buffer without being decoded and re-encoded.
Otherwise, the frame is decoded. Then, the codec
is changed by the transcoder if the transcoding pa-



rameters have changed since the last frame was de-
coded. The frame is then re-encoded with the current
codec and stored in the output buffer, from where it is
streamed to the client.
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Figure 4. Transcoding Algorithm

4. Measurements
To understand how the trans-coding system reacts to
different configuration parameters, we set up a testbed
and did the following measurements:

1. CPU usage,
2. Bandwidth usage, and,

3. Energy consumption

4.1 Testbed Setup
For each of the above measurements we used different
trans-coding parameters (Q-scale, video frame size and
gray/color scale). All the measurements were done at
the proxy server. At the client side, we used MPlayer
[13] to play the video streams. CPU usage was com-
puted as the CPU time spent by the transcoder during
the entire video stream. This CPU time has two com-
ponents: user time and system time. The user time is
the CPU time allocated to the main user-level process
and all its children, while the system usage is the CPU
time allocated to kernel processes (i.e., disk I/O, net-
work access) during the user process execution 1. All
CPU measurements presented in this paper refer to the
total time (user + system).

We used Tcpdump [18] to trace the TCP connec-
tions to the server and computed the throughput of
these connections using Tcptrace [19].

For energy measurements, we used a laptop with
1.8GHz AMD processor and 512MB of RAM config-
ured as the proxy. Since energy measurements are very
sensitive to other processes running in the system at
the same time as the transcoder, we turned off all un-
necessary processes leaving only the transcoding proxy
server and some kernel processes running. The ACPI
[1] system of the laptop allowed us to get readings of
voltage levels and current drawn from the battery. ACPI
can be integrated in the Linux kernel and has a mapping
to the /proc file system where current battery status can
be accessed. Since ACPI takes measurements directly
from the battery, we unplugged the power supply to
avoid its constant recharge. We took periodic measure-
ments of voltage level and current intensity from the
battery, as the proxy was processing the video stream.
We then computed the energy as follows:

E(T ) =
∫ T

0
v(t) · i(t) · dt

∼
N∑

n=1

v(n∆t) · i(n∆t) ·∆t (2)

Where v(t), i(t) are instantaneous voltage and cur-
rent drawn from battery, T is the total measurement

1 We used the C function getrusage() to return the values of CPU
usage



time, N is the number of samples taken during T and
∆t = T

N .
For the following measurements we used a MPEG-4

encoded video of length 3.5 minutes, with initial frame
size 320x240at24 frames a second.

4.2 Q-scale Measurements
For the CPU measurements with different Q-scales we
used a 4 minute video clip file in avi format (the video
stream was encoded in MPEG-2). We took two mea-
surements for each allowed value of the Q-scale (1-31)
and averaged them. The results are shown in Figure 5.
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Figure 5. CPU usage for different values of Qscale.

As can be seen from the figure, the total CPU us-
age has a linear decay for Q-scale<5 and a descen-
dent trend as we go up in the Q-scale. This was ex-
pected since MPEG encoding performs a lossy com-
pression over the video image and the amount of com-
pression/loss is greatly affected by the Q-scale parame-
ter. As the value of Q-scale increases, the quantization
matrix will contain smaller DCT components, which
eventually will be quantized as zero. Since this is fol-
lowed by a RLE (Run Length Encoding) in each block
of the image, a sequence of consecutive zeros will be
greatly compressed, thus reducing the time to encode a
sequence of video frames (containing B and P frames).

The irregularity of the curves (ups and downs) is due
to the fact that we were using a precision of seconds to
measure the CPU time, which introduces some level of
noise in the measurements (at least one second error
margin).

The throughput measurements of Figure 6 were
taken using the same video file as above with also two
samples per Q-scale:
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Figure 6. Throughput for different Q-scales.

Figure 6 clearly shows that throughput drops very
fast for Q<5 and then converges to a stable value as we
increase the Q-scale. This was also expected since as
the Q-scale increases, the number of bits necessary to
encode the blocks of each video frame is also reduced,
thus reducing the amount of data to be transmitted over
the network.

4.3 Frame Scale Measurements
MPlayer uses avi decoder functions supplied by the
libavcodec library, however the decoder does not sup-
port frame size changes during the playback of the
video stream. To overcome this limitation we used an
image resize function provided by the libavformat li-
brary. This function resizes the video image and inserts
black strips around the resized image (in the case of a
size reduction) but keeps the original height and width
of the video frame (Figure 2). Black blocks in a video
frame have a high degree of compression (∼ 100%)
due to the MPEG image compression scheme (simi-
lar to JPEG). In addition, the constant black blocks in
the image take advantage of the MPEG motion predic-
tion algorithm to increase the compression level of the
video stream and obtain both CPU and bandwidth sav-
ings.

Figures 7 and 8 represent the CPU usage (at the
proxy) and throughput (at the client) for different frame
scales. As an example, after applying a 50% frame
scale to a 640x480 frame, the size becomes 320x240,
i.e., the scaling applies to both frame width and height.
As observed in Figure 7, the CPU usage increases as
we approach the original scaling of the frame. Indeed
CPU cycles are saved as the original video frame is
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Figure 7. CPU usage for different frame size.

shrunken and the black portion of the frame increases.
The encoding will be faster because of:

1. MPEG motion prediction working in the time do-
main and,

2. MPEG image compression working in the spatial
domain.

The same reasoning applies for the throughput curve
in Figure 8.

Notice that both CPU usage and throughput curves
drop at 100%. This is because with 90% scale, the
MPEG encoder still has to encode a tiny black strip
on bottom/right sides, however this strip is removed
when the frame scaling is set to 100%. The black strip
is a discontinuity in spatial domain (high frequencies
in DCT) and needs additional bits to be encoded (in
comparison to 100% scaling).
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Figure 8. Throughput for different frame scales.

4.4 Gray Scale Measurements
The MPEG standard uses the Y UV scheme instead
of the traditional RGB scheme to encode each pixel.
Y is the luminance component, while U and V are
the blue and green chrominance respectively. The most
common format is the Y UV 4 : 2 : 0 planar format
that uses 3 planes (Y, U, V ) to encode a given frame.
By using gray scale, we are effectively using only the
Y plane, since we are discarding the color information.
However, MPEG standards require that all three YUV
planes exist in the video stream, which means that
each pixel is still represented by 12-bit YUV as in the
color case. Most of the image information is in the
luminance plane (Y plane). Therefore, the throughput
and CPU usage are not significantly improved by using
gray scale, which were confirmed by our tests.

4.5 Energy Measurements
We did several energy measurements at the proxy, un-
der the conditions described previously in the testbed
setup. By changing one transcoding parameter at a
time, we could effectively identify the impact of each
parameter on the overall energy consumption. More-
over, we were not so much interested in observing
the absolute values of the measurements, but to com-
pare energy consumptions of different configurations.
These measurements can also extend to other systems
like desktops and server farms [7, 4]. Proxy energy
consumption is an important parameter in production
middleware systems and large data centers, and need to
be minimized as much as possible.
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parameters.

Energy was computed according to (2) over a 4-
minute video. The frame scale (FS) tests were per-



formed with a Q-scale of 1 and the Full test was done
without any transcoding at all. Figure 9 shows a behav-
ior similar to that of CPU usage for different transcod-
ing parameters. Indeed, great savings can be achieved
by using frame scale reduction or using high Q-scale
values.

4.6 Different Video Contents
The impact of transcoding parameters may depend also
on the content of the video streams, such as different
textures, colors, and movement. We did experiments
with four different types of videos that provide a range
of different levels of color, textures and motion:

1. Cartoon: video clip with flat colors, with fewer tex-
tures.

2. News: interview between a news caster and a re-
porter, the background behind the both the news
caster and the reporter is static and there is very little
movement in each frame.

3. Sports: Formula One race, with fast moving cars,
there is a lot of movement between each frame.

4. Music Clip: video with static parts and parts with
lots of movement, and has frames with flat colors as
well as heavy textures.
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All the videos were MPEG-4 encoded and each clip
was of length 45 seconds, with initial frame size
640x480at30 frames per second. For each video, we
compared the performance in terms of CPU and through-
put between an encoding with Q-scale=2 and an encod-
ing with Q-scale=31. We expect to observe a decreases
in both CPU and throughput usage when going from
Q-scale=2 to Q-scale=31, but would this decrease be
the same for all videos?
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Figure 11. Throughput for different videos.

Figure 10 shows the results for CPU usage: the num-
bers above the bars represent the percentage of CPU us-
age of a transcoding with Q-scale=31 compared to the
values achieved for Q=2, e.g. a bar with 80% means
that trancoding the video with Q-scale=31 takes 80%
of the CPU usage of the transcoding with Q=2.

Note that the values are approximately the same for
all videos (between 72% and 80%) , indicating that
the result of variation of encoding parameters is not
impacted by the content of the video.

A similar reasoning can be applied to Figure 11,
where we show the throughput measured at the server
for different videos.

5. Conclusion
We presented the design and implementation of an
open source dynamic video transcoding proxy server
based on a three-tier transcoding proxy architecture.
The video transcoding proxy provides flexibility for
applying different transcoding control algorithms with-
out modifying the other components of the system.

We conducted a systematic evaluation of the system
parameters: Q-scale, color depth, and frame size on
CPU usage, bandwidth usage, and energy consumption
of the transcoding proxy.

Our measurements show that by reducing the image
quality down to a Q-Scale of 10, one can dramatically
decrease proxy CPU cycles and streaming through-
put. Furthermore, video frame size reduction results in
a significant decrease of perceived throughput at the
client side. Our measurements also show that a 50%
scaling on both, width and height of the video frame ef-
fectively reduces the throughput to approximately 50%.
In addition, energy measurements show that by using a



Q-scale of greater than 5, it is possible to reduce en-
ergy consumption at proxy server by more than 50%,
in comparison to the no-transcoding scenario. We also
study the impact of transcoding of different video con-
tent and find that the result of variation of these encod-
ing parameters is not impacted by the content of the
video.

We plan to develop an automatic controller mod-
ule based on our measurement results. The automatic
control module would enable us to explore different
feedback mechanisms to estimate the client’s perceived
throughput and experience during the transcoding pro-
cess and this remains as future work.
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