
Planar Hop Spanners for Unit Disk Graphs?

Nicolas Catusse, Victor Chepoi, and Yann Vaxès

Laboratoire d’Informatique Fondamentale
Université d’Aix-Marseille

Faculté des Sciences de Luminy
F-13288 Marseille Cedex 9, France

{nicolas.catusse,victor.chepoi,yann.vaxes}@lif.univ-mrs.fr

Abstract. The simplest model of a wireless network graph is the Unit
Disk Graph (UDG): an edge exists in UDG if the Euclidean distance be-
tween its endpoints is ≤ 1. The problem of constructing planar spanners
of Unit Disk Graphs with respect to the Euclidean distance has received
considerable attention from researchers in computational geometry and
ad-hoc wireless networks. In this paper, we present an algorithm that,
given a set X of terminals in the plane, constructs a planar hop span-
ner with constant stretch factor for the Unit Disk Graph defined by X.
Our algorithm improves on previous constructions in the sense that (i)
it ensures the planarity of the whole spanner while previous algorithms
ensure only the planarity of a backbone subgraph; (ii) the hop stretch
factor of our spanner is significantly smaller.

Key words: Planar spanner, Unit Disk Graph, Geometric Networks,
Wireless Networks

1 Introduction

The problem of constructing sparse spanners (i.e., subgraphs approximating the
distances between the vertices of the original graph up to a certain stretch factor)
of geometric graphs has received considerable attention in computational geome-
try and ad-hoc wireless networks; we refer the reader to the book by Narasimhan
and Smid [10]. The simplest model of a wireless network graph is the Unit Disk
Graph (UDG): an edge between two terminals u, v exists in this graph if the
Euclidean distance between u and v is at most one. Some routing algorithms
such as Greedy Perimeter Stateless Routing require a planar subgraph to route
the messages through the network. Therefore, additionally to the small stretch
factor, it is plausible to require that the obtained spanner is also planar.

In this paper, we design an algorithm that, given a set X of n points on
the plane, constructs a planar spanner with constant hop stretch factor for the
Unit Disk Graph defined by X. Contrary to the problem of constructing planar
Euclidean length spanners, for which several algorithms provide small stretch
? This research was partly supported by the ANR grant BLAN06-1-13889 (projet

OPTICOMB).

2 Nicolas Catusse, Victor Chepoi, and Yann Vaxès

factors (see [9], for instance), the problem of constructing planar hop spanners
with constant stretch factor remained open. Some partial solutions ensuring the
planarity of a certain backbone subgraph were proposed in [1, 8]. Our algorithm
improves on the results of [1, 8] in the sense that (i) our construction ensures
the planarity of the whole spanner; (ii) the hop stretch factor provided by our
algorithm is significantly better. Additionally, our spanner can be constructed
via a localized distributed algorithm. Planarity, low stretch factor, and localized
construction constitute key ingredients to obtain efficient routing schemes for
ad-hoc and wireless geometric networks.

The rest of the paper is organized as follows. In Section 2, we briefly review
the literature related to geometric spanners and Unit Disk Graphs. Section 3
presents a very simple construction that provides a sparse spanner for UDG
with low hop stretch factor. In general, this construction does not ensure the
planarity of the spanner. Section 4 describes an algorithm that updates the
spanner defined in Section 3 in order to obtain a planar spanner still preserving
a small hop stretch factor. In Section 5, we prove some results necessary to prove
the planarity and the hop stretch of the spanner computed by our algorithm.

2 Previous Work

We start with basic definitions. Given a connected graph G = (V,E) with n
vertices embedded in the Euclidean plane, the hop length of a path γ(u, v)
between two vertices u, v of G is the number of edges of γ(u, v). The hop distance
dG(u, v) between u and v in G is the length of a shortest path connecting u and
v in G. A subgraph H of G is a spanner of G if there is a positive real constant
t such that for any two vertices, dH(u, v) ≤ tdG(u, v). The constant t is called
the hop stretch factor of H. If instead of number of edges in a path γ(u, v) we
consider the total Euclidean length of the edges of γ(u, v), then we can define
another distance measure on G and a corresponding notion of a spanner, which is
called Euclidean spanner and its stretch factor is called Euclidean stretch factor.
All results of our paper concern hop spanner of Unit Disk Graphs, therefore
we often write “spanner” and “distance” instead of “hop spanner” and “hop
distance”.

Spanner properties of geometric graphs have been surveyed by Eppstein [5]
and more recently by Bose and Smid [3]. Bose et al. [2] proved that the Gabriel
Graph is an Ω(

√
n) hop spanner and a Θ(

√
n) Euclidean spanner for UDG, and

that the Relative Neighborhood Graph is a Θ(n) and a Θ(n) Euclidean span-
ner for UDG. Gao et al. [8] proposed a randomized algorithm to construct an
Euclidean and a hop spanner for UDG. This algorithm creates several clusters
(using a method described in [7]) connected by a Restricted Delaunay graph.
The subgraph consisting of edges between distinct clusters is planar. This con-
struction provides a constant Euclidean stretch factor in expectation but its hop
stretch factor is not given. Alzoubi et al. [1] proposed for the same problem a
distributed algorithm that uses the Local Delaunay Triangulation defined by Li,
Cǎlinescu, and Wan in [9]. However, the hop stretch factor obtained by [1] is

Planar Hop Spanners for Unit Disk Graphs 3

huge (around 15000) and the intra-cluster edges may cross the edges of the tri-
angulation (and therefore does not provide a full planar hop spanner). Chen et
al. [4] presented the construction of Euclidean spanners for Quasi-UDG which
can be used for routing. Their construction method is similar to our approach
in the sense that it also uses a regular squaregrid to partition the set of termi-
nals into clusters (for a similar partition of the plane used for routing, see [11]).
Recently Yan, Xiang, and Dragan [12] established a balanced separator result for
Unit Disk Graph which mimics the celebrated Lipton-Tarjan planar balanced
separator theorem. Based on this result, they derive a compact and low delay
routing labeling scheme for UDG. Finally, for the construction of spanner of
general disk graphs see also [6].

3 Sparse almost planar spanners

Let X be a set of n points (terminals) in the plane. In this section, we describe a
very simple algorithm, namely Algorithm 1, that constructs a sparse 5-spanner
H ′ = (X,E′) of the Unit Disk Graph G = (X, E) defined by X. It uses a regular
grid Γ on the plane with squares of side

√
2

2 . A square of Γ is said to be nonempty
if it contains at least one terminal from X. For any point x ∈ X, let π(x) denote
the square of Γ containing x. The graph H ′ = (X,E′) has two types of edges :
a subset E′

0 ⊆ E′ of edges connecting terminals lying in the same square and
a subset E′

1 of edges running between terminals lying in distinct squares; let
E′ = E′

0 ∪ E′
1. To define E′

0, in each nonempty square π we pick a terminal
(the center of π) and add to E′

0 an edge between this terminal and every other
terminal located in π. Clearly, all of them are edges of G because the distance
between two points lying in the same square of side

√
2

2 is at most 1. In E′
1 we

put exactly one edge of G running between two nonempty squares if such an
edge exists. In the sequel, with some abuse of notation, we will denote by ππ′

the shortest edge of UDG running between two squares π and π′.

Algorithm 1 Construction of sparse spanner H ′

1: For each square π, pick a terminal cπ (the center of π) and add to E′
0 an edge

between cπ and every other terminal located in π.
2: For all squares π, π′ connected by an edge of G, add to E′

1 the shortest edge between
π and π′.

Proposition 1. The graph H ′ = (X, E′) is a 5-hop spanner for G with at most
10n edges.

Proof. For the first assertion, it suffices to prove that dH′(u, v) ≤ 5dG(u, v) for
any two adjacent in G vertices u, v. If u and v belong to the same square π,
then they are neighbors of the center of π, hence they are connected in H ′ by a
path of length 2. Now, suppose that u and v belong to different squares. Since

4 Nicolas Catusse, Victor Chepoi, and Yann Vaxès

uv is an edge of G, the graph H ′ must contain an edge u′v′ of G with u′ ∈ π(u)
and v′ ∈ π(v). Therefore the terminals u and v are connected in H ′ by a path
of length ≤ 5 consisting of two paths of length 2 passing via the centers of the
clusters π(u) and π(v) and connecting u and v to u′ and v′, respectively, and the
edge u′v′ joining these clusters. To prove the second assertion, let n0 denote the
number of non-empty squares. Then obviously |E′

0| ≤ n − n0. Since from each
nonempty square π we can have edges of E′

1 to at most 20 other such squares(see
Fig. 2), and since each such edge is counted twice, we conclude that |E′

1| ≤ 10n0.
Therefore |E′| ≤ (n− n0) + 10n0 ≤ 10n. ¤

4 Planar spanners

In this section, we describe the Algorithm 2 that builds a planar hop spanner
H for a UDG graph G. We first compute a planar set of inter-cluster edges E3

whose end-vertices belong to distinct squares of Γ and then, a second set of
intra-cluster edges E0 connecting the vertices that belong to the same square.

4.1 Computing E3

First we define the l1-distance l1(π, π′) between two squares π and π′ in Γ as
the graph distance between π and π′ in the dual grid (squares become vertices
and two vertices are adjacent if their squares have a common side). The l1-length
l1(ab) of an edge ab of G is the l1-distance between the squares that contain their
end-vertices and the interval I(x, y) between two terminals x, y ∈ X consists of
all squares lying on a shortest l1-path of the dual grid between π(x) and π(y).

Now, we give an brief and informal description of Algorithm 2 for comput-
ing E3. The edge set E3 is a planar subset of the edge set E′

1 defined in the
previous section. We remove some edges to obtain a planar graph while preserv-
ing a bounded hop stretch factor of the resulting spanner. The principle of our
algorithm is to minimize the l1-length of preserved edges: if the end-vertices of
an edge uv of E′

1 are joined by a path in E′
1 having the same total l1-length as

uv, then uv is removed. An edge with large l1-length potentially crosses many
squares and, as a consequence, many edges of UDG. Hence, taking such an edge
in our planar spanner would exclude many other (potentially, good) edges from
the spanner. For each removed edge, there is a path having a constant number of
edges between its end-vertices. Therefore, after the removal of these edges, the
stretch factor is still bounded by a constant. The minimization of the l1-length
is not sufficient to obtain a planar graph but we show that this operation con-
siderably decreases the number of crossing configurations. The next step of the
algorithm consists in repairing the remaining crossings. During this step, some
edges are removed to ensure the planarity and some other edges are added back
to preserve a small distance between the end-vertices of removed edges. Notice
that our construction uses only local information and can be easily implemented
as a localized distributed algorithm. Using the proof outlined below, we establish
that the edge set obtained at the end of this process is indeed planar.

Planar Hop Spanners for Unit Disk Graphs 5

Algorithm 2 Construction of the spanner H

1: Let H ′ = (X, E′
1) be the inter-cluster graph returned by Construction of Sparse

Spanner.
2: Let G1 = (X, E1) be the graph obtained from H ′ by removing every edge ab ∈ E′

1

whose end-vertices are joined by a replacement path, i.e., a path P 6= ab between
π(a) and π(b) such that l1(P) = l1(ab).

3: For each pair of crossing edges xy, x′y′ of E1, identify the crossing configuration
(according to Fig. 4) and remove the edge x′y′. Let G2 = (X, E2) be the graph
obtained from G1 by removing these edges.

4: For each edge x′y′ removed in Step 3, unless xy, x′y′ form a Configuration 0 or 4′,
if there is no replacement path in G2 for π(y)π(y′), then add the edge π(y)π(y′)
(according to Fig. 4). Let G3 = (X, E3) be the resulting graph.

5: Compute the set of intra-cluster edges E0 as described in subsection 4.2.
6: Output the graph H = (X, E0 ∪ E3).

x y x

y

x

y

x y

Type A (1× 3) Type B (2× 3) Type C (2× 2) Type O (1× 2)

Fig. 1. Classification of edges
Fig. 2. Twenty neighboring
squares

Fig. 3. Planar spanner H

6 Nicolas Catusse, Victor Chepoi, and Yann Vaxès

Theorem 1. The inter-cluster graph G3 = (X, E3) is planar.

To prove this theorem, we proceed in several steps (the proofs of Propositions
2, 4, 6, and 7 are postponed to the next section while the proofs of Propositions
5 and 8 are omitted due to space limitation). First, we classify the edges of G
according to the relative positions of the squares containing their end-vertices
(see Fig. 1). Then, using this classification, we consider all possible crossing con-
figurations between two edges of E1. Proposition 3 analyzes these configurations
and shows that in most cases one of the two crossing edges has a replacement
path.

Proposition 2. If the crossing configuration between two edges xy, x′y′ ∈ E′
1

does not belong to the list of Fig. 4, then one of these edges, say xy, has a
replacement path passing via π(x′) or π(y′).

Since the edges of E1 do not admit replacement paths, we deduce that only
a few crossing configurations may occur between two edges of E1.

Proposition 3. For two edges of E1, there exist only seven possible crossing
configurations listed in Fig. 4.

x
′

y
′

x y y
′

yx

x
′

x
′

y
′

yx

Configuration 0 Configuration 1 Configuration 2

yx

x
′

y
′

x

y
′

x
′

y

y

y
′

x
′

x
y

x
′

y
′

x

Configuration 3 Configuration 4 Configuration 4′ Configuration 5

Fig. 4. The seven remaining configurations after Step 2. The solid lines indicate the
edges in E′

1 and the dashed lines indicate the edges that may be or not in E′
1.

Now we consider the edges added at Step 4. To prove that the graph returned
by our algorithm is planar, we will show that these new edges do not intersect
each other and do not intersect the edges that survive Step 3. Let e′ ∈ E3 −E2

be an edge added during Step 4, let e ∈ E3 ∩ E2 be an edge crossing e′ that
survived Step 3. Let also xy, x′y′ ∈ E1 be the crossing edges due to which the

Planar Hop Spanners for Unit Disk Graphs 7

edge x′y′ has been removed and the edge e′ = π(y)π(y′) has been added. By
a case analysis of all configurations listed in Fig. 4, we verify that in all cases
except Configuration 0 and 4′ (easily treated separately) there is a replacement
path for e′ in G1 passing via π(x′). Since the edge e′ is added at Step 4 only if
it does not admit a replacement path in G2, the following result excludes the
existence of a replacement path for e′ distinct from the path going through π(x′).

Proposition 4. If the edge π(y)π(y′) from Fig. 4 has a replacement path in G1

distinct from the path that goes through π(x′), then there is a replacement path
between π(y) and π(y′) in G2.

To deal with the crossing configurations formed by the edges e and e′, we
distinguish two cases. Then either such a configuration belongs to the list from
Fig. 4 and a case analysis lead to a contradiction, or, by Proposition 2, one
of these two edges admits a replacement path that passes through a square
containing an end-vertex of the other edge. This edge must be e′ because e was
not removed during Step 2. However, as noticed above, Proposition 4 implies that
this path must be the one passing through π(x′), otherwise this replacement path
would survive Step 3 and e′ would not be added. Since the replacement path
arising in Proposition 2 passes via a square containing an end-vertex of e, the
edge e must be incident to π(x′). Therefore, in the proof of Proposition 5 we
analyze all possible crossings between e′ and an edge incident to π(x′).

Proposition 5. An edge from E3 − E2 cannot cross an edge from E3 ∩ E2.

Finally, we prove that the edges added during Step 4 do not cross each other.
First, notice that if two edges of E3 − E2 cross, then one of them cross an edge
from E2. By Proposition 5, this edge of E2 was removed during Step 3. Hence,
we get a crossing between an edge of E3 − E2 and an edge of E2 − E3. The list
of these configurations can be extracted from the proof of Proposition 5. They
are analyzed case by case to get the following proposition (and to conclude the
outline of the proof of Theorem 1):

Proposition 6. The edges of E3 − E2 cannot cross.

4.2 Computing E0

We will consider several choices for the set of edges E0 that interconnect the
vertices lying in the same square. Let α(E0) be the maximum distance in the
graph G0 = (X, E0) between two vertices belonging to the same square. In the
next subsection, the hop stretch factor of our spanner is expressed as a function
of α(E0). A possible choice for E0 is to set a clique or a star on terminals on
each non-empty square, yielding α(E0) = 1 and α(E0) = 2, respectively. In this
case, the diameter of the clusters is small but we do not get a planar spanner.
The following proposition shows that an appropriate choice of E0 ensures both
planarity and constant diameter of clusters.

Proposition 7. There exists a set of intra-cluster edges E0 such that H =
(X, E3 ∪ E0) is planar and α(E0) ≤ 44.

8 Nicolas Catusse, Victor Chepoi, and Yann Vaxès

4.3 Hop stretch factor

Now, we analyze the hop stretch factor of H, namely we show that H is a
10α(E0)+9 hop spanner for G. As noticed above, it suffices to prove the spanner
property for two adjacent vertices of G. After Step 1, we get a spanner H ′ whose
hop stretch factor is at most 2α(E0)+1. Since the maximal l1-length of an edge
of a Unit Disk Graph G is 3, if an edge from E1 is removed during Step 2, then it
is replaced by a path containing at most 3 edges from E2 for an edge of type B.
Taking into account the edges from E0, we obtain a stretch factor ≤ 4α(E0)+3.
In Step 3, again some edges are removed and replaced by paths. The following
proposition asserts that the resulting length of these paths is bounded. Finally,
in Step 4 edges are only added, thus the stretch factor cannot be worsened.

Proposition 8. If an edge e of E1 is removed during Step 3, then it is replaced
in E3 by a path containing at most 3l1(e) ≤ 9 edges.

Proposition 8 shows that after Step 4 an inter-cluster edge of G is replaced
by at most 9 inter-cluster edges of E3. Taking into account the edges of E0, we
get a final stretch factor equal to 10α(E0) + 9. Summarizing, here is the main
result of this paper:

Theorem 2. Given a set X of n terminals in the plane, the graph H = (X, E0∪
E3) computed by our algorithm is a planar spanner of the Unit Disk Graph G of
X with hop stretch factor at most 10α(E0) + 9.

5 Proof of Theorem 2

In this section, we sketch the proofs of most intermediate results necessary to
establish Theorem 2. Most of these proofs consist in a case analysis of several
configurations of points, which are treated using similar arguments. Due to space
limitation and to the repetitive nature of most proofs, in each proof we provide
a complete analysis only of some (most) representative configurations.

5.1 Preliminary results

We start with few simple useful observations.

Lemma 1. If [x, y] and [x′, y′] are two crossing line segments, then either |xx′| <
|xy| or |yy′| < |x′y′|.

Proof. Let p = [x, y]∩ [x′, y′]. By applying the triangle inequality to the triplets
(x, p, x′) and (y, p, y′), we get |xx′|+|yy′| < |xp|+|px′|+|yp|+|py′| = |xy|+|x′y′|,
whence at least one of the inequalities |xx′| < |xy| or |yy′| < |x′y′| holds. ¤

Lemma 2. If xy and x′y′ are two crossing edges of G, then at least one edge
from xx′, yy′ and one edge from xy′, x′y belongs to G.

Planar Hop Spanners for Unit Disk Graphs 9

Lemma 3. If xy and x′y′ are two crossing edges from E′
1 (i.e., shortest edges

between two squares), then the vertices x, y, x′, y′ belong to distinct squares of Γ .

Proof. Suppose that x and x′ belong to a square π. By Lemma 1, either |xy′| <
|x′y′| and x′y′ is not the shortest edge between π(x′) and π(y′), or |x′y| < |xy|
and xy is not the shortest edge between π(x) and π(y), a contradiction with the
assumption that xy and x′y′ belong to E′

1. ¤

Lemma 4. Let xy an edge of G. If a vertex z belongs to rectangle R(xy) having
xy as diagonal, then xz, zy ∈ G and thus the edge xy does not belong to E1.

Proof. As z belongs to a right triangle having xy as hypotenuse, we get |zx| <
|xy| and |zy| < |xy|. Since xy ∈ G, we deduce that xz and zy also belong to G,
yielding that xy does not belong to E1. ¤

Lemma 5. If π(x)π(x′), π(x′)π(y) ∈ G and x′ ∈ I(x, y), then xy /∈ E1.

Lemma 6. If xy is an edge of type A and z a vertex in the square between π(x)
and π(y), then z is adjacent to at least one of the end-vertices of xy.

5.2 Proof of Proposition 2

For each type of edges, we analyze the possible crossings between an edge xy
of this type and another edge x′y′. We specify two subsets of squares {πi, i =
1, ..., k} and {π′j , j = 1, ..., l} with x′ ∈ ⋃k

i=1 πi and y′ ∈ ⋃l
j=1 π′j that cover,

modulo rotations and symmetry, all possible crossing configurations (note that,
by Lemma 3, the vertices x, y, x′, y′ must belong to distinct squares). We provide
a complete analysis only for the case when the edge xy is of type A.

x
y

π
′

1
π
′

2

π
′

3
π
′

4
π
′

5
π
′

6
π
′

7

π
′

8 π
′

9 π
′

10

x
′

Fig. 5. Case ∗ ×A: x′ ∈ I(x, y)

x
y

π
′

2

π
′

4 π
′

5 π
′

6 π
′

7

π
′

3π
′

1

π1 π2

π5π4π3

Fig. 6. Case ∗ ×A: x′ /∈ I(x, y)

π2

π3 π4

y
′

π1 x

Fig. 7. π(x)π(y′)

Case 1: x′ ∈ I(x, y) (Fig. 5). In this case, we assert that exactly one edge xx′

or x′y belongs to G. Indeed, by Lemma 6 at least one of these edges belongs
to G. If both edges belong to G, then xy has a replacement path and does not
belong to E1. Suppose without loss of generality that xx′ does not belong to G.
By Lemma 3, we deduce that yy′ ∈ G, thus x′y, yy′ ∈ G. Furthermore, since x′y′

belongs to E1, by Lemma 5 y does not belong to the interval between x′ and y′.
Then y′ /∈ π′2 ∪ π′6 ∪ π′7 ∪ π′10. Since xx′ /∈ G, necessarily y′ /∈ π′1 ∪ π′3 because,
if y′ belongs to one of these squares, then either x ∈ R(x′y′) or x′ ∈ R(xy) and

10 Nicolas Catusse, Victor Chepoi, and Yann Vaxès

xx′ ∈ G by Lemma 4, a contradiction. If y′ ∈ π′8, then yy′ does not belong to G,
and by Lemma 3 xx′ ∈ G, a contradiction. Finally, the cases y′ ∈ π′4, π

′
5 or π′9

correspond respectively to Configuration 1, 2 and 3 of Fig. 4.

Case 2: x′ /∈ I(x, y) (Fig. 6). If x′ ∈ π1 ∪ π2, either y′ ∈ I(x, y) and this
configuration was previously analyzed, or one end-vertex of xy belongs to R(x′y′)
and by Lemma 4 the edge x′y′ does not belong to E1. If x′ ∈ π5, then y′ ∈ π′6
and y ∈ R(x′y′), by Lemma 4 the edge x′y′ does not belong to E1. For x′ ∈ π4, if
y′ ∈ π′6 we get y ∈ I(x′, y′) and this case was already analyzed. If y′ ∈ π′2∪π′3∪π′7,
then y ∈ R(x′y′) and by Lemma 4 the edge x′y′ does not belong to E1. Finally,
for x′ ∈ π3, if y′ ∈ π′4 ∪ π′6, we obtain the same configuration as x′ ∈ π4 and
y′ ∈ π′5. If y′ ∈ π′1 ∪ π′2, one end-vertex of the edge xy belongs to R(x′y′) and by
Lemma 4 the edge x′y′ does not belong to E1. The cases (x′ ∈ π3, y

′ ∈ π′5) and
(x′ ∈ π4, y

′ ∈ π′5) correspond to Configuration 0, 4 and 4′ of Fig. 4.

5.3 Proof of Proposition 4

For each crossing remaining after Step 2 (configurations listed in Fig. 4) such
that the edge π(y)π(y′) admits a replacement path in G1 that does not pass via
π(x′) we will prove that such a replacement path also exists in G2. We consider
each edge of the replacement path of G1 and show that either this edge is not
removed in Step 2, or that there exists another replacement path for the edge
π(y)π(y′) in G2. We provide a complete analysis only for Configuration 1 of Fig.
4, all other configurations are treated analogously.

First, notice that, if the edge xy′ is not crossed by another edge of E1, then
together with the edge xy it forms a replacement path for the edge π(y)π(y′).
We assert that the edge π(x)π(y′) always belongs to G. Indeed, since xy ∈ G,
x belongs to the right half of π(x). The vertex x′ belongs to the right half of
π(x′) because otherwise xx′ would belong to G, excluding, by Lemma 5, the
edge xy from being in E1. Furthermore, the vertex x is above x′ and to the
left of y′, otherwise, either x′ ∈ R(xy) or x ∈ R(x′y′) and, by Lemma 4, either
x′y′ or xy does not belong to E1. We conclude that |x′y′| > |xy′| and since x′y′

belongs to G, π(x)π(y′) also belongs to G. If the edge π(x)π(y′) is not crossed by
another edge of E1, then we are done. Otherwise, let ab ∈ E1 be an edge crossing
π(x)π(y′). Since we should only consider the configurations listed in Fig. 4, we
can suppose that a ∈ π2 ∪ π4 and b ∈ π1 ∪ π3 (see Fig. 7).

First, suppose that a ∈ π2 = π(x′). From ab ∈ G we deduce that a belongs to
the left half of π(x′). As already noticed, x belongs to the right half of π(x) and
thus xx′ ∈ G, by Lemma 5 a contradiction with xy ∈ E1. Now if a ∈ π4, from
ab, yy′ ∈ G, we can deduce that a belongs to left half of π(a) and y′ belongs to the
right half of π(y′), then y′a ∈ G. If b ∈ π1 by Proposition 3, ab and x′y′ cannot
cross. Hence, either y′ ∈ R(ab) or a ∈ R(x′y′) and by Lemma 5 both contradict
ab, x′y′ ∈ E1. Finally, if b ∈ π3, there is no edge between b and a vertex of π(y′).
Indeed, by Lemma 5, such an edge would exclude ab from being in E1. Therefore,
both y′ and the end-vertex z of π(x)π(y′) are located outside the ball of radius
ab centered in b. Since ab crosses the edge π(x)π(y′), z is located below ab. Since

Planar Hop Spanners for Unit Disk Graphs 11

π(x)π(y′) is a shortest edge between π(x) and π(y′), y′ cannot lie above ab. As
previously noticed, ab cannot cross x′y′, the vertex a must belong to R(x′y′),
by Lemma 4 a contradiction with x′y′ ∈ E1. This concludes the analysis of
Configuration 1. The analysis of six remaining configurations is analogous.

5.4 Proof of Proposition 6

Assume by way of contradiction that two edges e and f of E3 −E2 cross. Since
these edges have been added to restore a path between the end-vertices of an
edge from E1, one of them, say e, crosses the edge e′ of E1 because of which
the edge f has been added. Therefore, to derive a contradiction and establish
Proposition 6, it is sufficient to verify that the edge f added to replace the edge e′

does not cross the edge e. This is actually an immediate consequence of Lemma
3 since for each possible crossing configuration between an edge e′ = x′y′ and
an edge e = xy listed in Fig. 4, the edges f = π(y)π(y′) and e = xy have an
end-vertex in π(y) and thus cannot cross.

5.5 Proof of Proposition 7

The set E0 can be obtained as follows. First, we partition X into clusters con-
sisting of all vertices which belong to the same non-empty square of the grid Γ.
Then, we consider each non-empty square π crossed by an edge e ∈ E3 (one can
show that each square of Γ can be crossed by at most one edge) and so that the
two regions R1 and R2 into which e partitions the square π are both non-empty.
First notice that only edges of type A may define such partitions. Indeed, any
edge of type O crosses only the squares containing its end-vertices while any
edge of type B or C crossing a non-empty square defines a right triangle and,
by Lemma 4, any terminal in this triangle yields the existence of a replacement
path for this edge.

Next, we partition the terminals located in π into two subsets corresponding
to the regions R1 and R2. We consider each pair of adjacent partitions (i.e.
the partitions whose regions share a common side) and we add to a set Y the
shortest edge between them if one exists. Then, for each partition, we compute a
minimum spanning tree on those vertices of the partition that are connected by
edges to vertices outside π (i.e., the vertices of V (Y)∪V (E3)). Finally, we connect
each vertex of π that does not belong to V (Y) ∪ V (E3) to its closest neighbor
in the spanning tree of its partition. We claim that the two subsets arising from
a square π crossed by an edge of E3 are connected by a path passing through
at most one neighboring square of π. Indeed, consider a pair of vertices x and
y that belong to distinct partitions of π. Since xy and e are crossing edges of
G, from Lemma 2 and the fact that e has no replacement path, we deduce that
one end-vertex of e is adjacent to both x and y. This shows that indeed x and y
are joined by a path passing via a single neighboring square. As already noticed
in Section 3, there are at most 20 edges of E3 (see Fig. 2) having an end-vertex
in a given square. We deduce that there is a path of length at most 44 between
every pair of vertices of the same square of Γ.

12 Nicolas Catusse, Victor Chepoi, and Yann Vaxès

It remains to show that the edges of E0 do not cross each other and do
not cross the edges of E3. First, consider an edge xy connecting two neighboring
partitions (i.e., an edge of E3 or an edge of E0 added due to splitting of a square)
and suppose that xy crosses an edge x′y′ of a minimum spanning tree T . One
end-vertex of xy, say x, must belong to the square containing x′ and y′, otherwise
xy partitions this square into two non-empty regions. Since x′y′ ∈ E(T), among
xx′ and xy′, one edge, say xx′, is at least as long as x′y′. Hence, by Lemma
1, yy′ is shorter than xy, a contradiction with the choice of xy. The proof is
analogous if instead of an edge of T, we consider an edge x′y′ added to connect
x′ to its closest neighbor y′ in V (T) (by the choice of x′y′, again |xx′| ≥ |x′y′|).
Finally, if x′y′ connects two neighboring partitions, then the edges xy and x′y′

must have an end-vertex in the same square and we get a contradiction with
Lemma 3. Now, it remains the case of two edges having their end-vertices in
the same partition. Clearly, two edges of a minimum spanning tree cannot cross
and the same holds for two edges connecting a terminal to its closest neighbor
in V (T). Now, suppose that x is the closest neighbor of y in V (T) and that xy
crosses x′y′ ∈ E(T). Since x′y′ ∈ E(T), either xx′ or xy′, say xx′, is at least as
long as x′y′. Hence, by Lemma 1, yy′ is shorter than xy, a contradiction with
the choice of xy. This concludes the proof of Proposition 7.

References

1. K. Alzoubi, X. Li, Y. Wang, P. Wan, and O. Frieder, Geometric spanners for
wireless ad hoc networks, IEEE Trans. Par. Dist. Syst. 14 (2003), 408–421.

2. P. Bose, L. Devroye, W. Evans, and D. Kirkpatrick, On the spanning ratio of
Gabriel graphs and β-skeletons, SIAM J. Discr. Math. 20 (2006) 412–427.

3. P. Bose and M. Smid, On plane geometric spanners : a survey and open problems,
submitted, 2009.

4. J. Chen, A. Jiang, I. A. Kanj, G. Xia, and F. Zhang, Separability and topology
control of quasi unit disk graphs, INFOCOM 2007, pp. 2225–2233.

5. D. Eppstein, Spanning trees and spanners, In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, Elsevier Science Publishers B.V., North-
Holland, Amsterdam (2000), pp. 425–461.

6. M. Fürer and S.P. Kasiviswanathan, Spanners for geometric intersection graphs,
WADS 2007, pp. 312–324.

7. J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu, Discrete mobile centers,
Discr. Comput. Geom. 30(1) (2003), 45–63.

8. J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu, Geometric spanner for
routing in mobile networks, ACM MobiHoc 2001, pp. 45–55.

9. X. Li, G. Cǎlinescu, and P. Wan, Distributed construction of planar spanner and
routing for ad hoc wireless networks, INFOCOM 2002.

10. G. Narasimhan and M. Smid, Geometric Spanner Networks, Cambridge University
Press, 2007.

11. S. Rührup, Position-based Routing Strategies, PhD Thesis, University of Pader-
born, Germany, 2006.

12. C. Yan, Y. Xiang, and F.F. Dragan, Compact and low delay routing labeling
scheme for unit disk graphs, WADS 2009, pp. 566–577.

