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Abstract
Objective  Patient-reported outcome measures following elective lumbar fusion surgery demonstrate major heterogeneity. 
Individualized prediction tools can provide valuable insights for shared decision-making. We externally validated the spine 
surgical care and outcomes assessment programme/comparative effectiveness translational network (SCOAP-CERTAIN) 
model for prediction of 12-month minimum clinically important difference in Oswestry Disability Index (ODI) and in 
numeric rating scales for back (NRS-BP) and leg pain (NRS-LP) after elective lumbar fusion.
Methods  Data from a prospective registry were obtained. We calculated the area under the curve (AUC), calibration slope 
and intercept, and Hosmer–Lemeshow values to estimate discrimination and calibration of the models.
Results  We included 100 patients, with average age of 50.4 ± 11.4 years. For 12-month ODI, AUC was 0.71 while the 
calibration intercept and slope were 1.08 and 0.95, respectively. For NRS-BP, AUC was 0.72, with a calibration intercept 
of 1.02, and slope of 0.74. For NRS-LP, AUC was 0.83, with a calibration intercept of 1.08, and slope of 0.95. Sensitivity 
ranged from 0.64 to 1.00, while specificity ranged from 0.38 to 0.65. A lack of fit was found for all three models based on 
Hosmer–Lemeshow testing.
Conclusions  The SCOAP-CERTAIN tool can accurately predict which patients will achieve favourable outcomes. However, 
the predicted probabilities—which are the most valuable in clinical practice—reported by the tool do not correspond well to 
the true probability of a favourable outcome. We suggest that any prediction tool should first be externally validated before 
it is applied in routine clinical practice.
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ODI, Oswestry Disability Index; NRS-BP, numeric ra�ng scale for back pain; NRS-
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Take Home Messages

1. We carry out external validation of a published prediction tool for 
improvement in functional disability, back pain, and leg pain at 12 months 
in a consecutive cohort of 100 Dutch patients undergoing elective lumbar 
fusion.

2. At external validation, the SCOAP-CERTAIN models demonstrate good 
generalizability in terms of discrimination. 

3. However, calibration of the models was poor, and recalibration may be 
considered.

4. Before introducing novel prediction models into routine clinical practice, 
external validation with analysis of calibration should be carried out.
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Introduction

Prediction models, when externally validated, can be used 
in clinical practice for calculating individualized prognosis 
and enabling personalized risk–benefit estimation, instead 
of having to rely on generalized values reported in the 
literature [1–6]. Recently, there has been great interest in 
using machine learning (ML), as well as more conven-
tional statistical modelling methods to devise models 
for predicting prognosis in various surgical procedures, 
including length of stay, rate of readmission, surgical site 
of infection, and post-operative surgical complications 
[7–9]. However, these models are usually only internally 
validated. Without external validation, applying prediction 
models in clinical practice in other cohorts than the deriva-
tion cohort can be pernicious [6, 10–12].

Khor et al. [2] recently proposed a predictive model for 
preoperatively estimating improvement in patient-reported 
outcome measures (PROMs) at 12 months after elective 
lumbar fusion for degenerative conditions. They used a state-
wide multicentre cohort to identify several factors including 
age, sex, race, insurance status, smoking status, among sev-
eral others, that had an association with PROMs. Their fully 
developed model has been made freely available through a 
patient-facing web app [2]. The models have not been evalu-
ated on external data and therefore ought to be used with 
caution on new patients from external centres [13, 14].

The aim of our study was to perform an external valida-
tion of the prediction tool developed by Khor et al. on a 
consecutive cohort of Dutch patients undergoing elective 
lumbar fusion [2].

Methods

Overview

The prediction model recently published by Khor et al. [2] 
has been developed on subsets of 1965 adult candidates for 
lumbar surgery prospectively collected at the Spine Surgical 
Care and Outcomes Assessment Program (SCOAP) and the 
survey centre at the Comparative Effectiveness Translational 
Network (CERTAIN), with patients originating from fifteen 
Washington state hospitals. The SCOAP-CERTAIN model 
has been incorporated into a user-friendly web app, avail-
able at https​://becer​tain.shiny​apps.io/lumba​r_fusio​n_calcu​
lator​, and the model has not been externally or prospectively 
internally validated as of yet. We compared the predicted 
probabilities generated by the SCOAP-CERTAIN model to 
the true 12-month pain and functional outcomes observed 
in our series to assess the model’s external validity [13, 14].

Patient population

From a prospective registry, we identified a consecutive 
series of 100 patients [15] who had undergone elective, 
posterior lumbar spinal fusion for degenerative disease 
between 2014 and 2018. All patients were operated in a 
Dutch specialist short-stay spine centre under application 
of an Enhanced Recovery After Surgery (ERAS) protocol 
[16], and underwent robot-guided, minimally invasive (MI) 
transforaminal lumbar interbody fusion (MI-TLIF) or pos-
terior lumbar interbody fusion (MI-PLIF) by a single senior 
neurosurgeon (M.L.S.) as previously described [17]. Adult 
patients with complete data were considered for inclusion. 
Primary indications for surgery included chronic low back 
pain (CLBP) caused by degenerative disc disease (DDD) 
as well as spondylolisthesis with or without concomitant 
central stenosis. Secondary diagnoses included coexist-
ent disc herniation, radiculopathy, and failed back surgery 
syndrome (FBSS). In patients with additional low-grade 
spondylolisthesis, the decision of whether to add a fusion 
procedure to the decompression alone was based upon a 
validated decision-making protocol [18]. The study has 
been constructed according to the transparent reporting of a 
multivariable prediction model for individual prognosis or 
diagnosis (TRIPOD) statement [19]. All patients included 
in the registry provided written informed consent. The pro-
spective registry was authorized by the local institutional 
review board (Medical Research Ethics Committees United, 
Registration Number W16.065), and this study was carried 
out in accordance with the 2013 Declaration of Helsinki.

Data collection

Data collection was performed according to the specifica-
tions set by Khor et al. [2] Clinical and radiological baseline 
data were obtained at the first outpatient visit by the treating 
surgeon. Patients underwent magnetic resonance imaging 
(MRI) and a full clinical workup. The collected variables 
consisted of baseline patient-reported outcome measures 
(PROMs), as well as gender, age, smoking status (active/
previous/never), insurance, ethnicity, American Society of 
Anesthesiologists (ASA) grade, opioid consumption, pres-
ence of asthma, and prior spine surgery. The “Medicaid” 
value of the variable “insurance” in the SCOAP-CERTAIN 
model most closely represents the Dutch health insurance 
system and thus was chosen for all patients. At 12 months 
post-operatively, PROMs were collected again in a paper-
based fashion at a clinical follow-up visit by the treating 
surgeon [20].

https://becertain.shinyapps.io/lumbar_fusion_calculator
https://becertain.shinyapps.io/lumbar_fusion_calculator
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Outcome measures

Patient‑reported outcome

For PROM measurement, patients completed a standard-
ized questionnaire including numeric rating scales (NRS) 
for back pain (NRS-BP) and leg pain (NRS-LP) severity, 
ranging from 0 to 10, and a validated Dutch version of the 
Oswestry Disability Index (ODI) to capture functional dis-
ability, ranging from 0 to 100, with higher values repre-
senting increasing severity [21]. According to Khor et al., 
we defined clinical success as achievement of the mini-
mum clinically important difference (MCID) threshold of a 
≥ 15-point reduction for ODI, and a ≥ 2-point reduction for 
NRS back and leg pain severity [2]. In cases where baseline 
ODI was < 15 or NRS was < 2 at baseline already (minimal 
pain/disability), and MCID would thus be impossible, no 
prediction was made in concordance to the output of the 
SCOAP-CERTAIN online calculator (“Cannot compute 
your chance of improvement—You are already at minimal 
disability”).

Statistical analysis

Continuous data are presented as mean ± standard deviation, 
and categorical data as numbers and percentages. There was 
no missing data. The biostatistician was not blinded in terms 
of outcomes or predictor variables. Area under the receiver 
operating characteristics curve (AUC) was obtained by 
comparing the predicted probabilities with the true MCID 
outcome at 12 months. Similarly, calibration was assessed 
visually through inspection of calibration curves, and quan-
titatively through calibration intercept (“calibration-in-the-
large”) and slope [10, 11, 22]. A perfectly calibrated model 
has an intercept of 0.0, with a slope of 1.0. A Hosmer–Leme-
show test for goodness-of-fit was carried out, with a p > 0.2 
indicating no lack of fit [5, 23]. In terms of calibration, we 
also assessed expected/observed event ratios (E/O-ratios) 
[13], as well as the Brier Score [24] and the Estimated Cali-
bration Index [25].

Khor et al. [2] provide no threshold for binary classi-
fication. Accordingly, the threshold for binary classifica-
tion was set at 0.5. This threshold is the most commonly 
observed threshold in logistic regression models when no 
specific threshold is specified. In addition, the threshold of 
0.5 appeared to correspond closely to the post hoc iden-
tified optimal AUC-anchored thresholds (“closest to (0,1) 
criterion”). Subsequently, the binary classifications were 
compared to the true observed MCID outcome, and accu-
racy, sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), as well as F1 Score were 
calculated.

Whenever applicable, bootstrapped 95% confidence inter-
vals (CIs) based on 1000 resamples with replacement are 
provided. All analyses were carried out in R version 3.5.4 
(The R Foundation for Statistical Computing, Vienna, Aus-
tria) [26]. The complete statistical code is provided in Sup-
plementary Content 1.

Results

Among the 100 included patients, who had complete 
data, the mean age was 50.4 ± 11.4 years, and 51 patients 
(51%) were male. Minimal disability in terms of ODI was 
observed in only one case (1%) at baseline. No patients had 
minimum NRS-BP or NRS-LP at baseline. Detailed base-
line characteristics of the development cohort reported by 
Khor et al. [2] and of the current external validation cohort 
are shown in Table 1. Notably, the patients in our cohort 
were around 10 years younger on average (61.3 ± 12.5 vs. 
50.4 ± 11.4 years), and far fewer of our patients had higher 
ASA Scores (32% vs. 2%). In addition, radiculopathy was 
present more often in the development cohort (92% vs. 5%), 
as was stenosis (77% vs. 46%).

Patient‑reported outcome

At 12 months post-operatively, ODI scores had improved 
a mean of − 29.3 ± 20.7 from baseline, with NRS-BP and 
NRS-LP improving − 3.7 ± 3.1 and − 4.4 ± 3.2, respectively. 
Achievement of the MCID was seen in 73 patients (73%) 
for ODI. In addition, 77 patients (77%) achieved MCID for 
NRS-BP, while 76 patients (76%) achieved MCID for NRS-
LP. Table 2 summarizes outcome measures in the develop-
ment cohort [2] and the external validation cohort.

Calibration

A detailed overview of calibration measures is provided in 
Table 3. A calibration intercept of 1.08 (95% CI 0.60–1.57) 
and slope of 0.95 (95% CI 0.37–1.54) were observed for 
prediction of MCID in ODI at 12 months, with a Hos-
mer–Lemeshow p = 0.002 (Fig. 1). The low E/O-ratio of 
0.77 (95% CI 0.63–0.90) indicates a model that underesti-
mated the probability of a favourable outcome.

Similarly, for NRS-BP, we observed a calibration inter-
cept of 1.02 (95% CI 0.50–1.55), slope of 0.74 (95% CI 
0.29–1.19), and E/O-ratio of 0.96 (95% CI 0.84–1.09), with 
a corresponding Hosmer–Lemeshow p = 0.004 (Fig. 2).

For prediction of MCID in NRS-LP in our cohort, we 
found a calibration intercept of − 0.77 (95% CI − 1.32 to 
− 0.23) and slope of 1.29 (95% CI 0.75–1.84). The Hos-
mer–Lemeshow p value was 0.034. Overall, the model 
appears to overestimate the probability of a favourable 
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outcome when looking at the calibration plot (Fig. 3) and 
the high E/O-ratio of 1.20 (95% CI 1.10–1.32).

Discrimination

A detailed overview of discrimination measures is provided 
in Table 4. Figure 4 demonstrates AUC curves for the three 
models at external validation. For prediction of ODI, we 
observed an AUC of 0.71 (95% CI 0.58–0.81), sensitivity 
of 0.64 (95% CI 0.53–0.75), and specificity of 0.65 (95% CI 
0.46–0.83).

Similarly, for prediction of NRS-BP, AUC values of 0.72 
(95% CI 0.59–0.83), sensitivity of 0.81 (95% CI 0.71–0.89), 

and specificity of 0.48 (95% CI 0.26–0.68) were identified 
at external validation.

Finally, prediction of NRS-LP yielded an AUC of 
0.83 (95% CI 0.72–0.94), sensitivity of 1.00 (95% CI 
1.00–1.00), and specificity of 0.38 (95% CI 0.17–0.57).

Overall, these values correspond well to those 
observed in the derivation cohort [2]. This means that the 
SCOAP-CERTAIN tool generalizes well to new patient 
data even in other cohorts with differing demograph-
ics and indications, especially in terms of its ability to 
binarily predict which patient will achieve a favourable 
outcome.

Table 1   Baseline patient characteristics of the development and 
external validation cohorts

SD standard deviation, ASA American Society of Anesthesiologists, 
FBSS failed back surgery syndrome, DDD degenerative disc disease, 
MI-TLIF minimally invasive transforaminal lumbar interbody fusion, 
MI-PLIF minimally invasive posterior lumbar interbody fusion, N.R., 
not reported
a The patient characteristics of the development cohort are provided 
for comparison, and are taken from the original report of the SCOAP-
CERTAIN model (Khor et al. [2])

Parameter Development cohorta External 
validation 
cohort

Age, mean ± SD 61.3 ± 12.5 50.4 ± 11.4
Male gender, n (%) 639 (40) 51 (51)
ASA score ≥ 3, n (%) 510 (32) 2 (2)
Smoking status, n (%)
 Current smoker 205 (13) 30 (30)
 Previous 607 (38) 18 (18)
 Never 721 (46) 52 (52)
 Unknown 50 (3) 0 (0)
 Medicaid, n (%) 131 (8) 100 (100)
 Caucasian ethnicity, n (%) 1422 (90) 94 (94)
 Opioid consumption, n (%) 889 (56) 25 (25)
 Asthma, n (%) 219 (14) 1 (1)
 Prior spine surgery, n (%) 395 (25) 22 (22)

Diagnosis, n (%)
 Spondylolisthesis 1033 (65) 79 (79)
 Disc herniation 220 (14) 8 (8)
 FBSS 238 (15) 14 (14)
 Stenosis 1223 (77) 46 (46)
 Pseudarthrosis 75 (5) 0 (0)
 Radiculopathy 1461 (92) 5 (5)
 DDD 473 (30) 35 (35)

Surgical approach, n (%)
 MI-TLIF N.R. 62 (62)
 MI-PLIF N.R. 38 (38)

Table 2   Tabulation of outcome measures in the development and 
external validation cohorts

PROMs patient-reported outcome measures, ODI Oswestry disability 
index, NRS-BP numeric rating scale for back pain, NRS-LP numeric 
rating scale for leg pain, MCID minimum clinically important differ-
ence
a These data are provided for comparison, and are taken from the orig-
inal report of the SCOAP-CERTAIN model (Khor et al. [2])

Parameter Development cohorta External validation 
cohort

PROMs Baseline 12 months Baseline 12 months

ODI
 Number of pts. 783 545 100 100
 Median (range) 46 (2–100) 24 (0–90) 47 (12–96) 12 (0–60)
 0–20, n (%) 55 (7) 248 (46) 5 (5) 70 (70)
 21–40, n (%) 266 (34) 157 (29) 30 (30) 20 (20)
 41–60, n (%) 307 (39) 109 (20) 48 (48) 10 (10)
 61–100, n (%) 155 (20) 31 (6) 17 (17) 0 (0)
 MCID achieved, 

n (%)
– 306 (58) – 73 (73)

NRS-BP
 Number of pts. 1466 933 100 100
 Median (range) 6 (0–10) 3 (0–10) 7 (0–10) 2 (0–10)
 0–2, n (%) 229 (16) 565 (61) 8 (8) 54 (54)
 3–6, n (%) 516 (35) 251 (27) 27 (27) 30 (30)
 7–10, n (%) 712 (49) 117 (13) 65 (65) 16 (16)
 MCID achieved, 

n (%)
– 616 (69) – 77 (77)

NRS-LP
 Number of pts. 726 508 100 100
 Median (range) 6 (0–10) 1 (0–10) 7 (0–10) 1 (0–10)
 0–2, n (%) 143 (20) 345 (68) 11 (11) 64 (64)
 3–6, n (%) 254 (35) 104 (21) 25 (25) 31 (31)
 7–10, n (%) 329 (45) 59 (12) 64 (64) 5 (5)
 MCID achieved, 

n (%)
– 355 (77) – 76 (76)
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Discussion

We carried out external validation of the SCOAP-CER-
TAIN models proposed by Khor et al. [2] on a cohort of 
100 patients. We found good generalization of the models’ 
discriminative ability, comparable to the values observed 
in the derivation cohort. This means that the tool is 

accurate in binarily predicting which patients will achieve 
a favourable clinical outcome, defined as the MCID. How-
ever, calibration and goodness-of-fit were poor for the 
three models for MCID in 12-month functional disability 
and back or leg pain. Thus, the tool was overall less accu-
rate in generating predictions on how likely a favourable 
clinical outcome is.

Table 3   Calibration 
performance metrics of the 
three prediction models on 
external data

Where applicable, bootstrapped 95% confidence intervals are provided
MCID minimum clinically important difference, ODI Oswestry disability index, NRS-BP numeric rating 
scale for back pain, NRS-LP numeric rating scale for leg pain
a The expected/observed ratio, or E/O-ratio, describes the overall calibration of a prediction model, and is 
defined as the ratio of expected positive (predicted positive) cases and observed positive (true positive) 
cases. A value of 1 is optimal
b The Brier score measures overall calibration and is defined as the average squared difference between pre-
dicted probabilities and true outcomes. It takes on values between 0 and 1, with lower values indicating 
better calibration
c The Estimated Calibration Index (ECI) is a measure of overall calibration, and is defined as the average 
squared difference of the predicted probabilities with their grouped estimated observed probabilities. It can 
range between 0 and 100, with lower values representing better overall calibration

Calibration metric 12-month MCID

ODI NRS-BP NRS-LP

Calibration intercept 1.08 (0.60–1.57) 1.02 (0.50–1.55) − 0.77 (− 1.32 to − 0.23)
Calibration slope 0.95 (0.37–1.54) 0.74 (0.29–1.19) 1.29 (0.75–1.84)
Expected/Observed ratioa 0.77 (0.63–0.90) 0.96 (0.84–1.09) 1.20 (1.10–1.32)
Brier scoreb 0.22 (0.19–0.25) 0.19 (0.15–0.23) 0.12 (0.07–0.17)
Estimated calibration indexc 0.41 (0.17–0.64) 0.44 (0.19–0.66) 0.67 (0.42–0.87)
Hosmer–Lemeshow p 0.002 0.004 0.034

Fig. 1   Calibration plots for prediction of improvement in 12-month 
Oswestry Disability Index. Calibration intercept and slope were 1.08 
and 0.95, respectively. ODI Oswestry disability index, LOESS locally 
estimated scatterplot smoothing

Fig. 2   Calibration plots for prediction of improvement in 12-month 
back pain. Calibration intercept and slope were 1.02 and 0.74, respec-
tively. NRS-BP numeric rating scale for back pain, LOESS locally 
estimated scatterplot smoothing
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In recent years, the medical profession has focused on 
delivery of much more individualized patient care, and 
PROMs are now viewed as an integral part of healthcare 
assessment, often replacing radiological outcome meas-
ures such as bony fusion [27, 28]. An algorithm that may 
potentially combine factors associated with PROMs after 
elective lumbar fusion, and predict MCID in these outcome 
measures, has the potential to greatly benefit patient care. In 
spine surgery, individualized prognosis based on prediction 
models has not yet seen routine clinical use, and there is a 
lack of properly validated models for this purpose [1–4]. A 
model that may allow the patient and the physician alike to 

estimate the chance of improvement after surgery would pro-
mote shared decision-making, allow for objective risk–bene-
fit estimation on an individualized level, and potentially even 
account for risk factors for poor outcome preoperatively [1].

Surgical prediction tools may not only have the poten-
tial to help patients and physicians, but also the healthcare 
system by enhancing the cost-effectiveness of procedures. 
By estimating treatment effects before surgery, unnecessary 
and ineffective procedures can potentially be avoided, and 
patients can enjoy a more realistic and quantifiable prog-
nostic assessment. In addition, adverse events can be antici-
pated, which can improve their management and, potentially, 
even allow their prevention in the first place [5, 29–32]. 
However, the outputs of prediction tools should never be 
considered absolute when reaching a decision. They should 
not trump a physician’s clinical judgement, but rather be 
used only as an adjunct to the process of patient counselling 
and decision-making.

Many models based on ML or on statistical modelling 
techniques such as logistic regression are currently being 
published [7]. However, application of these models can 
only safely be considered after external validation in at least 
one centre outside of the development cohort. Most models 
remain only internally validated. While internal validation 
can provide some insights as to the generalizability of a 
model, all conclusions can only be made regarding the popu-
lation of the derivation centre. It has been observed that even 
subtle differences in patient demographics or the incidence 
of the predicted outcome among cohorts can greatly bias 
predictions, or even render them useless [10, 22, 33, 34].

In addition, overfitting of the model to the development 
cohort can only reliably be detected after external valida-
tion, or at a minimum, prospective internal validation. Over-
fitting occurs when a model too closely approximates the 
development data—thus “learning by heart” the features 

Fig. 3   Calibration plots for prediction of improvement in 12-month 
leg pain. Calibration intercept and slope were − 0.77 and 1.29, 
respectively. NRS-LP numeric rating scale for leg pain, LOESS 
locally estimated scatterplot smoothing

Table 4   Discrimination 
performance metrics of the 
three prediction models on 
external data

Bootstrapped 95% confidence intervals are provided
MCID minimum clinically important difference, AUC​ area under the receiver operating characteristics 
curve, PPV positive predictive value, NPV negative predictive value, ODI Oswestry disability index, NRS-
BP numeric rating scale for back pain, NRS-LP numeric rating scale for leg pain
a The F1 score is a composite metric, and is mathematically defined as the harmonic mean of PPV and sen-
sitivity. Higher values represent better performance, with a maximum of 1

Discrimination metric 12-month MCID

ODI NRS-BP NRS-LP

AUC​ 0.71 (0.58–0.81) 0.72 (0.59–0.83) 0.83 (0.72–0.94)
Accuracy 0.65 (0.55–0.73) 0.73 (0.64–0.82) 0.85 (0.77–0.92)
Sensitivity 0.64 (0.53–075) 0.81 (0.71–0.89) 1.00 (1.00–1.00)
Specificity 0.65 (0.46–0.83) 0.48 (0.26–0.68) 0.38 (0.17–0.57)
PPV 0.84 (0.73–0.93) 0.84 (0.75–0.92) 0.84 (0.75–0.91)
NPV 0.40 (0.26–0.54) 0.42 (0.22–0.62) 1.00 (1.00–1.00)
F1 scorea 0.49 (0.34–0.62) 0.44 (0.24–0.61) 0.54 (0.30–0.72)
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of the patients in the development set [3]. If this occurs, 
the model will not generalize well to new patients, and any 
predictions made will be based solely on the memorized 
derivation set patients, instead of on generalizable, extracted 
features. The value of external validation lies within the fact 
that performance on new patients, unseen by the model, can 
be assessed, representing the situation of clinical application 
of a certain model.

Discrimination and calibration should be assessed. Dis-
crimination denotes the ability of a model to accurately clas-
sify patients into those who experience MCID and those 
who do not. In contrast, the ability of a model to produce 
predicted probabilities that closely correlate to the true pos-
teriors (observed frequency) is referred to as calibration.

Overall, the SCOAP-CERTAIN models displayed a good 
discrimination, with comparable values to those observed in 
the derivation cohort, with AUC values ranging from 0.66 to 
0.79 [2]. However, calibration, as assessed by various met-
rics, was poor at external validation. For internal validation, 
Khor et al. report calibration intercepts of − 0.02 to 0.16, and 
slopes of 0.80–1.05 [2]. At external validation, we found 
that generally, calibration intercepts were within accept-
able ranges, comparable to the internal validation cohort. 
The observed calibration slopes, however, demonstrated 
large heterogeneity, except for the model for MCID in the 
ODI. Testing for goodness-of-fit using the method described 
by Hosmer and Lemeshow corroborated the findings of 

generally poor calibration compared to the development 
cohort [23]. In addition, the calibration plots indicate shifts 
in overall calibration (“calibration-in-the-large”), which are 
corroborated by the calibration intercepts and E/O-ratios that 
were observed. This is especially true for the model predict-
ing MCID in NRS-LP, which demonstrated to be overesti-
mating the probability of a favourable outcome, predicting 
MCID far too often compared to what was truly observed. 
For clinical prediction models, calibration may play an argu-
ably even more important role than discrimination alone, 
because clinicians and patients are usually not primarily 
interested in, e.g. a binary classification, but instead in the 
predicted probabilities of a certain endpoint [13, 35]. There-
fore, poor calibration represents a major impediment to clini-
cal and external applicability of prediction models. However, 
there are techniques that may help improve calibration. First, 
over- or underestimating models can be improved by simply 
adjusting their intercepts [34]. Second, whenever uniform 
deformations of the calibration curves are observed across 
all resamples during cross-validation or bootstrapping, res-
caling of the predicted probabilities using Platt scaling or 
isotonic regression is possible [35].

When developing prediction models, taking into account 
class imbalance is crucial [36]. Class imbalance is present 
in binary classification tasks whenever one class (major-
ity class) significantly outnumbers the other class (minority 
class). For example, when predicting a complication that 
occurs in only 10% of patients (minority class), even a zero-
information model always voting for the majority class (no 
complication) will achieve an AUC of approximately 0.90, 
and accuracy of 90%, with high specificity but unemployable 
sensitivity [36]. The pernicious effects of class imbalance 
can be diagnosed by comparing sensitivity and specificity, 
or PPV and NPV. To force a model to actually extract gen-
eralizable features from imbalanced data, instead of sim-
ply always voting for the majority class, techniques such as 
random oversampling or synthetic minority oversampling 
(SMOTE) should be applied to prevent unbalanced models 
[36, 37].

Khor et al. did not report the sensitivity, specificity, PPV, 
or NPV for their model. In our cohort, we found that sensi-
tivity for prediction of NRS-BP and NRS-LP was fair, while 
the specificity was poor. Both sensitivity and specificity for 
prediction of MCID in ODI were satisfactory. From our 
data, it can be concluded that the SCOAP-CERTAIN tool 
has high power to rule out MCID in NRS-BP and NRS-LP 
at 12 months but should not be used to rule in MCID.

One likely reason for the differences in performance 
measures among the internal and external validation cohorts 
is the difference in endpoint incidence. The rates of MCID 
according to the definition by Khor et al. were higher in 
our cohort than in the development cohort, where MCID 
was achieved in 58.0–76.5% of patients [2]. It has been 

Fig. 4   Area under the curve (AUC) values of the three models for 
prediction of MCID in the 12-month outcome, assessed on 100 exter-
nal patients. The observed AUC values were 0.71, 0.72, and 0.83 for 
achieving MCID in functional impairment, back pain, and leg pain, 
respectively. ODI Oswestry disability index, NRS-BP numeric rating 
scale for back pain, NRS-LP numeric rating scale for leg pain
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previously observed that differences in the incidence of the 
binary endpoint may distort calibration [33]. If necessary, 
models with large intercepts can be recalibrated using the 
techniques mentioned above [34, 35].

The reduced generalizability may also be explained by 
unclear or differing definitions for some of the input vari-
ables. While most variables can be uniformly defined, insur-
ance status will have different definitions in different coun-
tries around the world. Since most countries, and even some 
provinces, have different insurance systems, it will be dif-
ficult for the user to decide what to choose as their insurance 
status when using this web-based tool. We chose the defini-
tion most closely resembling the input variable, applicable to 
the Dutch healthcare system. Khor et al. do not give detailed 
information on the invasiveness of their fusion procedures. 
In our cohort, most procedures were carried out in a mini-
mally invasive fashion, which could potentially also explain 
some of the differences in performance between the cohorts. 
However, it has to be considered that, while there is some 
evidence that minimally invasive procedures reduce immedi-
ate post-operative pain and boost early recovery, there seems 
to be little to no effect on the long-term patient-reported 
outcome after lumbar fusion [38, 39].

In addition, our cohort included a large proportion of 
patients with CLBP due to DDD, as did the development 
cohort [2]. Still, the authors of the SCOAP-CERTAIN model 
excluded the presence of DDD as an input variable in the 
final model, and thus any even minor differences in the pro-
portion of patients with DDD may bias predictions, as this 
factor is not being corrected for.

Limitations

Due to local insurance policy, patients aged over 80 years, 
with ASA classes over 3, and with a BMI over 33 are not 
allowed to undergo elective spine surgery in our short-stay 
setting [16]. For this reason, such patients were not avail-
able in our registry. This means that any findings as to the 
external validity of the model may not be extrapolated to 
these higher-risk patients. As expected, although our patients 
represent the exact patient population that the SCOAP-CER-
TAIN model has been developed for, the patient character-
istics observed in our cohort differed in some cases from 
those observed in the derivation cohort. For example, in the 
current external validation cohort, the proportion of patients 
with radiculopathy was relevantly lower than in the deriva-
tion cohort. It is conceivable that at least part of the overesti-
mation seen in the NRS-LP model could be explained by this 
difference in indications. In addition, patients in the external 
validation cohort were around a decade younger than in the 
original Khor et al. report [2]. However, as the deviations 
are within the expected variation of patient demographics, 

indications for surgery, and outcomes achieved seen among 
different surgical populations, our study represents a realis-
tic use-case in which the SCOAP-CERTAIN model could 
be applied clinically. In addition, the original study did not 
report on how exactly PROMs were recorded, e.g. paper-
based or web-based. The method of data collection could 
influence the observed outcomes [40]. Our study included a 
cohort of 100 consecutive patients taken from a prospective 
registry. While this sample size is usually sufficient for exter-
nal validation of a prediction model, a larger sample size can 
often lead to more smooth calibration plots at graphical and 
statistical assessment [15, 23].

Conclusions

Using data from a prospective registry, we externally vali-
dated the SCOAP-CERTAIN prediction model. We conclude 
that the prediction tool generally had fair discrimination at 
external validation, with performance measures correspond-
ing closely to those observed in the development cohort. 
However, calibration of the predicted probabilities was poor. 
As the predicted probabilities are arguably of greater interest 
to clinicians than binary classifications, and because the cali-
bration of the prediction tool was poor, it may be premature 
to apply the SCOAP-CERTAIN prediction tool in clinical 
practice in its current form. We suggest that any prediction 
tool should first be externally validated before it is applied in 
routine clinical practice. We also suggest that future studies, 
whether carrying out external or internal validation, should 
ideally report sensitivity, specificity, PPV, and NPV of the 
assessed models.
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