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Abstract Birnbaum-Saunders models have largely been applied in material fatigue
studies and reliability analyses to relate the total time until failure with some type of
cumulative damage. In many problems related to the medical field, such as chronic
cardiac diseases and different types of cancer, a cumulative damage caused by several
risk factors might cause some degradation that leads to a fatigue process. In these
cases, BS models can be suitable for describing the propagation lifetime. However,
since the cumulative damage is assumed to be normally distributed in the BS distribu-
tion, the parameter estimates from this model can be sensitive to outlying observations.
In order to attenuate this influence, we present in this paper BS models, in which a
Student-t distribution is assumed to explain the cumulative damage. In particular, we
show that the maximum likelihood estimates of the Student-t log-BS models attribute
smaller weights to outlying observations, which produce robust parameter estimates.
Also, some inferential results are presented. In addition, based on local influence and
deviance component and martingale-type residuals, a diagnostics analysis is derived.
Finally, a motivating example from the medical field is analyzed using log-BS regres-
sion models. Since the parameter estimates appear to be very sensitive to outlying and
influential observations, the Student-t log-BS regression model should attenuate such
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influences. The model checking methodologies developed in this paper are used to
compare the fitted models.

Keywords Generalized Birnbaum-Saunders distribution · Likelihood methods ·
Local influence · Log-linear models · Residual analysis · Robustness ·
Sinh-normal distribution

1 Introduction

An important probability model originating from a physical problem related to material
fatigue is the one derived by Birnbaum and Saunders (1969). The Birnbaum-Saunders
(BS) distribution has a close relation to the normal distribution and has applications
in a wide variety of fields. For details about old and new applications of the BS dis-
tributions, including the medical field, see Johnson et al. (1995, p. 651), Balakrishnan
et al. (2007) and Leiva et al. (2007, 2008a,b,c).

Desmond (1985) presented the following proposals related to the BS distribution:
(i) he provided a more general derivation of this distribution based on Cramér’s biolog-
ical model (Cramér 1999, p. 219); (ii) he demonstrated that this distribution describes
the total time that passes until some type of cumulative damage produced by the devel-
opment and growth of a dominant crack surpasses a threshold and causes a failure;
and (iii) he strengthened the physical justification for the use of this distribution by
relaxing some assumptions made earlier by Birnbaum and Saunders (1969).

In many medical problems, such as chronic cardiac diseases and different types of
cancer, a cumulative damage caused by several risk factors is presented. This degrada-
tion leads to a fatigue process, whose propagation lifetimes can be adequately modeled
by the BS distribution. Recently, Leiva et al. (2007) applied the classical version of
the BS distribution (BS model generated from the normal law) for modeling survival
times in patients with multiple myeloma by using a number of prognostic variables
with censored data.

Similarly to normal models, maximum likelihood estimates (MLE) from BS models
are sensitive to outlying observations. Lange et al. (1989) proposed the Student-t dis-
tribution (which we will call simply t distribution or t model) as a robust alternative to
the normal case, since it has greater kurtosis than the normal model. Thus, cases which
might considered as outlying under normality, might not under the t model, producing
robust parameter estimates. Recently, Díaz-García and Leiva (2005) obtained a gen-
eralization of the BS distribution. The main motivation for the use of the generalized
Birnbaum-Saunders (GBS) distribution is to make the kurtosis flexible (compared to
the BS model). This is achieved when the normal distribution used in the derivation
of the BS model is replaced by a general class of standard symmetrical distributions
on R, the real line. This class of distributions admits different degrees of kurtosis and
the t model is one of these distributions. Moreover, since the BS distribution is a par-
ticular case of the GBS distribution, several properties of the classical BS distribution
are transferred to its generalized version. More recently, Sanhueza et al. (2008) have
presented a complete compilation of results related to the GBS model.
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Statistical modeling based on the GBS distribution has not received much attention.
However, for the classical BS distribution, some efforts can be found in the works by
Rieck and Nedelman (1991), Owen and Padgett (1999, 2000) and Tsionas (2001).
In Galea et al. (2004), Leiva et al. (2007) and Xie and Wei (2007), aspects related
to influence diagnostics in log-Birnbaum-Saunders (log-BS) regression models with
non-censored and censored data have been studied. Robust estimation for the BS
distribution has also been discussed in Dupuis and Mills (1998).

The main objective of this paper is to propose a new class of lifetime regression
models for which the errors follow the GBS distribution based on the t model (GBS-t
or simply BS-t). Robustness aspects of the MLEs are discussed and some diagnos-
tics procedures are derived. A data set from the medical field is used to compare the
sensitivity of the parameter estimates from BS and BS-t models.

The article is organized as follows. A preliminary notion of the GBS and log-GBS
models, mainly based on the t distribution, is presented in Sect. 2. In Sect. 3, we carry
out a statistical analysis for the BS-t log-linear regression model. Specifically, we
compute the maximum likelihood estimating equations by assuming no informative
censoring. We show that the MLEs are down-weighted so that smaller weights are
attributed to outlying observations. Also, some asymptotic inferential results are pre-
sented. Model checking methodologies such as local influence and residual analysis
are described in Sect. 4. In particular, we discuss the relationship between the deviance
component (d-c) and a martingale-type (m-g) residuals with the sinh residual. In Sect.
5, a motivating example is analyzed using BS and BS-t models. A model checking
analysis is performed and some comparisons are made. Finally, a brief discussion is
given in Sect. 6.

2 Log-BS-t models

The GBS distribution is defined in terms of standard symmetrical distributions on R,
the real line (also known as spherically contoured univariate distributions); see Fang
et al. (1990). When a random variable (r.v.) T follows the GBS distribution, the notation
T ∼ GBS(α, β; f ) is used, where α is the shape parameter, β is the scale parameter
as well as the median and f is the probability density function (pdf) of the associated
symmetrical distribution. Specifically, if the variate T = β

4 [αZ + √
α2 Z2 + 4]2 ∼

GBS(α, β; f ), then Z = 1
α
[√T/β −√

β/T ] follows a standard symmetrical distribu-
tion on R, the real line, which is denoted by Z ∼ S( f ). Some properties of the GBS
model are: c T ∼ GBS(α, cβ; f ), with c > 0, and T −1 ∼ GBS(α, β−1; f ). These
properties establish that the GBS distribution belongs to the scale (proportionality)
and of random variables closed under reciprocation (Saunders 1974) families.

In particular, if Z has the t distribution with ν > 0 degrees of freedom (d.f.), denoted
by Z ∼ tν , then T = β

4 [αZ + √
α2 Z2 + 4]2 ∼ GBS(α, β; tν).

Rieck and Nedelman (1991) developed the sinh-normal (SN) distribution by means
of the transformation Y = γ +σ arcsinh(αZ/2), where Z ∼ N(0, 1), which is denoted
by Y ∼ SN(α, γ, σ ). The SN distribution has as a particular case the log-BS distri-
bution when γ = log(β) and σ = 2. The notation Y ∼ log-BS(α, γ ) is used in this
case.
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In a similar way to the SN distribution, we can define the sinh-t distribution, which
will be denoted by Y ∼ St (α, γ, σ, ν), with pdf and cdf, respectively, given by

fY (y) = φt

⎛
⎝2 sinh

(
y−γ
σ

)
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(2)

where Ix (a, b) =
∫ x

0 ta−1(1−t)b−1 dt∫ 1
0 ta−1(1−t)b−1 dt

is the incomplete beta ratio function; see Johnson

et al. (1995, p. 364) and φt (·) and 	t (·) denoting the pdf and cdf of the t distribution.
The survival (s.f.) and hazard (h.f.) functions of Y are, respectively, given by

SY (y) = 	t

(
− 2

α
sinh

(
y − γ

σ

))
and

hY (y) =
2φt

(
2
α

sinh
(

y−γ
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))
cosh

(
y−γ
σ

)

	t

(
− 2

α
sinh

(
y−γ
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))
σα

; y ∈ R. (3)

Analogously to the case of the SN model, the St distribution has as a particular case
the log-BS-t distribution when γ = log(β) and σ = 2, which will be denoted by
Y ∼ log-GBS(α, γ ; tν), so that T = exp(Y ) ∼ GBS(α, β; tν).

Next, we present a brief graphical analysis for the log-BS-t model. In Fig. 1, pdf
plots are shown for a number of different choices of α and ν, being γ = log(β) = 0
and σ = 2. Based on Fig. 1, we note that the log-BS-t distribution is very flexible
for modeling the kurtosis. Figure 1 also establishes comparisons of the log-BS-t dis-
tribution and the log-BS, normal and t distributions. The parameters α and γ are the
shape and location (mean) parameters, respectively, whereas the parameter ν of the t
distribution makes it possible to handle the kurtosis. In addition, α is also related to
the modality.

Consider the regression model given by

yi = x�
i β + εi ; i = 1, . . . , n, (4)

where yi is the observed log-lifetime or log-censoring time for the i th individual, β =
(β1, . . . , βp)

� is a vector of unknown parameters to be estimated, x�
i = (xi1, . . . , xip)
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Fig. 1 Pdf graphs of log-BS, log-BS-t , normal and t models for the indicated values

contains the values of the explanatory variables and εi ∼ log-GBS(α, 0; tν). We assume
no informative censoring and independence of the observed lifetime and censoring
time. We denote the sets of individuals for which yi is the log-lifetime or log-censor-
ing by D and C, respectively. The log-likelihood function of the model given in Eq.
4 for the parameter θ = (β�, α)� takes the form l(θ) ∝ ∑

i∈D li (θ) + ∑
i∈C l (c)

i (θ),
where li (θ) = log( fY (yi )) and l (c)

i (θ) = log(SY (yi )), with fY (·) and SY (·) being the
pdf and s.f. of Y given in Eqs. 1 and 3, respectively. Thus, the log-likelihood function
for θ is

l(θ) ∝
∑
i∈D

[
log(ξi1) −

{
ν + 1

2

}
log(ν + ξ2

i2)

]
+

∑
i∈C

log (	t (−ξi2)) , (5)

where ξi1 = 2
α

cosh
( yi −µi

2

)
, ξi2 = 2

α
sinh

( yi −µi
2

)
and µi = x�

i β, with i = 1, . . . , n.

The score vector is L̇θ =
(

∂l(θ )
∂β1

, . . . ,
∂l(θ )
∂βp

,
∂l(θ )
∂α

)� = (Uβ1 , . . . , Uβp , Uα)�,

where

Uβ j =
∑
i∈D
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xi j

α2 sinh(yi − µi )w(ξ2
i2) − xi j

2
tanh

(
yi − µi

2

)]

+1

2
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i∈C

xi jξi1h(ξi2), (6)

for j = 1, . . . , p, and

Uα = 1

α

[∑
i∈D

{
w(ξ2

i2)ξ
2
i2 − 1

}
+

∑
i∈C

ξi2h(ξi2)

]
, (7)

with w(ξ2
i2) = ν+1

(ν+ξ2
i2)

and h(·) = hY (·) being the h.f. of Y given in Eq. 3. Note that as

ν → ∞, one has w(ξ2
i2) → 1,∀ i = 1, . . . , n, and the scores given in Eqs. 6 and 7 are
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Fig. 2 Behavior of w(ξ2
i2) against ξ2

i2 for some values of the d.f. of the t distribution

reduced to the ones from the log-BS regression, as expected; see Galea et al. (2004)
and Leiva et al. (2007). Thus, the quantity w(ξ2

i2) that appears for non-censored cases
may be interpreted as a kind of weight in the log-BS-t model and since this is inversely
proportional to ξ2

i2, cases with larger values for ξ2
i2 should have smaller weights (less

than one). Figure 2 shows graphs of w(ξ2
i2) against ξ2

i2 for some values of ν.

Remark As it is well known, the Student-t distribution can be expressed as a scale
mixture of normal distributions, which facilitates for instance Bayesian analysis for
the model or maximum likelihood estimation via the EM algorithm. Similarly, we
can assume that Z has a scale mixture of normal distribution so that T will follow a
GBS distribution based on scale mixture of normals. In this case, maximum likelihood
equations given as in Eqs. 6 and 7 can be obtained as well as applications of the EM
algorithm and Bayesian analysis can be performed.

Notice that the weights decrease as ν becomes smaller. These results indicate the
robustness of the MLE α̂ and β̂ against extreme non-censored cases in the sense of the
quantity ξi2. These robustness aspects are extended in Sect. 3 to d-c and m-g residuals
usually applied in lifetime regression models.

The observed Fisher information matrix is obtained by −L̈
−1

evaluated at θ̂ , where

L̈ =
[

L̈ββ L̈βα

L̈αβ L̈αα

]
=

⎡
⎣

∂2
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∂2
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⎤
⎦ =

[
X�V X X� K

K�X tr(G)

]
, (8)

with V = diag{v1(θ), . . . , vn(θ)}, K = (k1(θ), . . . , kn(θ))�, G = diag{g1(θ), . . . ,

gn(θ)},
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1
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− 2
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α2 ξ2
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where w′(x) = d
dx w(x) and h′(x) = d

dx h(x).

The MLEs of the regression coefficients and shape parameter are the solutions of
the likelihood equations Uβ j = 0, with j = 1, . . . , p, and Uα = 0. However, as in the
log-BS case, the equations do not present analytical solutions necessitating the use of
iterative methods (Leiva et al. 2007). Asymptotic inference for the parameter θ can be
based on the normal approximation of the MLEs given by θ̂ ∼ Np+1(θ,�

θ̂
), where

�
θ̂

is the variance-covariance matrix of θ̂ , which can be approximated by −L̈−1 , with

−L̈ being the observed information matrix evaluated at θ̂ and obtained from L̈ given
in Eq. 8.

In order to construct a confidence region for the parameter θ , we can use the fact
that (θ̂ − θ)��−1

θ̂
(θ̂ − θ) ∼̇ χ2(p + 1), which is obtained from the asymptotic nor-

mality of the MLEs. Therefore, an approximate 100(1 − γ )% confidence region, with
0 < γ < 1, for θ is given by R = {θ ∈ R

p+1 : (θ̂ −θ)��−1
θ̂

(θ̂ −θ) ≤ χ2
1−γ (p +1)},

where χ2
1−γ (p+1) denotes the (1−γ )th percentile of the chi-square distribution with

p + 1 d.f.

3 Model checking

In order to assess the robustness aspects of the MLEs, an analysis of normal curva-
tures of local influence (Cook 1986) may be carried out for some common pertur-
bation schemes. If the likelihood displacement LD(ω) = 2[l(θ̂) − l(θ̂ω)] is used as
the influence measure, where θ̂ω denotes the MLE of θ under the perturbed model
l(θ |ω), the normal curvature at the unitary direction � assumes the form C�(θ) =
2|����L̈−1��|, which is evaluated at θ̂ and ω0 (the no perturbation vector). Here,
� is a (p + 1) × n perturbation matrix with elements � j i = ∂2

∂θ∂ω� l(θ |ω), for
j = 1, . . . , p + 1 and i = 1, . . . , n. The elements of the matrix � are derived in
the Appendix for some common perturbation schemes. Diagnostics graphs may be
constructed from the normal curvature Ci (θ) = C�i (θ) (Lesaffre and Verbeke 1998),
where �i is an n × 1 vector of zeros with one at the i th position, or by considering
the direction �max corresponding to the largest curvature C�max(θ) (Cook 1986; Poon
and Poon 1999). Previous works in which local influence curvatures are derived for
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Fig. 3 Behavior of residuals rDCi
(a) and rM Di

(b) again sinh residual for non-censored cases

regressing modeling with censored data are attributed to Escobar and Meeker (1992),
Ortega et al. (2003) and Leiva et al. (2007).

For a residual analysis, we suggest working with the d-c residual (Davison and
Gigli 1989) given by

rDCi
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sign(ξ̂i2)
√

2

[
ν+1

2 log(ν + ξ̂2
i2) − ν+1

2 log(ν)

− 1
2 log

(
1 + α̂2 ξ̂2

i2
4

)] 1
2

, i ∈ D;

sign(ξ̂i2)
[
−2 log

(
	t (−ξ̂i2)

)] 1
2
, i ∈ C;

and the martingale-type residual defined as rMi
= δi + log(	t (−ξi2)) (Klein and

Moeschberger 1997), with δi = 0 and 1 indicating that the observation is censored or
uncensored, respectively. However, since rMi

is skewness, with range between −∞
and +1, some authors (e.g., Collett 2003, p. 116) have proposed the following trans-
formation to attenuate the skewness: rM Di

= sign( rMi
)[−2{ rMi

+δi log(δi − rMi
)}] 1

2 .
This transformation leads to the d-c residual for the Cox’s proportional hazard model
with no time-dependent variable (Therneau et al. 1990). Leiva et al. (2007) have
investigated the empirical distributions of rDCi

and rM Di
for log-BS regression mod-

els by using different sample sizes and censoring proportions. They found a very
good agreement with the standard normal distribution as the sample size increases
and the censoring proportion decreases. Figure 3 describes the behavior of rM Di

and
rDCi

against the sinh residual ξi2 for non-censored observations, for some values of ν

and α = 1. We notice in both graphs that non-censored observations with large values
for rDCi

and rM Di
will have smaller weights. Thus, the robustness aspects that were

pointed out in Sect. 2 are also extend to the residuals rDCi
and rM Di

.
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4 Application

We consider the data set presented in Kalbfleisch and Prentice (2002, p. 378) as a
motivating example, where male patients with advanced inoperable lung cancer were
randomized to either standard or test chemotherapy. One of the objectives of this study
was to explain the survival time (T , in days) of 137 patients with lung cancer (9 of
which were censored) by using a regression model and considering the following
explanatory variables: a measure, at randomization, of the patient’s performance sta-
tus—Karnofsky rating– (x1), where 10–30 is completely hospitalized, 40-60 is partial
confinement and 70–90 is able to take care of self; time in months from diagnosis
to randomization (x2); age in years (x3); prior therapy (x4), a dichotomous variable
taking the value 10 for yes and 0 for no; histological type of tumor, which has the cate-
gories squamous, small cell, adeno and large cell, making necessary the use of dummy
variables given by x5 = 1, x6 = 1 and x7 = 1 if the type of cancer cell is squamous,
small and adeno, respectively, and 0 otherwise; and type of treatment (x8), which takes
the value 0 for standard chemotherapy and 1 for test chemotherapy.

The data considered here has been analyzed by means of regression models assum-
ing different error distributions, such as the exponential, generalized gamma, log-
logistic, lognormal and Weibull (Lee and Wang 2003). In spite of this, an important
aspect that should be considered is the criterion through which the lifetime distribution
is justified. Thus, a theoretical argument is often used for describing the mechanism of
death or failure. For example, the following arguments can be considered: “wear-out
of phase-type”, with exponential lifetimes for each phase, for the gamma distribution;
“first passage time” for the inverse Gaussian distribution; “multiplicative degradation”
for the lognormal distribution; and “type extreme values” for the Weibull distribution.
An argument for the use of the BS distribution is the possibility of relating the propaga-
tion lifetimes that lead to a fatigue process with some cumulative damage. Thus, based
on this argument, we propose the BS model to analyze the data for this motivating
example.

Different reasons justify the relationship between a distribution and its associated
logarithmic distribution (log-distribution). For instance, in lifetime regression analy-
sis, the lifetime and its associated covariates are generally log-linearly related. Thus,
if the lifetime regression model is linearized, then a log-distribution for the random
error is required. This model is called an accelerated failure time regression model; see
Lawless (2002, Chapter 6) and Meeker and Escobar (1998, Chapter 18). In addition,
the parameter estimates, moments and random numbers of a distribution could be
obtained more efficiently from its log-distribution. For these reasons, it is necessary
to know the log-distribution associated with a distribution.

Based on the theoretical argument given above, we initially fit the data by assuming
the log-BS model for censored data that was proposed in Leiva et al. (2007).

4.1 Analysis under the log-BS model

Firstly, the model considered is given by

log(ti ) = β0 + β1xi1 + · · · + β8xi8 + εi , i = 1, . . . , 137, (9)
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Fig. 4 d-c residual again the fitted value (a) and normal probability plot with envelope (b)

assuming that the εi ’s are independent and identically distributed (i.i.d.) variates, where
εi ∼ log-BS(α, 0). The response yi = log(ti ) denotes the logarithm of the survival or
censoring time. Since E[εi ] = 0, the regression is performed on E[log(Ti )]. The val-
ues of the MLEs (approximate standard error in parenthesis) are: β̂0 = 1.142 (0.638),

β̂1 = 0.040 (0.005), β̂2 = −0.003 (0.009), β̂3 = 0.022 (0.008), β̂4 = −0.002 (0.023),
β̂5 = −0.280 (0.303), β̂6 = −0.705 (0.301), β̂7 = −0.691 (0.367), β̂8 =
−0.383 (0.193) and α̂ = 1.262 (0.079). In this case, the predictors x2, x4, x5, x7 and
x8 are not marginally significant at 5%.

A diagnostics analysis based on the d-c residual (Leiva et al. 2007) highlights
strongly the observation #85; see Fig. 4a. This case corresponds to a 35-year-old
patient whose survival time was one day and who had waited for 7 months until ran-
domization. His performance was partial confinement, he did not have any prior ther-
apy, the histological tumor type was squamous and he received the test chemotherapy
treatment. The normal probability plot with generated envelope for the d-c residual
(see Fig. 4b) presents some indication that a heavy-tailed error distribution might be
more appropriate. Furthermore, three observations fall outside the envelope, which
correspond to patients #77, #85 and #100. These are pointed out in Fig. 4a. Graph-
ical analyses of total local influence under the case-weight perturbation scheme are
displayed in Fig. 5. Also, by using the cut-off point proposed in Verbeke and Mole-
nberghs (2000, Subsect. 11.3), the three observations mentioned above (cases #77,
#85 and #100) appear to have an outstanding influence.

Table 1 shows the relative changes (RC) in the estimates after dropping one of the
three cases with outstanding influence and also when all of them are dropped at once
(represented by the set I = {77, 85, 100}). The p-values for the new estimates are
given in parentheses in Table 1. The RC (in percentage) of each estimated parameter
are defined by: RCθ j = ∣∣[θ̂ j − θ̂ j (I)]/θ̂ j

∣∣ × 100%, where θ̂ j (I) denotes the MLE of
θ j , with j = 1, . . . , 10, after the set I of observations has been removed. In general,
the RC are large, even for those estimates that were significant at 5%. In addition, we
notice that there are changes in the inference for some coefficients. Particularly, β3
and β8 are not significant at 5% after eliminating the three observations.
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Fig. 5 Index plots of Ci (β) (a) and Ci (α) (b), under case-weight perturbation

Table 1 RC (in %) and the corresponding p-values in parentheses

Estimated coefficient Dropped observation

None 77 85 100 Set I

β̂0 – −3 −104 35 −81
(0.073) (0.053) (0.000) (0.243) (0.000)

β̂1 – 11 8 −8 14
(0.000) (0.000) (0.000) (0.000) (0.000)

β̂2 – −37 −15 −40 −108
(0.750) (0.659) (0.688) (0.651) (0.439)

β̂3 – −16 77 −14 51
(0.006) (0.001) (0.549) (0.001) (0.158)

β̂4 – 556 −1261 −155 −756
(0.927) (0.673) (0.200) (0.810) (0.382)

β̂5 – 28 77 −2 119
(0.356) (0.489) (0.817) (0.361) (0.833)

β̂6 – −4 −2 20 11
(0.019) (0.011) (0.008) (0.053) (0.011)

β̂7 – −9 −17 −4 −28
(0.060) (0.039) (0.014) (0.042) (0.002)

β̂8 – 18 48 36 101
(0.047) (0.092) (0.268) (0.210) (0.981)

α̂ – 3 9 4 17

Although we can choose a final model like the one mentioned above, clearly the
MLEs present lack of robustness when the outlying observations are considered in the
data and the assumption for the distribution of the error term appears to be unsuitable.
We will reanalyze these data in the sequel using a heavy-tailed error model.

4.2 Analysis under the log-BS-t model

The data set analyzed in Subsect. 4.1 under the log-BS regression model is reanalyzed
here under the log-BS-t regression model, that is, under the model given in Eq. 9
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Fig. 6 d-c residual against the fitted value (a) and normal probability plot with envelope (b)

assuming that the εi ’s are i.i.d. r.v., where εi ∼ log-GBS(α, 0; tν). An important point
to consider under t models is related to the estimation of the d.f. ν. Several authors
have dealt with this topic (Lange et al. 1989; Berkane et al. 1994; Fernandez and
Steel 1999; Taylor and Verbyla 2004; Leiva et al. 2008b) and pointed out difficulties
in estimating ν due to problems of unbounded and local maximum in the likelihood
function. This parameter can be fixed previously as recommended by Lange et al.
(1989) and Berkane et al. (1994). They suggest considering ν = 4 or otherwise to get
information for ν from the data set.

In order to estimate β and α of the log-BS-t regression model, we fix different values
for ν and consider the MLEs of β and α in the log-BS model as starting values for the
numerical procedure. We choose the value of ν that maximizes the likelihood function
over several values of ν ∈ [2, 50], obtaining ν = 3. The values of the MLEs correspond
to: β̂0 = 2.065(0.636), β̂1 = 0.036(0.004), β̂2 = 0.004(0.010), β̂3 = 0.008(0.009),

β̂4 = − 0.010(0.021), β̂5 = − 0.004(0.267), β̂6 = − 0.723(0.242), β̂7 = − 0.746
(0.256), β̂8 = −0.076(0.176) and α̂ = 0.816(0.073). From this analysis, the explana-
tory variables x2, x3, x4, x5 and x8 are not marginally significant at 5%. However, the
patient’s performance status and histological tumor type were statistically significant
when the log-BS-t model is taken into consideration.

By performing the diagnostics analysis, we created the graphs of the d-c residuals
against the fitted values and the normal probability plot with generated envelope in
Fig. 6a and b, respectively. In Fig. 6a, we notice some large negative residuals (patients
#77 and #85), but from Fig. 6b the assumption of log-BS-t error seems to be suitable,
since there are no observations falling outside the envelope.

Index plots of |�max| for C�(β) and C�(α) under case-weight perturbation (which
are not shown here) indicate that observations #12, #95 and #106 are revealed as
potentially influential. The patients that appear in these two graphs have large values
in common for the time from the diagnosis to randomization. However, in Fig. 7, where
the index plots of Ci (β) –7(a)– and Ci (α) –7(b)– under the case-weight perturbation
scheme are displayed, few observations appear as potentially influential.

Similar to the analysis performed in Subsect. 4.1, the four observations pointed
out in Fig. 7a and b (cases #12, #77, #95 and #106) were dropped. Then, the relative

123



Lifetime Data Anal

0
2

4
6

8
10

0
2

4
6

8
10

Index

C
i(β

)
(a)

12

77 95
106

0 20 40 60 80 100 120 1400 20 40 60 80 100 120 140

Index

C
i(α

)

(b)

Fig. 7 Index plots of Ci (β) (a) and Ci (α) (b), under case-weight perturbation

Table 2 RC (in %) and the corresponding p-values in parentheses

Estimated coefficient Dropped observation

None 12 77 95 106 Set I

β̂0 – 3 −1 −4 −8 −5
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

β̂1 – 1 3 0 1 4
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

β̂2 – −171 −23 −89 471 −113
(0.730) (0.274) (0.657) (0.463) (0.318) (0.569)

β̂3 – −10 −3 25 2 13
(0.372) (0.318) (0.353) (0.497) (0.384) (0.422)

β̂4 – −7 31 23 42 60
(0.634) (0.604) (0.740) (0.710) (0.787) (0.843)

β̂5 – 1018 1216 87 1146 2642
(0.988) (0.882) (0.857) (0.998) (0.868) (0.681)

β̂6 – −2 −1 6 −7 1
(0.003) (0.002) (0.002) (0.004) (0.002) (0.002)

β̂7 – 2 0 1 −3 3
(0.004) (0.004) (0.003) (0.003) (0.003) (0.003)

β̂8 – −46 21 46 −47 6
(0.669) (0.527) (0.732) (0.813) (0.533) (0.677)

α̂ – 2 2 2 0 6

changes after the set I of observations was removed were computed as well as the
new p-values (see Table 2). Large variations are only noticed for the non-significant
parameters and α, but inferential changes are not observed. Figure 8 displays the esti-
mated weight ξ̂i2 against the d-c residual rDCi

and, as was expected, larger residuals
have smaller weights, where some of them were detected in the first analysis given in
Subsect. 4.1.

Based on the analysis here, we conclude that the log-BS-t regression model is more
appropriate for fitting this data set than the log-BS model. Thus, the final selected model
in our analysis is
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Fig. 8 Estimated weight from the log-BS-t regression model against the d-c residual

log(ti ) = β0 + β1xi1 + β5xi5 + β6xi6 + β7xi7 + εi , i = 1, . . . , 137, (10)

where the values of the MLEs (approximate standard error in parenthesis) are: β̂0 =
2.462 (0.336), β̂1 = 0.036 (0.004), β̂5 = 0.048 (0.260), β̂6 = −0.664 (0.234), β̂7 =
−0.738 (0.253), and α̂ = 0.817 (0.073), which may be interpreted in the following
manner. The survival time is expected to increase with the performance status and no
significance appears between the squamous and large types; however, the expected
survival time should decrease 94% and 109% for the small and adeno tumor types with
respect to the large one, respectively, assuming that the performance status is fixed.

5 Concluding remarks

In this paper, we proposed a new class of lifetime regression models called log-BS-t
models, for which the maximum likelihood estimates appear to be robust against outly-
ing observations in the sense of two common residuals. In order to study the robustness
aspects of the maximum likelihood estimates against perturbations in the model/data,
the local influence curvatures are derived under various perturbation schemes. Finally,
a motivating example previously analyzed by considering other distributions, such
as the exponential, generalized gamma, log-logistic, lognormal and Weibull distribu-
tions, was reanalyzed based on the BS and BS-t models. The medical justification
allowed the use of the BS distribution, but this model, as well as those previously
analyzed, was shown to be sensitive to extreme data. We showed that the BS-t model
seems to be more appropriate for fitting the data set than the BS model.

Appendix: matrix � calculations

Here, we compute the elements of the matrix � for each perturbation scheme consid-
ering the model given in Eq. 4. This is partitioned as � = (�β,�α)�, where �β is a
p × n matrix and �α is a n × 1 vector.
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[A1] Case-weight perturbation. Here �β = X�diag{b̂1, . . . , b̂n} and �α =
(â1, . . . , ân), where

b̂i =
⎧⎨
⎩

1
2

[
ξ̂i1ξ̂i2 w(ξ̂2

i2) − ξ̂i2

ξ̂i1

]
, i ∈ D;

ξ̂i1
2 h(ξ̂i2), i ∈ C;

and âi =
⎧⎨
⎩

1
α̂

[
ξ̂2

i2 w(ξ̂2
i2) − 1

]
, i ∈ D;

ξ̂i2
α̂

h(ξ̂i2), i ∈ C.

[A2] Response perturbation. In this case, we have �β = X�diag{d̂1, . . . , d̂n}, where

d̂i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sy

[
1
α̂2 cosh(yi − µ̂i ) w(ξ̂2

i2)

− 1
4 sech2

(
yi −µ̂i

2

)
− 2

α̂4 sinh(yi − µ̂i ) w′(ξ̂2
i2)

]
, i ∈ D;

Sy
4

[
ξ̂i2 h(ξ̂i2) + ξ̂2

i1h′(ξ̂i2)
]
, i ∈ C;

and �α = (ĉ1, . . . , ĉn), where

ĉi =

⎧⎪⎨
⎪⎩

Sy

α̂

[
ξ̂i1ξ̂i2 w(ξ̂2

i2) + ξ̂i1ξ̂
3
i2 w′(ξ̂2

i2)
]
, i ∈ D;

Sy

2α̂

[
ξ̂i1 h(ξ̂i2) + ξ̂i1ξ̂i2h′(ξ̂i2)

]
, i ∈ C.

[A3] Explanatory variable perturbation. Here �β is formed by the elements �βi j ,
which assume for j �= t the form

�βi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sx β̂t xi j

[
1
4 sech2(

yi −µ̂i
2 ) − 1

α̂2 cosh(yi − µ̂i ) w(ξ̂2
i2)

− 2
α̂2 sinh2(yi − µ̂i ) w′(ξ̂2

i2)
]
, i ∈ D;

− Sx β̂t xi j
4

[
ξ̂i2 h(ξ̂i2) + (ξ̂i1)

2 h′(ξ̂i2)
]
, i ∈ C;

and for j = t the form

�βi t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sx β̂t xi t

[
1
4 sech2(

yi −µ̂i
2 ) − 1

α̂2 cosh(yi − µ̂i ) w(ξ̂2
i2)

− 2
α̂2 sinh2(yi − µ̂i ) w′(ξ̂2

i2)
]

−Sx

[
1
α̂2 sinh(yi − µ̂i ) w(ξ̂2

i2) − 1
2 tanh(

yi −µ̂i
2 )

]
, i ∈ D;

− Sx β̂t xi t
4

[
ξ̂i2 h(ξ̂i2) + (ξ̂i1)

2h′(ξ̂i2)
]

+ Sx
2 ξ̂i1 h(ξ̂i2), i ∈ C;

and �α = (φ̂1, . . . , φ̂n), where

φ̂i =
⎧⎨
⎩

− 2
α̂3 Sx β̂t sinh(yi − µ̂i )

[
w(ξ̂2

i2) + ξ̂2
i2 w′(ξ̂2

i2)
]
, i ∈ D;

− β̂t Sx
2α̂

[
ξ̂i1 h(ξ̂i2) + 2

α̂2 sinh(yi − µ̂i )h′(ξ̂i2)
]
, i ∈ C.
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[A4] Non-censoring case-weight perturbation. In this case, the quantities b̂i and âi

given in [A1] reduce to

b̂i =
⎧⎨
⎩

1
2

[
ξ̂i1ξ̂i2 w(ξ̂2

i2) − ξ̂i2

ξ̂i1

]
, i ∈ D;

0, i ∈ C;
and âi =

⎧⎨
⎩

1
α̂

[
ξ̂2

i2 w(ξ̂2
i2) − 1

]
, i ∈ D;

0, i ∈ C.

[A5] Censoring case-weight perturbation. For this case, the quantities b̂i and âi

given in [A1] reduce to

b̂i =
⎧⎨
⎩

0, i ∈ D;
ξ̂i1
2 h(ξ̂i2), i ∈ C;

and âi =
⎧⎨
⎩

0, i ∈ D;
ξ̂i2
α̂

h(ξ̂i2), i ∈ C.
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