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Summary: During the generation of a successful adaptive immune
response, multiple molecular signals are required. A primary signal is the
binding of cognate antigen to an antigen receptor expressed by T and B
lymphocytes. Multiple secondary signals involve the engagement of
costimulatory molecules expressed by T and B lymphocytes with their
respective ligands. Because of its essential role in immunity, one of the
best characterized of the costimulatory molecules is the receptor CD40.
This receptor, a member of the tumor necrosis factor receptor family, is
expressed by B cells, professional antigen-presenting cells, as well as
non-immune cells and tumors. CD40 binds its ligand CD40L, which is
transiently expressed on T cells and other non-immune cells under
inflammatory conditions. A wide spectrum of molecular and cellular
processes is regulated by CD40 engagement including the initiation and
progression of cellular and humoral adaptive immunity. In this review,
we describe the downstream signaling pathways initiated by CD40 and
overview how CD40 engagement or antagonism modulates humoral and
cellular immunity. Lastly, we discuss the role of CD40 as a target in
harnessing anti-tumor immunity. This review underscores the essential
role CD40 plays in adaptive immunity.

Keywords: CD40, CD40L, tumor necrosis family, TRAF proteins, humoral immunity,
cellular immunity, graft tolerance, tumor immunity

Introduction

In the initiation of an adaptive immune response, multiple

signals are necessary. A primary signal is the engagement of

the T-cell antigen receptor (TCR), with polypeptides derived

from a protein presented in the context of major histocompat-

ability complex II (MHC II) on the surface of antigen-present-

ing cells (APCs) and the binding of native antigen to a cognate

B-cell receptor (BCR) complex expressed by B cells. Subse-

quent secondary signals involve the engagement of costimula-

tory molecules expressed as receptor and ligand pairs between

T cells and APCs and between B cells and T cells, with CD40

ligand (CD40L) expressed by activated T cells engaging CD40

expressed by B cells and APCs (1). Other accessory signals are

necessary: the secretion of cytokines functioning to further

enhance, modify, and skew the responding effector cells.



Although T-cell priming and B-cell activation can occur in

absence of CD40 signals, many cellular and immune functions

are defective in the absence of this interaction, underscoring

the importance of this ligand ⁄ receptor pair in the develop-

ment of adaptive immunity (2).

Costimulatory molecules are broadly divided into two

groups based on their respective homologies to founding

members. The CD28 ⁄B7 family includes CD28 and cytotoxic

T-lymphocyte antigen-4 (CTLA-4), and binds to its ligands

CD80 and CD86 (3). The tumor necrosis factor (TNF) recep-

tor (TNFR) family, of which CD40 is a member, also

includes TNFR superfamily member 4 (OX40); TNFR super-

family member 13c (BAFF-R); TNFR superfamily member

13b; (TACI), TNFR superfamily member 17 (BCMA); and

TNFR superfamily member 11a (RANK) (4). Costimulatory

molecules can be further subdivided based on function. For

example, molecules containing positive costimulatory func-

tion can be grouped together, such as CD40L to CD40 bind-

ing, or negative costimulatory function, i.e. CTLA-4 binding

CD80 ⁄ CD86 (5).

The costimulatory receptor CD40 is a 48-kDa type I

transmembrane protein and contains a 193 amino acid (aa)

extracellular domain, 21 aa leader sequence, 22 aa transmem-

brane domain, and a 62 aa intracellular domain in human (90

aa in mouse) (6). In the extracellular domain of CD40, there

are 22 cysteine residues that are conserved between the mem-

bers of the TNFR superfamily (6). In regard to expression pat-

tern, CD40 was initially characterized on B cells and is also

expressed on dendritic cells (DCs), monocytes, platelets, and

macrophages as well as by non-hematopoietic cells such as

myofibroblasts, fibroblasts, epithelial, and endothelial cells

(7–9).

The ligand of CD40, known as CD154 or CD40L, is a type II

transmembrane protein, with a variable molecular weight

between 32 and 39 kDa because of post-translation modifica-

tions (6). A soluble form of CD40L has been reported that

expresses activities similar to the transmembrane form (10,

11). CD40L is a member of the TNF superfamily and is

characterized by a sandwich extracellular structure that is

composed of a b-sheet, a-helix loop, and a b-sheet (12). This

structure allows for the trimerization of CD40L, which is also

a feature of the TNF family of ligands (12). CD40L is

expressed primarily by activated T cells, as well as activated B

cells and platelets; and under inflammatory conditions is also

induced on monocytic cells, natural killer cells, mast cells, and

basophils (13). The wide expression of this costimulatory pair

indicates the pivotal roles they play in different cellular

immune processes.

CD40L ⁄ CD40 interactions exert profound effects on DCs, B

cells, and endothelial cells, among many cells of the hemato-

poietic and non-hematopoietic compartments. It has been

demonstrated that CD40 engagement on the surface of DCs

promotes their cytokine production, the induction of costim-

ulatory molecules on their surface, and facilitates the

cross-presentation of antigen (2). Overall, the impact of CD40

signaling ‘licenses’ DCs to mature and achieve all of the neces-

sary characteristics to effectively trigger T-cell activation and

differentiation. CD40 signaling of B cells promotes germinal

center (GC) formation, immunoglobulin (Ig) isotype switch-

ing, somatic hypermutation (SHM) of the Ig to enhance affin-

ity for antigen, and finally the formation of long-lived plasma

cells and memory B cells (14). Moreover, it has been shown

that the CD40 pathway is essential for the survival of many

cell types including GC B cells, DCs, and endothelial cells

under normal and inflammatory conditions (15). In a patho-

genic setting, the deregulation of CD40 signaling has been

observed in multiple autoimmunity diseases. Together, this

breadth of functions for CD40 underline the importance this

receptor contains during the generation of an acquired

immune response (2).

In this review, we describe CD40 signaling and the path-

ways implicated in this process and discuss work detailing the

role of CD40 signaling in both humoral and cellular immune

responses. Lastly, we will describe how CD40 targeting has

led to novel anti-tumor therapies.

TRAF-dependent and -independent CD40 signaling

The engagement of CD40 by CD40L promotes the clustering

of CD40 and induces the recruitment of adapter proteins

known TNFR-associated factors (TRAFs) to the cytoplasmic

domain of CD40 (15). The TRAF proteins activate different

signaling pathways including the canonical and non-canonical

nuclear factor jB (NFjB)-signaling pathways, the mitogen-

activated protein kinases (MAPKs), phosphoinositide 3-kinase

(PI3K), as well as the phospholipase Cc (PLCc) pathway (15).

Recent evidence indicates that signaling may occur indepen-

dent of the TRAF proteins, as well as with Janus family kinase

3 (Jak3), which was found to be able to bind directly to the

cytoplasmic domain of CD40. Binding of Jak3 has been shown

to induce the phosphorylation of signal transducer and

activator of transcription 5 (STAT5) (16, 17). Together, these

complex pathways elicit the essential signals mediated

through CD40 to impart its diverse cellular processes (Fig. 1).

Perhaps the best-characterized signaling pathways initiated

during CD40 activation are the canonical and non-canonical
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NFjB pathways, which lie downstream of the recruitment of

the TRAF proteins to the CD40 cytoplasmic domains. The

canonical NFjB pathway begins with the formation of

the inhibitor of jB (IjB) kinase (IKK) complex, containing

the catalytic subunits IKKa, IKKb, and the regulatory subunits

IKKc or NEMO. The activation of NFjB leads to the ubiquitin

and proteasomal-dependent degradation of the IjB complex,

inducing the translocation of NFjB heterodimers p50 ⁄p65

and p50 ⁄ c-Rel to the nucleus. The non-canonical NFjB path-

way is induced when the protein kinase NFjB-inducing kinase

(NIK) activates IKKa, leading to a limited proteolysis of the

precursor p100 that produces p52 protein, which associates

with avian rel B and translocates into the nucleus. The result is

that both signaling pathways can lead and regulate different

target genes (18).

The TRAF family contains six members, designated TRAF1

through TRAF6, with all members driving cellular processes

upon TNFR family engagement with their respective ligands.

Characteristic of all TRAFs, members have a highly conserved

carboxyl domain, which is called the TRAF domain. Upon

ligand engagement, TRAF proteins are recruited to canonical

aa motifs contained in the cytoplasmic domains of the

TNFR family, with the TRAF domain engaging its cognate aa

motif located in the TNFR cytoplasmic domains. TRAF pro-

teins, with exception of TRAF1, contain an amino-terminal

ring finger domain followed by five zinc fingers and a

coiled-coil domain, with this structure called the zinc finger

domain. The genetic ablation of the zinc finger domain

generates a dominant negative TRAF protein that inhibits

any induction of signaling mediated by the normal TRAF,

demonstrating that this domain is essential for signaling (15).

Upon engagement with CD40L, CD40 directly or indirectly

recruits TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6 to its

cytoplasmic domains. The canonical consensus binding sites

for TRAF1, TRAF2, and TRAF3 are situated at the membrane

distal domain of the intracellular tail of CD40 and is demar-

cated by the aa sequence PxQxT (19, 20). The insertion of

mutations at the PxQxT domain disrupts the binding of

TRAF2 ⁄3 to the CD40 cytoplasmic tail and dampens CD40

signaling by abrogating the NFjB, MAPK8 (Jnk), and p38

pathways during ligand engagement (21, 22). Our laboratory

found a second, non-canonical binding site for TRAF2 at the

carboxy-terminus of CD40 tail (23). Through this TRAF2

binding site, NFjB signaling is capable of being induced to

control several B-cell functions (24). TRAF6 is recruited to the

membrane proximal domain of CD40 to the consensus

sequence QxPxEx (15). Through recruitment of TRAF

proteins and their binding to different sites of CD40, TRAFs

are essential in driving CD40-mediated signaling.

By elucidating the crystal structure of a portion of the CD40

cytoplasmic tail bound to TRAF2, McWhirter et al. (25)

revealed the complexity behind the conformational changes

CD40

TRAF2 TRAF3 TRAF3TRAF2
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TRAF6
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signaling

Cbl-bv
c-Cbl

PI3k

JNK activationCanonical and
Non-canonical

NF κB signaling

Canonical,
Non-canonical
NFκB signaling

and JNK activation

p38, Akt and JNK
activation

STAT5 phosphorylation

Canonical
NF κB signaling

Survival, maturation, proliferation, production of inflammatory cytokines, expression of costimulatory molecules, development of GC B cells,
immunoglobulin isotype switching, somatic hypermutation of the immunoglobulin and formation of long-lived plasma cells and memory B cells.

Fig. 1. CD40 signaling dependent and independent of tumor necrosis factor receptor-associated factor (TRAF) proteins. After CD40 activation,
TRAFs 1, 2, 3, 5, and 6 are recruited to CD40 tail, driving different signaling pathways. Furthermore, Janus family kinase 3 can bind to the proximal
cytoplasmic membrane of CD40. The signaling dependent or independent of TRAF protein regulates different cellular and immune processes.

Elgueta et al Æ Mechanism and function of CD40 signaling

154 � 2009 John Wiley & Sons A/S • Immunological Reviews 229/2009



driven by CD40L engagement by revealing the oligomeriza-

tion that occurs with CD40 in complex with TRAF2. Upon

engagement with CD40L, a conformational change occurs in

CD40 that exposes the docking site for TRAF2 at the canonical

motif, and thus a trimeric TRAF2 is able to interact with three

cytoplasmic tails of CD40 (25). In order to drive fulminant

CD40 signaling, higher levels of oligomerization are required

than trimerization, and it is likely that these different orders

of oligomerization may result in differential recruitment of

adapter and kinase proteins, particularly those that bind with

low affinity to the cytoplasmic domains of CD40 such as

TRAF1 or TRAF6 (26, 27). These differences in oligomeriza-

tion likely account for the breadth of biologic activities

induced by different monoclonal antibodies to CD40 (28).

TRAF1 protein expression is heightened during CD40 (29,

30). There is evidence demonstrating that TRAF1, as a result of

the absence of a zinc finger domain, plays an important role in

regulating the signaling of the other TRAF proteins (15). The

TRAF1 binding site motif contained by CD40 overlaps with the

binding sites for TRAF2 and TRAF3, and it appears that TRAF1

can bind weakly to the CD40 cytoplasmic domains in the

absence of TRAF2 (20). The physiological implications of this

observation are unclear. In APCs deficient in TRAF1, a

reduction is observed in the recruitment of TRAF2 to the

cytoplasmic domain of CD40, with a corresponding increase of

TRAF2 degradation (31). These results were confirmed by Xie

et al. (32) when it was demonstrated that CD40 stimulation of a

B-cell line deficient in TRAF1 increases the amount of TRAF2

recruited to lipid rafts and increases the degradation of TRAF2

and TRAF3. In addition, data presented demonstrate that the

recruitment of both TRAF1 and TRAF2 to CD40, during CD40L

engagement, is required for activation of the canonical NFjB

pathway. This was shown using B-cell line deficient for TRAF2

and TRAF1, which exhibit attenuated activation of canonical

NFjB compared with single TRAF-knockout B cells (32).

Together, these results suggest that TRAF1 can interact and

regulate the recruitment and degradation of TRAF2. Moreover,

both TRAF proteins can cooperate in the activation of the

canonical NFjB pathway.

During CD40 engagement, the recruitment of TRAF2 to the

tail of CD40 leads to the activation of the Jnk, p38, and

thymoma viral proto-oncogene 1 (Akt) pathways. This was

shown using TRAF2-deficient mouse embryonic fibroblasts

(MEFs) and B cells, which exhibited attenuated activation of

these pathways upon CD40 engagement (33–35). Similar

results were observed in B cells transfected with a dominant

negative TRAF2 (34). The engagement of CD40 induces the

recruitment of TRAF2 with the kinase mitogen-activated

protein kinase kinase kinase 1 (MEKK1) to CD40 tail. In

experiments where CD40 was engaged on B cells lacking

MEKK1, the activation of Jnk and p38 was blunted (36).

MEKK1 drives the phosphorylation of Jnk and p38 and thus

activates these respective pathways (36).

Despite its activating role in the aforementioned pathways,

TRAF2 appears to be a negative regulator of the non-canonical

NFjB pathway. The ablation of TRAF2 induces the accumula-

tion of NIK in MEFs (37). Recent studies have elegantly dem-

onstrated that TRAF2 cooperates with TRAF3 to constitutively

degrade NIK, with engagement of another TNFR, BAFF-R,

releasing this degradation and allowing for activation of the

non-canonical NFjB pathway (38). It is clear that engagement

of CD40 activates this pathway in a similar mechanism. With-

out CD40 stimulation, a complex is formed between family

members of the cellular inhibitor of apoptosis (cIAP) 1 and 2,

which interact with TRAF2, and which in turn interacts with

TRAF3 and NIK (Fig. 2). Under these conditions, cIAP1 ⁄2
induces the degradation of NIK and antagonizes the non-

canonical NFjB pathway (39, 40). In contrast, after

CD40 ⁄ CD40L engagement, the complex is destabilized,

leading the recruitment of TRAF2 and TRAF3 to the cytoplas-

mic domains of CD40, with activation of the non-canonical

NFjB pathway resulting from the subsequent accumulation of

NIK as a result of TRAF2 and TRAF3 degradation following

recruitment to CD40 (15). The degradation of TRAF2 is the

result of self-degradation, because of its E3-ubiquitin ligase

property, whereas TRAF3 degradation is dependent of cIAP1 ⁄
cIAP2 (40, 41). Together, these results show that cIAP1 ⁄2 has

a dual role in CD40 signaling, that in a steady state, cIAP1 ⁄2
inhibits the non-canonical NFjB signaling by degradation of

NIK, whereas upon CD40 activation, cIAP1 ⁄ 2 promotes

TRAF3 degradation, which releases NIK and promotes activa-

tion of the alternative NFjB pathway.

Initial descriptions of the role TRAF3 plays in CD40 signal-

ing proposed that it functioned as a negative regulator of the

canonical NFjB pathway (42). This hypothesis was based on

experiments where a TRAF3-dominant negative protein

expressed in B cells leads induction of the canonical NFjB and

Jnk signaling pathways upon CD40 engagement (42, 43).

These results were corroborated in experiments where CD40

signaling was studied in TRAF3-deficient B cells; it was also

observed that Jnk phosphorylation and an accumulation of

NIK was enhanced, as well as the recruitment of TRAF2 to

lipid rafts suggesting that TRAF3 regulates TRAF2 and NIK, as

was discussed above (39, 40, 43). In contrast, it was observed

in epithelial cells that the enforced overexpression of TRAF3

induces canonical NFjB signaling during CD40 stimulation,
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suggesting that TRAF3 has different roles in different types of

cells (44, 45). Therefore, in B cells, TRAF3 negatively

regulates canonical and non-canonical NFjB pathways, as well

as Jnk signaling; whereas in epithelial cells, it is able to induce

canonical NFjB signaling. Additional experiments are neces-

sary to determine the role of TRAF3 in non-canonical NFjB

and Jnk signaling in epithelial cells.

Very little is known about the role of TRAF5 in CD40

signaling although TRAF5 is incapable to bind directly to

CD40 cytoplasmic domains. During CD40 signaling, TRAF5

forms heterotrimers with TRAF3 (15). The role of TRAF5 sig-

naling, during CD40 stimulation, was shown in B cells treated

with small interfering RNAs (siRNAs) specific for TRAF5 or

deficient for TRAF5 where canonical and non-canonical NFjB

pathways were ablated. That is traduced in a reduction of the

antibody production, proliferation, costimulatory molecules

expression (46, 47). Further experiments are necessary to

fully understand TRAF5 function in CD40 signaling.

Like other TRAF proteins, the physical interaction of TRAF6

with CD40 was demonstrated by the yeast two-hybrid assay

(15). In TRAF6-deficient MEFs or epithelial cells where TRAF6

has been silenced by siRNA, these cells exhibited a reduction

or abrogation in the activation of canonical NFjB, Jnk, p38,

and Akt, upon CD40 engagement. Interestingly, TRAF6 is able

to interact with TRAF2 and thus regulate in a positive way

CD40 signaling (21). Recently, Rowland et al. (48) have

shown that in B cells expressing CD40 void of a TRAF6 bind-

ing site, TRAF6 was still capable of interacting with TRAF2.

This suggests that TRAF6 may still have a functional role in

CD40 signaling, without binding directly to CD40. Under

these conditions, CD40 stimulation was capable of enhancing

CD80 upregulation and inducing Jnk activation in comparison

to B cells deficient in TRAF6. These data implicate TRAF6 as

regulating some of its physiological functions through its

interactions with TRAF2 and independent of its recruitment to

the TRAF6 binding site of CD40 (48).

CD40 can induce the recruitment of TRAF6 ⁄Casitas B-line-

age lymphoma b (Cbl-b) ⁄ Casitas B-lineage lymphoma

(c-Cbl) ⁄ PI3K complex, which leads to Akt phosphorylation.

The members of Cbl family are adapter molecules, which have

E3-ubiquiting ligase properties (49). Depending on the cell

type, they regulate positively or negatively a wide range of

kinase and adapter proteins such as PI3K, Rous sarcoma onco-

gene (Src) tyrosine kinases, spleen tyrosine kinase, growth

factor receptor bound protein 2, and Src homology 2 domain-

containing transforming protein C1 (49). In studies using

TRAF2

TRAF3

cIAP1/2

NIK

NIK

TRAF2

TRAF3

cIAP1/2

Degradation

Degradation

CD40L

CD40CD40

A BWithout stimulation With CD40L stimulation

Non-canonical NFκB pathway

Non-canonical NFκB pathway

Apoptosis of B cells Survival of B cells

Fig. 2. Role of tumor necrosis factor receptor-associated factors (TRAFs) 2 and 3 in the inhibition of non-canonical nuclear factor jB (NFjB)
pathway. Under non-stimulation, TRAF2 and TRAF3 form a complex with cellular inhibitor of apoptosis 1 and 2 (cIAP1 and cIAP2) and NFjB-
inducing kinase (NIK). cIAP1 ⁄ 2 degrades NIK, ablating the non-canonical NFjB pathway (39, 40). After CD40 ⁄ CD40L engagement, the complex is
destabilized, permitting the release of NIK from the complex inducing the non-canonical NFjB signaling. Furthermore, it induced the recruitment of
TRAF2 and TRAF3 to CD40 tail and the degradation of TRAF3 by cIAP1 ⁄ 2 proteins.
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Cbl-b-deficient DCs stimulated in vitro with CD40L, an ablation

was observed in Akt activation without effect in the induction

of the canonical NFjB pathway. These findings suggest that in

DCs, the Akt activation is independent of NFjB signaling

(49). As mentioned above, Cbl-b induces Akt phosphorylation

through PI3K, and after the CD40 engagement, the blocking

of PI3K abrogates Akt activation, demonstrating that in DCs,

the Cbl-b activate PI3K, which induce the phosphorylation of

Akt during CD40 signaling (50).

Physiologically, the blocking of PI3K drastically affects the

survival of DCs (51). The mechanism that involves the

anti-apoptotic effect of PI3K ⁄ Akt activation is dependent on

the inhibition of the pro-apoptotic proteins, caspase 9, B-cell

leukemia (Bcl) ⁄ lymphoma 2-associated agonist of cell death

(50, 52, 53). Recently, a second mechanism was determined;

PI3K can activate the mammalian target of rapamycin, which

induces the expression of the anti-apoptotic protein caspase 8

and Fas-associated via death domain-like apoptosis regulator

p43 (cFLIPp43) (50). Therefore, CD40, probably through

TRAF6, induces the activation of PI3K signaling that protects

the cell from apoptosis.

In contrast to the result described above, B cells deficient in

Cbl-b have an increase of NFjB and Jnk pathways, suggesting

that in B cells Cbl-b is a negative regulator of these signaling

pathways (54). In this case, Cbl-b is recruited through TRAF2

to cytoplasmic tail of CD40 and the lack of Cbl-b increase

TRAF2 recruitment to CD40, showing a negative role of Cbl-b

in the recruitment of TRAF2 (54). Together, these results pro-

pose that in different cell types, Cbl-b can regulate different

pathways dependent on which TRAF proteins are interacting.

Most of the studies investigating CD40 signaling demon-

strate pathways dependent on TRAF proteins. However, it was

observed in B cells, the membrane proximal region of the

CD40 tail contains a binding domain for Jak3 (55). Revy et al.

(56) demonstrated that in B cells, upon CD40 stimulation,

Jak3 is not phosphorylated, suggesting that the recruitment of

Jak3 to the cytoplasmic membrane of CD40 is not functional.

However, monocytes are able to induce Jak3 phosphorylation

after CD40 engagement (56). Furthermore, the inhibition of

Jak3 in APCs, upon CD40 stimulation, blocks the maturation

of APCs (16, 17). Additionally, Jak3 induces the transcription

factor STAT5, which can dimerize and translocate to the

nucleus, and leads the gene expression of the inflammatory

cytokines, such as TNFa, interferon-c (IFN-c), and interleu-

kin-6 (IL-6) (57). These results suggest that Jak3 is able to bind

to CD40 and induce the maturation of DCs through STAT5.

In conclusion, CD40 principally mediates signaling through

TRAF proteins, which can activate or inhibit different signal-

ing pathways, dependent upon the cell type. TRAF proteins

drive a wide range of cellular and immune processes and

understanding these pathways will improve our ability to

develop strategies to therapeutically intervene in a vast array

of immune related diseases.

CD40 and humoral immunity

During initiation of a thymus-dependent (TD) humoral

immune response, CD40 signaling by B cells is required for the

generation of high titers of isotype-switched, high affinity anti-

body and for the development of humoral immune memory.

The engagement of CD40 expressed on the surface of antigen-

activated B cells by CD40L expressed on activated CD4+ T cells

is essential for the initiation and progression of a TD humoral

immune response. CD40 engagement triggers B-cell intercellu-

lar adhesion, sustained proliferation, expansion, differentiation,

and antibody isotype switching in vitro (58–61). In vivo, CD40

engagement is required for GC formation and progression, as

well as antibody isotype switching and affinity maturation,

with these processes essential for the generation of memory

B cells and long-lived plasma cells (62–64). The blockade

of CD40 ⁄CD40L interactions through the use of blocking

antibodies, genetic ablation of CD40L, or genetic ablation of

CD40 completely abolishes TD humoral immunity (58).

Identification of CD40 ⁄ CD40L as essential for TD

humoral immunity

Historically, studies in regulation TD humoral immunity have

detailed an essential role for the physical collaboration

between T cells and B cells for an effective TD humoral

immune response to be generated (65). This cellular collabo-

ration is manifest as a physical interaction between antigen-

activated B cells presenting antigen-derived peptides in the

context of MHC class II to cognate CD4+ T-helper cells

(Th cells) specific for the class II-restricted peptides being

presented (66, 67). As a result of this immunological synapse,

the Th cell provides the B cell with contact-dependent

and -independent stimuli. Initially, it was thought that local

release of cytokines was responsible for the ability of T cells to

induce B-cell growth and differentiation. However, cytokines

such as IL-4, IL-5, IL-2, IL-10, and IFN-c alone or in combi-

nation were unable to reconstitute the abilities of T cells to

stimulate sustained B-cell growth and differentiation (58,

68–71). Based on these findings, it was predicted that further

cell-contact mediated mechanisms of T ⁄ B cell crosstalk existed

(72). This prediction was supported by the observation that

plasma membrane fractions from activated Th cells were
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capable of driving B cells into cell cycle, with this induction

occurring independent of cytokines (73–75). The molecule

through which B cells receive this contact-dependent stimulus

from T cells was identified as CD40 through experiments

where agonistic monoclonal antibodies raised against CD40

were found to drive B cells into cell cycle and by using a

CD40-Ig fusion protein to antagonize the ability of plasma

membrane fractions to activate B cells in vitro (60, 76). By

using the CD40-Ig fusion protein, CD40L expressed by acti-

vated Th cells was identified, isolated, and cloned (76, 77).

Furthermore, a monoclonal antibody was raised against

CD40L that antagonized the interactions of CD40 with CD40L

both in vitro and in vivo (64, 76). This antibody (clone MR1)

has proven to be invaluable in studies determining the role of

CD40 ⁄ CD40L in the regulation of humoral immunity.

The in vivo role of CD40 ⁄ CD40L interactions during a

humoral immune response

During infection with a pathogen, either whole pathogen or

its particulates enter the lymph and the proximal draining

lymphoid organs or, in the case of systemic infection, enter

the spleen through the blood. Direct encounter of cognate

antigen by naive follicular (NF) B cells residing in the B-cell

follicles can occur. Alternatively, antigen can be acquired by

tissue-resident DCs in the periphery that then home to the

secondary lymphoid organs and deliver native antigen to

cognate NF B cells (78–80). Lymphoid-homing DCs also pres-

ent processed antigen in the context of MHC class II to Th cells

in the T-cell zones of the secondary lymphoid organs, leading

to the clonal activation of antigen-specific T cells. CD40 ⁄CD40L

interactions between antigen-presenting DCs and Th cells are

essential for the maturation and survival of DCs. In turn, the

CD40-dependent maturation of DCs leads to the sustained

expansion and differentiation of antigen-specific T cells.

The response of NF B cells to TD antigen and T-cell help has

been well defined as a sequence of events that are temporally

ordered. B-cell activation as defined by the induction of a

litany of cell surface molecules can be readily observed hours

after TD activation. Shortly thereafter, entry into the cell cycle

can be documented. These early proliferating cells differenti-

ate into plasmablasts secreting germline-encoded IgM and

then IgG, with these plasmablasts located outside of the B-cell

follicles (days 2–12 postimmunization). Activated B cells also

seed secondary follicles and rapidly proliferate and interact

with Th cells in a GC reaction, where isotype switching and

SHM of the BCR occurs (days 9–20). GC B cells further

differentiate into long-lived plasma cells and memory B cells

containing high-affinity BCRs of the switched isotypes (days

20 +) (81–83).

It is clear that CD40L plays a critical role in controlling

B-cell fate during many of the aforementioned checkpoints in

B-cell growth and differentiation. When Th cells are activated

by DCs within the T-cell zone during a primary TD response,

they transiently express CD40L (84). These activated Th cells

then home toward the B-cell follicles and position themselves

at the border of the B-cell follicles and T-cell zone where they

encounter activated and cognate B cells, with CD40 ⁄CD40L

interactions occurring between the two cell types (85). Th

cells expressing CD40L are detectable at high frequencies by

days 2–5 after immunization and co-localize with plasma-

blasts secreting antibody specific for the immunizing antigen

in the T-cell zone (84). Th cells expressing CD40L are essen-

tial in activating NF B cells to differentiate into plasmablasts as

blockade of CD40 ⁄ CD40L interactions between responding

Th cells and cognate B cells completely ablates the plasmablast

response (64). In contrast to the TD immune response,

abrogation of the CD40 ⁄CD40L pathway has no impact on the

thymus-independent (TI) antibody response. When mice are

immunized against the TI-type II antigen TNP-Ficoll, no

difference in the strength of the humoral immune response is

seen between mice treated either with anti-CD40L antibody

or with control antibody (64). Similar results were observed

in studies comparing the ability of CD40L knockout mice to

mount an immune response to TNP-Ficoll in comparison to

wildtype mice (86). In summation, CD40 signaling in

antigen-responding B cells is essential for their differentiation

into plasmablasts in response to a TD antigen.

CD40 ⁄ CD40L interactions in the initiation and

progression of the GC

In parallel to the plasmablast response, a subset of oligoclonal

antigen-responding NF B cells which have been similarly

activated in the T-cell zones colonize the B-cell follicles where

they form GC structures (81, 83). The fate of whether a

responding B cell differentiates into a plasmablast or whether

it seeds a GC is dictated by a number of B-cell intrinsic or

extrinsic factors. The intrinsic factors include the germline-

encoded affinity of the B cell for antigen, with this affinity

exerting a tremendous impact on B-cell fate. That is, high

initial affinity BCR tends to drive the B cells into the plasma-

blast lineage, whereas moderate affinity imprints the B cells to

seed the GC (87–90). Extensive triggering via CD40 ⁄CD40L is

an example of a cell extrinsic factor that modifies B-cell fate.

There clearly is a range of CD40 signaling that is ‘acceptable’
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in inducing a GC response. In the absence of CD40 stimula-

tion, no GC response is observed. As CD40L signaling is

provided, a GC response initiates and matures. However, in

the presence of enhanced CD40 stimuli during a primary

immune response, either with agonistic anti-CD40 antibodies

or elevated T-cell help, B cells are selectively triggered to

differentiate down the plasmablast lineage and divert from a

GC response (91). In this situation of agonistic anti-CD40, the

antigen-responding B cells uniformly differentiate into

plasmablasts localized outside of the B-cell follicles, and no

GC is formed. A similar scenario, albeit to a less severe degree,

occurs when the numbers of activated, cognate T cells are

enhanced by an order of magnitude. After priming with the

carrier protein keyhole limpet hemocyanin (KLH) 7 days

prior to immunization with the hapten ⁄ carrier (4-hydroxy-

3-nitrophenyl) acetyl conjugated to KLH to simulate enhanced

T-cell help, responding B cells are again shuttled from seeding

a GC and instead differentiate into plasmablasts; although in

this case GCs do appear (91). It is clear that the strength and

duration of a CD40 signal, while required for the onset of

humoral immunity, also has a substantial impact on the fate of

antigen-responding B cells (91).

Once committed to the GC lineage, B cells encounter a

specialized subset of activated Th cells called T follicular

helper cells (TFH cells), that provide the necessary cytokine

and cell-contact signals, including CD40L, required to sustain

the GC reaction (92–94). By means yet unclear, after T ⁄B-cell

encounter at the edges of the periarteriolar lymphoid sheath

and B-cell follicles, a subset of activated Th cells further differ-

entiate into TFH cells and are licensed to enter the B-cell folli-

cles by the heightened expression of the chemokine receptor

chemokine (C-X-C motif) receptor 5 (CXCR5) (93, 95). The

chemokine ligand for CXCR5 is chemokine (C-X-C motif)

ligand 13 (CXCL13), and this chemokine coordinates the

positioning and structure of the B-cell follicles as mature B

cells, which express CXCR5 (96–100). TFH cells are character-

ized by their expression of CD40L, ICOS, CXCR5 and the

secretion of the cytokine IL-21, which stimulates B-cell prolif-

eration, isotype switching, and differentiation into plasma

cells (93). CD40L has been shown to be critical for TFH cells

function.

As the GC reaction matures, the structure becomes polarized

into light and dark zones, with each zone situated to play a

role in GC B-cell competition for antigen and T-cell help (83).

The GC dark zone is so named because of the presence of a

high density of rapidly dividing B cells, called GC centroblasts,

whose large nuclei project a dark appearance during histologi-

cal analysis. It is at the GC dark zone that SHM occurs (101).

The GC dark zone is maintained by the chemokine, chemoki-

ne (C-X-C motif) ligand 12 (CXCL12), with this chemokine

secreted by the resident stromal cells (102). Accordingly, the

receptor for this chemokine, chemokine (C-X-C motif) recep-

tor 4 (CXCR4), is expressed on GC centroblasts (102, 103).

The GC light zone is situated at the pole of antigen entry, and

within this zone resides follicular dendritic cells (FDCs) on

which antigen complexes are tethered by binding comple-

ment receptors CD21 and CD35 and the FccRIIb (104). At the

GC light zone, FDCs and light zone stromal cells secrete

CXCL13 and it is here that TFH cells are found (102, 103). GC

B cells residing in the light zone are called centrocytes and are

characterized by the expression of CXCR5 (102). Within the

GC light zone, the interactions between centrocytes, TFH cells,

and complexed antigen occur in a critical competition and

result in the selection of centrocytes exhibiting the highest

affinities for antigen, as they receive survival and differentia-

tion signals through their BCR and through CD40 engage-

ment. It should be noted that the role of immune complexes

on FDC in affinity maturation has been brought into question

by Shlomchik and coworkers (105).

GC B cells expressing BCRs exhibiting inferior affinities for

antigen are deleted by Fas-dependent apoptosis as they do not

receive sufficient BCR and CD40 survival signals. The engage-

ment of CD40 by a GC centrocyte during a productive

immune synapse with a TFH cell induces cellular survival. This

was initially shown in studies observing that GC B cells could

be rescued in vitro with the administration of agonistic

anti-CD40 antibody or CD40L (106, 107). The engagement

of CD40 by centrocytes protects the cell from undergoing

Fas-mediated apoptosis by inducing the anti-apoptotic pro-

teins Bcl ⁄B-cell lymphoma x (Bcl-XL) and c-FLIP (108–110).

It is clear that TFH cells provide centrocytes with signals in

addition to CD40L in order to propagate survival and differen-

tiation to memory and plasma cells, with IL-21 occupying

such a role in PC differentiation (93). Classic in vitro studies by

MacLennan and coworkers (106) observed that centrocytes

are induced to differentiate into memory B cells upon culture

with activated memory Th cells but not activated naive

Th cells, indicating that further signals may exist (106).

How these other signals, which are derived from TFH impact

centrocyte differentiation into memory B cells and PCs are in

the process of being elucidated.

CD40 signaling from activated T cells at the inductive phase

of the GC response as well as from TFH cells throughout the

duration of the GC response is essential for the completion of

the GC response. Blockade of CD40 ⁄CD40L interactions or

genetic ablation of the CD40L or CD40 gene prevents the
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clonal proliferation of antigen-responding B cells as well as

blocks the generation of the GC structure by preventing these

cells from receiving signals from activated Th cells through

CD40 (63, 64, 86). As such, if anti-CD40L antibody is

injected at the peak of the GC response, the GC is immediately

shut down (111). After anti-CD40L antibody administration,

the Ig affinity of the plasma cells in the bone marrow was

decreased in comparison to control antibody-treated mice,

supporting the hypotheses that (i) affinity maturation occurs

in the GC and progresses over time, and (ii) CD40 ⁄ CD40L

interactions are essential for this progression. Together, these

data indicate that CD40 signaling initiates and propagates the

GC, and that abrogating this reaction through CD40 block

prevents the full benefits of the GC, as measured by affinity

maturation.

The contributions of TRAF recruitment during CD40

signaling on B-cell fate

Early events in the CD40 signaling cascade control the fate of

antigen-specific B cells. Upon CD40 multimerization by

CD40L, TRAFs are recruited to the CD40 cytoplasmic tail as

discussed in detail earlier in this review. The respective contri-

butions of TRAFs 1, 2, 3, 5, and 6 recruitment to CD40 in

regulating humoral immunity was studied in vivo by generat-

ing transgenic mice containing CD40 receptors with muta-

tions in defined CD40 binding sites for TRAFs (24, 112–114).

Upon CD40L binding to CD40, TRAF2 and TRAF3 directly

bind to the cytoplasmic tail of CD40. TRAF1 and TRAF 5 are

also recruited to CD40 through indirect associations with

CD40-bound TRAFs (20, 115, 116). Through disruption of

TRAF6-binding site within the CD40 cytoplasmic domain, we

selectively ablated affinity maturation and the generation of

plasma cells after immunization. Mutagenesis of both the

TRAF6 and TRAF2–TRAF3 sites was essential for arresting GC

formation in response to immunization. CD40-induced B-cell

proliferation and early Ig production occurred even when all

TRAF sites were ablated. These studies demonstrated that

specific CD40–TRAF associations control well-defined aspects

of humoral immunity (112). The fact that the B-cell prolifera-

tive response was intact in mice where both the TRAF2–TRAF3

and TRAF6 sites were ablated suggested another functional site

in the CD40 cytoplasmic tail. Indeed, our laboratory identified

a second non-canonical TRAF2 binding motif in the C-termi-

nus of CD40 (23, 24). All early B-cell activation events,

including plasmablast generation are intact in the transgenic

mice that express only the c-terminal TRAF2 binding motif in

the CD40 tail. When immunized with T-dependent antigen,

the mice are still impaired to develop GC demonstrating that

either or both, TRAF3 and TRAF6 are necessary to form GC

structures (23, 24). In summary, TRAFs are essential interme-

diaries in CD40-induced humoral immunity.

Perhaps the most striking example of how essential

CD40 ⁄ CD40L interacts are in generating humoral immunity is

the clinical manifestations that arise in humans carrying muta-

tions in the CD40L gene which generate non-functional

CD40L. This syndrome is X-linked hyper-IgM syndrome and

is characterized by reduced levels of serum IgG, IgA, and IgE

and increased levels of IgM (117). Because of inactivation of

functional CD40L, TD immune responses in these patients are

severely impaired, including the generation of GCs, memory

B cells, and isotype-switched plasma cells secreting protective

antibody. Patients with CD40L deficiency are thus susceptible

to life-threatening bacterial infections. Thus, the importance

of CD40 ⁄CD40L interactions in controlling humoral immu-

nity has been displayed in an unfortunate clinical presenta-

tion.

The role of CD40 ⁄ CD40L in cell-mediated immunity

There is little doubt as to the essential role of CD40 ⁄CD40L in

the development of TD humoral immunity. While initially

thought to be only involved in regulating TD immunity,

CD40 ⁄ CD40L is also critical in the development of cell-

mediated immunity (CMI). There is clear and unquestionable

evidence that the development of some CMI responses require

CD40 ⁄ CD40L (118). This is most evident in the role of this

ligand–receptor pair in the development of cytotoxic T cells to

tumors, virus, and alloantigens (119, 120) and its role in the

development of a litany of T-cell-dependent autoimmune

diseases (121). In this review, we discuss its role in regulating

allograft tolerance and rejection, as a model that clearly delin-

eates the role of this ligand–receptor pair in controlling critical

checkpoints in the development of CMI.

One of the first pathways to be targeted in an attempt to

modify allograft rejection was the CD28 ⁄B7 pathway. It was

demonstrated that by using a CTLA-4-Ig (a soluble form of

the high-affinity receptor to B7 molecules), long-term

allograft survival of islet cells (122, 123) and cardiac allografts

(124) could be achieved. By competitively binding to B7

molecules, CTLA-4-Ig blocked CD28 signaling to the

T cells, therefore limiting activation of the alloreactive T-cell

compartment. Other means by which to disrupt T-cell

activation have been through the blockade of the CD40 ⁄CD40L

pathway. Originally, it was thought that anti-CD40L antibody

monotherapy would be effective because it limited APC
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maturation and downmodulated the B7–CD28 interaction,

resulting in the lack of a signal 2 and T-cell anergy (125, 126).

However, anti-CD40L antibody as a monotherapy has not

been successful in inducing allograft tolerance (127, 128).

Studies by Waldmann and coworkers (129) indicate that

failure to induce tolerance using antibody anti-CD40L therapy

is insufficient because of its inability to block rejection elicited

by CD8+ T cells. Highly immunogenic allografts, such as those

of heart and skin, require stronger tolerogenic therapies.

Among these, the combination of costimulatory blockade

with immunosuppressive drugs (rapamycin with antibody

anti-CD40L and CTLA-4-Ig) has been shown to result in

long-term graft acceptance (130). Interestingly, the effect of

cyclosporine A impedes the tolerogenic effects of anti-CD40L

antibody and CTLA-4-Ig. The explanation for this resides in

the ability of cyclosporine to block IL-2 production and likely

the expansion of regulatory T cells (131).

Given the failures of anti-CD40L antibody monotherapy in

many graft systems, we asked if we could pretolerize a host to

allow that host to accept an allograft. The specific system that

we and others (132–137) have exploited to understand the

role of CD40L in the regulation of graft rejection involves the

pretolerization of the host with alloantigen (donor-specific

transfusion, DST) and anti-CD40L antibody, followed by

grafting. In this system, donor alloantigen is provided by an

intravenous infusion of T-depleted donor splenocytes or

heparinized whole blood. When used in combination with

anti-CD40L antibody, this has been shown to induce allospec-

ific T cell tolerance, as measured by suppression of both CD8+

and CD4+ alloreactive T cells (127–129, 138) and enhanced

persistence of allografts of skin, kidney, pancreatic islets,

heart, and lung (132–137).

The underlying cellular and molecular mechanisms that

account for the DST and anti-CD40L antibody T-cell tolerance

have been studied (135). Studies into this phenomenon have

provided insights into the process of allospecific tolerance,

peripheral tolerance, and the role of regulatory T cells in the

survival of allografts. Blockade of CD40L by anti-CD40L

antibody impairs the maturation of the host DCs (upregula-

tion of CD80 ⁄ 86) and incapacitates the abilities of these DCs

from inducing productive T-cell activation. As such, the

alloantigen-presenting, non-matured DCs induce abortive

activation and anergy of the host alloreactive T-cell pool.

Among the most relevant findings were that indirect presenta-

tion of alloantigen was essential for tolerance induction. Thus,

the infused DST was rapidly processed by host APCs and pre-

sented via indirect presentation to the host alloreactive T cells

in a tolerogenic manner because of the CD40L blockade. The

tolerogenic impact of DST and anti-CD40L antibody in this

system was to induce a rapid (days 3–4), systemic, abortive

expansion of the alloreactive T cells that resulted in profound

anergy. One additional unique feature of this system was that

we could quantify the magnitude of the T-cell unresponsive-

ness by purifying anergic cells. In these cases, the unrespon-

siveness was determined to be >95% on a per-cell basis.

Hence, infusion of DST and anti-CD40L antibody resulted in a

pre-emptive induction of tolerance within the alloreactive

T-cell compartment, thereby silencing the alloreactive

response days prior to the time when the allograft had the

opportunity to elicit an immune response (135).

We now envision that the infused DST rapidly undergoes

apoptosis and is presented by host APCs. It is of interest to

note that anti-CD40L antibody may facilitate the apoptosis of

the DST by depriving it of a CD40 signal. At the same time,

this blocking antibody impairs the maturation of host APCs,

committing them to the tolerogenic presentation of

DST-derived allopeptides. Delivery of peptides via apoptotic

cells appears to be an extremely efficient means to induce

peripheral tolerance. In analogous studies, Steinman and

coworkers have shown that B cells deficient in transporter

associated with antigen processing 1 protein and hyperosmot-

ically loaded with OVA can induce abortive expansion and

anergy of OVA-specific cytolytic T lymphocytes (CTLs) in vivo

via indirect presentation (139). Similarly, antigens expressed

on dying pancreatic cells (140) induce tolerance via indirect

presentation. More recently, antigens targeted directly to

defined DC surface molecules (such as DEC-205) and antigens

delivered to immature DCs have been shown to induce

profound antigen-specific tolerance, as predicted by these

earlier studies.

CD40-dependent maturation of DCs is far more complex

than simply the upregulation of costimulatory molecules. As a

consequence of CD40 signaling of DCs, there is heightened

expression and increased stability of the MHC ⁄ alloantigen

complex (141, 142). Furthermore, increased life span of the

DC is considered a major factor in the success of CD40-trig-

gered DCs in driving CMI. CD40-mediated survival is based

on the upregulation of Bcl-XL, an anti-apoptotic factor and is

NFjB dependent (143, 144). Passive apoptosis of T cells

induced by the absence of growth ⁄ survival factors, such as

IL-2, IL-7, and IL-15 imposed by CD40L blockade also can

impact on T cell immunity (145–147).

Central to the induction of alloreactive T-cell tolerance by

many interventions involving costimulatory blockade is the

induction of regulatory T cells (148). The functional impor-

tance of this population has been repeatedly demonstrated by
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graft loss resulting from anti-CD25 antibody treatment and the

observations of overt infiltration of regulatory T cells into the

graft observed by immunohistochemical analysis (135, 149).

By using forkhead box p3 (Foxp3)-expressing T cells (150) or

Foxp3-green fluorescent protein positive T cells (Victor C. de

Vries, Randolph J. Noelle, unpublished observation), it was

confirmed that the tolerance can be transferred by just the regu-

latory T cells. However, one cannot discount the massive reduc-

tion of alloreactive effector T cells by anti-CD40L antibody and

DST in facilitating graft survival. As anticipated, it has been

shown that the maturation status of DCs regulates the genera-

tion of antigen-specific regulatory T cells. Likewise, strong

costimulation by DCs after treatment with agonistic CD40

and ⁄or lipopolysaccharide diminished regulatory T cells expan-

sion and, CD40-deficient DCs or blocking with anti-CD40L

antibody greatly enhanced regulatory T cells development from

naive TCR-transgenic T cells (151, 152) to regulatory T cells.

Combination therapies using CD40L blockade

From studies using anti-CD40L antibody, it is clear that

although graft survival is significantly prolonged, indefinite

tolerance is not achieved. In murine models, permanent

allograft survival using anti-CD40L antibody and DST requires

thymectomy (153). Over the years, additional strategies

have been explored to prolong graft survival mediated by

anti-CD40L antibody. Most approaches make use of blocking

antibodies to other costimulatory molecules, such as CD28

and OX40, or agonistic antibodies for coinhibitory molecules,

such as CTLA-4 (154). More recently, the roles of newer

members in the costimulation family have been targeted in

combination with anti-CD40L, such as PD1 ⁄ PD-L1 and the

ICOS ⁄B7RP-1 (155–157). In addition, antibodies interfering

with adhesion directly or indirectly, such as lymphocyte func-

tion-associated antigen-1 (LFA-1) and ⁄or CD45RB have

shown to be beneficial (158–163). Additionally, promising

results come from studies targeting IL-2, IL-7, and IL-15 in

combination with CD40L antibody (164–166) because it was

shown that signaling through the common c-chain was the

reason why diabetic mice were resistant to CD40 ⁄CD28-

induced tolerance (167).

Additive suppression by blocking other costimulatory

pathways

The clonal deletion of alloreactive T cells can be accelerated in

the absence of CD80 ⁄CD86 expression and in the absence of

CD40L costimulation (147). Blocking of either pathway will

lead to prolonged graft survival in some models. Anti-CD28

or anti-CD80 ⁄ 86 antibody is based on blocking costimulation.

Although both approaches target the same pathway, the anti-

CD28 antibody is mainly based on passive apoptosis of T cells,

whereas the anti-CD80 ⁄86 antibody is based on actively

inducing cell death. Therefore, CD40 resembles anti-CD28

blockade with combination therapies, showing variable results

on graft survival (127, 150, 168–170). In addition to block-

ing costimulation, the engagement of CD80 ⁄CD86 by CTLA-

4-Ig, has been shown to upregulate the expression of indole

amine 2,3-dioxygenase (IDO), a process believed to normally

occur by the interaction of regulatory T cells and DCs (171).

IDO degrades tryptophan leading to local removal of this

essential aa needed for T-cell proliferation (172). However,

regulatory T cells may also mediate suppression by eliciting

IDO from DCs (171).

Using double knockouts for CD28 and CD40L revealed that

these mice could still reject allografts and it was shown that

the OX40 ⁄ OX40L pathway was critical in this process. The

4-1BB ⁄ 4-1BBL, ICOS ⁄B7RP-1 or CD27 ⁄CD70 pathways were

not involved in facilitating graft rejection in the double-

knockout mice (173). Later, it was shown that OX40 played

an important role in rejection mediated by memory T cells

(157). OX40 signaling, in addition to activating effector

T cells also turns off the suppressive function of regulatory

T cells (174). It must be noted that multiple publications

have shown that blocking the OX40 ⁄OX40L pathway in the

absence of CD40L leads to long-lasting pancreatic islet graft

survival (175). The effect of OX40L blockade is mainly

because of impairment of rejection, which is mediated by

CD4+ T cells and to a lesser extent to CD8+ T cell (173,

176).

In conclusion, the blocking of CD40L leads to prolonged

graft survival and seems to be synergistic when combined

with most of the other members of both the TNF-family

and B7-family of costimulatory molecules. Although it

seems that CD40 and CD28 are the most prominent

members in the regulation of peripheral tolerance, there are

additive, but redundant roles of the other family members

impacting specific subset of T cells involved in maintaining

tolerance.

CD40-based immunotherapy in cancer

CD40 ⁄ CD40L is critical for the development of protective anti-

tumor immunity and CD40 can be a cancer-associated target in

antibody-based therapies. In fact, CD40 was first discovered as

an antigen expressed in bladder carcinoma and paralleled its

identification as a receptor on B cells (13, 177–181).
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CD40 expression in tumors

The broad range of expression of CD40 on normal healthy

cells translates to its extensive expression on a variety of

tumors. Reports have shown that CD40 is widely expressed on

both murine and human melanoma, prostate, and lung can-

cers (182, 183), as well as in carcinomas of the nasopharynx,

bladder, cervix, and ovary (184–187). CD40 expression has

been reported on both non-Hodgkin’s lymphomas (NHLs)

and Hodgkin’s lymphomas and on other hematologic malig-

nancies, such as lymphocytic leukemia, lymphoma, multiple

myeloma, and acute myeloid leukemia (188–191).

Direct effect of CD40 ⁄ CD40L interaction on tumor cells

As in normal B cells, CD40 ligation in certain B-cell malignan-

cies causes an increase in the expression of anti-apoptotic

factors such as Bcl-XL, TNF a-induced protein 3 (A20),

Bcl ⁄ B-cell lymphoma 2 related protein A1a (Bfl-1), survivin,

and cFLIP. These factors protect the cell from apoptosis

induced by apoptotic agent, such as, serum withdrawal, IgM,

anti-Fas, TNF-related apoptosis-induced ligand (TRAIL) or

DNA-damaging agents (109, 192–195). It has been suggested

that low-level constitutive engagement of CD40 may

facilitate malignant cell growth. Studies with non-Hodgkin’s

lymphoma, Burkitt’s lymphoma, and chronic lymphocytic

leukemia cells have shown that these cells express low levels

of CD40L, and through and autocrine pathway sustain cell

proliferation. In addition, the low-levels of CD40L expression

protect these cells from apoptosis (196–198). Recently,

human CD40-positive breast tumor biopsies were shown to

co-express CD40L, and that co-expression confers oncogenic

effects in vitro (177). Furthermore, the co-expression of CD40

and its ligand, in immortalized human epithelial cells induce

an increase in their proliferation, motility, and invasion

(177). These results suggest that neoplastic growth utilizes the

CD40 ⁄ CD40L pathway independent of the immune system to

sustain proliferative capacity and survival. Furthermore, by

expression of the receptor ⁄ ligand pair, tumors are able to

manipulate both T-cell and APC compartments most likely

contributing to the establishment of the immunosuppressive

tumor microenvironment.

Conversely, transient activation of CD40 on carcinomas and

some B-cell malignancies results in direct anti-proliferative

effects and apoptosis. Both in vitro and in vivo treatment of

Burkitt’s lymphoma, primary high-grade B-cell lymphoma,

and multiple myeloma cells with CD40L results in a reduction

in the proliferation of these tumor cells (189, 199). Under

CD40 stimulation, carcinoma cells can be induced to undergo

apoptosis by the increased expression of Bcl2-associated X

protein and the upregulation of membrane-bound cytotoxic

ligands of the TNF family, such as FasL, TNF, and TRAIL

(200, 201). Cell death induction seen by CD40L occurs even

when protein synthesis is blocked, suggesting that the produc-

tion of anti-apoptotic factors may override the cell death

induction signal provided by CD40L (202, 203). CD40L

triggering of bladder and ovarian carcinomas in vitro results

in growth inhibition and enhanced susceptibility to apoptosis,

induced by anti-neoplastic drugs, TNF-a, Fas, and ceramide

(203). These observations were confirmed in an in vivo system,

where CD40L alone or in combination with chemotherapy

could significantly inhibit the growth of transplantable breast

or ovarian tumors and confer overall survival (204, 205).

Hence, CD40 activation can have a direct anti-tumor effect on

several tumors, even in the absence of any additional immune

responses and cells. The direct cytotoxic effect of CD40L on

CD40-expressing tumors has been studied using immuno-

compromised mice, where it was observed that inhibition of

breast carcinoma and B-cell lymphoma growth (199, 200)

can be observed in the absence of an intact immune system.

In summary, CD40 activation can induce the function of

various downstream signaling pathways including both,

pro-apoptotic and anti-apoptotic proteins. It is clear that the

function of direct CD40 stimulation on malignancies is depen-

dent on the state of differentiation of the stimulated cells and

the type of malignancy, as reviewed extensively elsewhere

(206).

CD40 ⁄ CD40L is central to the development of protective

anti-tumor immunity

CD40 is a potent stimulator of the immune system and, as

such, CD40 ⁄ CD40L interaction on immune cells has been

extensively studied for its involvement in the development of

protective anti-tumor immunity. The first report implicating

CD40 ⁄ CD40L interaction as a critical factor in the generation

of protective immunity by means of tumor vaccines came

from Mackey et al. (207). It was shown that anti-CD40L

monoclonal antibody treatment inhibited the generation of

protective immune responses and prevented the therapeutic

value of potent tumor vaccines. These results were confirmed

using CD40-deficient mice. These mice were unable to

generate a protective anti-tumor immune response following

a protective vaccination regime (207).

Cognizant of the fact that CD40L was critical for inducing

protective tumor immunity, it was anticipated that agonistic
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anti-CD40 antibodies would be powerful adjuvants for induce

tumor immunity. Indeed, early studies showed that CD40

agonistic antibody generated CTL responses that were able to

eradicate tumor in a lymphoma system. It was also seen that

CD40 ligation could overcome peptide-induced peripheral

CTL tolerance and increase anti-tumor vaccine efficacy (208–

210). However, use of CD40 as a solitary agonist to induce

immunity came into question.

Several reports have confirmed that CD40 stimulation can

enhance anti-tumor immune responses by means of DC matu-

ration (211). Activation of DCs with agonist of CD40 results

in their increased survival, secretion of IL-1, IL-6, IL-8, IL-12,

TNF-a, and macrophage inflammatory protein-1a. Addition-

ally, CD40 activation induces the upregulation of costimulato-

ry molecules such as MHC class II, LFA-3, CD80, and CD86

and promotes antigen presentation, priming and cross-prim-

ing of Th and CTL, respectively (206). However, the use of

agonist anti-CD40 antibody alone accelerates the deletion of

tumor-specific CTL in the absence of antigen vaccination in a

mouse-melanoma model system (212). While immunothera-

peutic regimes utilizing CD40-dependent IFN-responses lead

to successful early anti-tumor efficacy, the treatment with

CD40 agonist alone impairs the development of tumor-

specific T cells (180). It is clear that robust development of

adaptive immunity relies on the interplay of both innate and

adaptive immunity, and therefore the contribution of Toll-like

receptor (TLR) agonists to CD40-dependent stimulation of

adaptive immunity was evaluated. Recently, our group

showed that the combinatorial use of CD40 and TLR agonists

induces profound frequencies of anti-tumor-specific T cells

and provides therapeutic efficacy in a number of tumor mod-

els. An increase in the frequencies of tumor-reactive CD8+

T cells that efficiently infiltrate the tumor-burdened organ

resulted in the generation of potent tumor-specific memory

CD8+ T cells. These results suggest that future CD40-depen-

dent anti-tumor approaches should encompass activators of

both innate and adaptive immune systems (213).

Studies seeking to utilize CD40 ligation for tumor immu-

notherapy have been approached using gene delivery of the

CD40L gene to DCs and tumor cells. Expression of CD40L in

a small proportion of tumor cells was enough to generate a

long-lasting systemic anti-tumor immune response in mice

that was shown to be dependent in CTLs (214). Further, it

was demonstrated that CD40 ligation can bypass the absolute

requirement of CD4+ T cells during immunization with

melanoma antigen gene-modified DCs (215). Other gene

therapies have been successful in murine tumor models, e.g.

ex vivo virus delivery to either DC or tumors by use of recom-

binant adenovirus expressing CD40L. This approach has pro-

ven effective in syngeneic tumor models of colorectal

carcinoma, lung carcinoma and melanoma (216, 217). It is

likely that CD40 monotherapy is effective in these models

because the adenoviral delivery system provides the other

necessary TLR signal to drive the development of therapeutic

immunity.

The experience of targeting CD40 in human cancer

clinical trials

To date, three main rationales have been used in the develop-

ment of clinical phase I studies which target the CD40

pathway. First, that CD40 can act as a tumor-associated antigen

to which a cytotoxic antibody can be targeted. Second, CD40

engagement by an antibody can transduce a pro-apoptotic sig-

nal to a tumor cell to facilitate its death. Third, an agonistic

anti-CD40 antibody can enhance immunity to the tumor and

facilitate the development of therapeutic immunity.

A summary of some of the CD40-directed clinical studies can

be found in Table 1 where we list the three main approaches to

CD40 targeting. These three are CD40L gene therapy, recombi-

nant protein therapy, and anti-CD40 therapy (179, 181, 218–

226). Most of the reported therapies are relatively well toler-

ated, although each treatment exhibits some adverse reactions.

The use of a human trimeric recombinant CD40L in patients

with solid tumors was development based on the pro-apopto-

tic activities of this molecule on human tumors in recombina-

tion gene knockout mice (227). Patients with advanced solid

tumors or intermediate- or high-grade NHL received CD40L

subcutaneously daily for 5 days in a phase I dose-escalation

study. Doses continued until disease progression was noted.

CD40L induce liver toxicity noted by the increased levels of

liver transaminases in the serum. Six percent of patients had a

partial response with one patient having a complete response.

Since the time of the study in 2001, no further studies have

been reported (219).

Humanized or fully human monoclonal IgG antibodies have

since been developed, such as, CP-870,893 (Pfizer Inc., New

York, NY, USA), SGN-40 (Seattle Genetics Inc., Bothell, WA,

USA), and HCD 122 (Novartis ⁄XOMA Basel, Switzerland).

For the Pfizer studies, patients in this phase I trial with

advanced solid tumors received single doses of the CD40

agonistic antibody, CP-870,893 intravenously. Dose-limiting

toxicity was observed with the most common adverse event

being cytokine release syndrome including chills, rigors, and

fever. 14% of all patients and 27% of melanoma patients had

objective partial responses at restaging. CP-870,893 was well
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tolerated and was shown to be biologically active, and was

associated with anti-tumor activity. The authors concluded

that further studies were warranted. While the presumed

mechanism of active are still unresolved, the intent is that

CP-870,893 will induce tumor immunity.

Dacetuzumab (SGN-40) is a weak agonist and is currently

in multiple phase II trials in multiple myeloma and diffuse

large-cell lymphoma. Seattle Genetics reported in December

of 2008 that data from a phase II trial demonstrated objective

responses at well-tolerated doses in heavily pretreated patients

with diffuse large B-cell lymphoma. SGN-40 is a weak agonist

and is believed to trigger apoptosis.

A phase I trial with HCD122, a CD40 antagonist, was well

tolerated in patients with relapsed and refractory multiple

myeloma. The majority of adverse events were mild to moder-

ate in severity. HCD122 monotherapy achieved a partial

response in one out of the six patients treated. HCD122 is

believed to facilitate tumor apoptosis by depriving B-cell

tumors of growth promotion via CD40 and mediating lysis by

antibody-dependent cellular cytotoxicity (228). The most

likely direction toward which CD40-directed tumor therapy

should be moving is in combination with alternative or

more established therapies, such as radiation, cancer vaccine,

chemotherapy, anti-CTLA-4 antibody blocking, TLR agonists,

and cytokines (205, 209, 210, 213, 229, 230).

In conclusion, the overall effect of CD40 therapy in the

activation of the immune system and direct tumor cytotox-

icity is most likely to act synergistically in the purpose of

establishing an anti-tumor effect. Additionally, it is cur-

rently generally agreed upon that optimal DC activation

depends on synergistic triggering of several ‘danger’ recep-

tors by the administration of exogenous TLR ligands and

CD40 agonists to elicit maximum anti-tumor T-cell

response or therapeutic effect. Taking lessons from the last

few decades of anti-cancer drug development, it is currently

pretty well accepted that the cure for or treatment of

tumors will have to be a combinatorial approach that acts

both on the tumor itself, as well as on the level of immune

response induction.

Conclusion

The wide-range expression of CD40 in normal as well as

tumor cells shows the pivotal role that CD40 is playing in

diverse cellular and immune processes. The understanding of

CD40 signaling in a humoral and cellular context will address

to improve therapies against pathogens and tumors. In

contrast, the blocking of CD40 ⁄CD40L engagement will drive

to generation of tolerance during transplant or in autoimmu-

nity diseases.
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