Optimization of the Synthesis of 5-Amino-1,2,4-triazol-3-ylacetic Acid and Bis(5-amino-1,2,4-triazol-3-yl)methane

V. M. Chernyshev, A. V. Chernysheva, and V. A. Taranushich
South-Russian State Technical University, Novocherkassk, Rostov oblast, Russia

Received June 3, 2008

Abstract

The influence of the molar ratio and concentration of the reactants and of the temperature and time of the synthesis on the yield of malonic acid guanylhydrazides in the reaction of aminoguanidine with malonic acid in acidic aqueous solutions was examined, and improved procedures for preparing 5-amino-1,2,4-triazol-3ylacetic acid and bis(5-amino-1,2,4-triazol-3-yl)methane were suggested.

DOI: 10.1134/S1070427209020219

5-Amino-1,2,4-triazol-3-ylacetic acid I is a typical representative of aminoazolecarboxylic acids, which are extensively studied because of their capability to form heteroaromatic oligoamides and affect gene expression [1-4]. Compound I can be used for preparing antibiotics [5, 6] and biologically active [7] and energy-rich [8] substances. However, in contrast to its commercially produced homolog, 5-amino-1,2,4-triazole-3-carboxylic acid, acid I is yet relatively difficultly available. Two procedures for preparing this compound have been described in the literature: reaction of aminoguanidine hydrocarbonate II with ethoxycarbonylethyl acetimidate hydrochloride in acetic acid [9] and reaction of II with
malonic acid (MA) in aqueous solution [10, 11]. The latter procedure is more attractive because of the availability of the starting substances.

According to this procedure, first hydrocarbonate II is dissolved in an aqueous solution of MA to obtain a solution of aminoguanidine malonate III. On heating, salt III in solution is converted to malonic acid guanylhydrazide (GH) which, in turn, is converted without isolation to target product I by heating with an alkali, followed by acidification of the reaction mixture (Scheme 1).

It should be noted that, in synthesis of \mathbf{I}, formation of a second product, bis(5-amino-1,2,4-triazol-3-yl)methane IV, could be expected because of comparable reactivity

Scheme 1.

III

of both carboxy groups of MA. It was shown previously [12] that the reaction of aminoguanidinium (AG) cation with MA in acid solutions yields, along with GH, also malonic acid diguanylhydrazide (DGH), whose alkaline cyclization yields compound IV (Scheme 2).

A procedure for preparing compound IV in 33.5% yield by heating of aminoguanidine hydrochloride with MA in $2: 1$ molar ratio, followed by treatment of DGH with potassium carbonate, has been described in a patent [13]. Compound IV is used in production of polymers [14] and agents for corrosion protection of metals [15]. The reaction of AG with MA can become a convenient source of these compounds if an efficient procedure for their separation will be developed.

The goal of this study is optimization of the synthesis of I and IV from aminoguanidine and MA under the conditions of acid catalysis.

In our attempts to reproduce the published procedures for preparing I from II and MA, we failed to obtain a target product in a yield exceeding 15%, although, according to the published data [10, 11], the yield of \mathbf{I} should reach $60-70 \%$. Analysis of the reaction mixtures showed that low yield of acid \mathbf{I} is due to low conversion of the starting compounds in the step of formation of the intermediate GH. According to the iodatometric titration data, the conversion of AG after heating a solution of salt III for 4 h according to [10] was $9-15 \%$. Thus, to increase the yield of \mathbf{I}, it is primarily necessary to optimize the step of GH preparation.

According to kinetic studies [12], the reaction of formation of GH from AG and MA is acid-catalyzed, and its rate is directly proportional to the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration. It is natural to assume that the low yield of GH is due to

Fig. 1. Yield ω of (1) GH and (2) DGH as a function of the $\mathrm{H}_{2} \mathrm{O}$ concentration $c\left(\mathrm{H}_{2} \mathrm{O}\right)$ at $70^{\circ} \mathrm{C}$ and MA : II : HCl molar ratio of $1: 1: 1.15$.

Scheme 2.

low rate of reaction (2) at low concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$ ions (pH of the solution of salt III is 3.5-3.9). Indeed, after acidification of the reaction mixture to pH 0.5 , the conversion of AG at $92-95^{\circ} \mathrm{C}$ reaches 80% in 20 min , after which it does not noticeably change.

Thus, it is advisable to perform the synthesis of GH in acid solutions ($\mathrm{pH} \leq 1$). In so doing, the possibility of DGH formation and the reversibility of reactions (2) and (4) [12] should be taken into account. As starting compounds we used II, MA, and $\mathrm{HCl}_{\text {conc. }}$.

We found that the equilibrium yield of GH and DGH can be increased by performing the synthesis at a low water content of the reaction mixtures, when the initial water concentration $c\left(\mathrm{H}_{2} \mathrm{O}\right)$ is comparable with the concentrations of the other reactants. By $c\left(\mathrm{H}_{2} \mathrm{O}\right)$ in this paper we understand the concentration of water introduced as solvent and with HCl solution and released in the reaction of hydrocarbonate $\mathbf{I I}$ with HCl . We found that, with a decrease in $c\left(\mathrm{H}_{2} \mathrm{O}\right)$, the equilibrium yield of DGH increases to a greater extent than that of GH (Fig. 1).

This fact becomes understandable if we consider the equilibrium constants of reactions (2) and (6): K_{GH} and $K_{\text {DGH }}$, respectively. It follows from Eqs. (7) and (8) that the equilibrium concentration of GH is inversely proportional to $\left[\mathrm{H}_{2} \mathrm{O}\right]$, and that of DGH is inversely proportional to $\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$:

$$
\begin{align*}
2 \mathrm{AG}+\mathrm{MA} & \stackrel{\mathrm{H}_{3} \mathrm{O}^{+}}{\rightleftarrows} \mathrm{DGH}+2 \mathrm{H}_{2} \mathrm{O} \tag{6}\\
K_{\mathrm{GH}} & =\frac{[\mathrm{GG}]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{MA}][\mathrm{AG}]} \tag{7}\\
K_{\mathrm{DHG}} & =\frac{[\mathrm{DHG}]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{[\mathrm{MA}][\mathrm{AG}]^{2}} \tag{8}
\end{align*}
$$

Table 1. Equilibrium yield of GH and DGH at MA : II : HCl molar ratio of $1: 1: 1.3$. Initial MA concentration 4.085 M

Compound	Yield, \%, at indicated temperature, ${ }^{\circ} \mathrm{C}$			
	60	70	80	94
GH	52	51	50	47
DGH	45	43	40	36

where $[\mathrm{GH}],[\mathrm{DGH}],[\mathrm{MA}],[\mathrm{AG}]$, and $\left[\mathrm{H}_{2} \mathrm{O}\right]$ are the equilibrium concentrations of the corresponding reactants, M .

Furthermore, with a decrease in $c\left(\mathrm{H}_{2} \mathrm{O}\right)$ below $28 \mathrm{wt} \%$, DGH starts to gradually crystallize from the reaction mixture. This process leads to a still greater shift of the equilibrium toward reaction (6) (Fig. 1, dashed lines). Thus, a decrease in $c\left(\mathrm{H}_{2} \mathrm{O}\right)$ below $28 \mathrm{wt} \%$ is not appropriate.

An increase in the temperature leads to a decrease in the equilibrium yields of GH and DGH (Table 1) owing to exothermicity of reactions (2) and (4) [12]. Furthermore, above $70^{\circ} \mathrm{C}$ the side reaction of MA decarboxylation noticeably accelerates $[16,17]$, which also leads to a de-

Fig. 2. Degree of AG conversion α as a function of time τ at $70^{\circ} \mathrm{C}$. Initial MA concentration 4.085 M . Molar ratio MA : II : $\mathrm{HCl}:$ (1) $1: 1: 1.3$, (2) $1: 1: 1.15$, and (3) $1: 1: 1.05$.

Fig. 3. Yield ω of (1) GH and (2) DGH as a function of time τ at $70^{\circ} \mathrm{C}$. Molar ratio MA : II : $\mathrm{HCl}=1: 1: 1.3$, initial MA concentration 4.085 M .
crease in the yields of GH and DGH. Below $60^{\circ} \mathrm{C}$, the reaction becomes noticeably slower. Thus, the temperature range $60-70^{\circ} \mathrm{C}$ can be considered as optimal.

The II : HCl molar ratio does not noticeably affect the equilibrium yields of GH and DGH but significantly affects the rate at which the equilibrium is attained (Fig. 2). Because in the system under consideration two consecutive reactions (2) and (4) occur, under definite conditions the yield of the intermediate product, GH , should reach a maximum. At the molar ratio II : $\mathrm{HCl}=1$: 1.3 and a temperature of $70^{\circ} \mathrm{C}$, the equilibrium is attained within 25-30 min (Fig. 2), but the rates of reactions (2) and (4) are so high that the process selectivity cannot be controlled kinetically (Fig. 3). At the molar ratio II : $\mathrm{HCl}=1: 1.15$, both reactions are slower.

As seen from Fig. 4, the maximal GH yield (60\%) is attained in $50-70 \mathrm{~min}$, when the maximum possible conversion of AG is practically reached. Then the GH yield decreases to the equilibrium level (51\%) owing to an increase in the DGH yield. As the II : HCl molar ratio is changed to $1: 1.05$, the reaction rate decreases considerably. Thus, the optimal conditions for preparing GH are as follows: molar ratio II : $\mathrm{HCl}=1: 1.15$, reaction time 50-70 min.

With an increase in the MA : II molar ratio to $2: 1$, the equilibrium yield of GH based on II increases to 87%, whereas the yield of DGH decreases to 10%. However, in so doing, expensive MA is lost, which is undesirable from the economic viewpoint. Since compound IV is also of commercial value, it is appropriate to perform the synthesis of I at the equimolar ratio of MA and II, with simultaneous preparation of compounds I and IV.

Based on the results obtained, we developed an improved procedure for one-pot synthesis of 5-amino-

Fig. 4. (1) Degree of AG conversion α and yields ω of (2) GH and (3) DGH as functions of time τ at $70^{\circ} \mathrm{C}$. Molar ratio MA : II : $\mathrm{HCl}=1: 1: 1.15$, initial MA concentration 4.085 M .

1,2,4-triazol-3-ylacetic acid II and bis(5-amino-1,2,4-triazol-3-yl)methane IV from aminoguanidine hydrocarbonate II, MA, and $\mathrm{HCl}_{\text {conc. }}$. At the molar ratio MA: II : $\mathrm{HCl}=1: 1: 1.15$, temperature of $70^{\circ} \mathrm{C}$, and first step duration of $60-70 \mathrm{~min}$, the yield of GH and DGH, according to HPLC of the reaction mixture, is 58-60 and $35-37 \%$, respectively, at the AG conversion as high as $94-95 \%$. Subsequent treatment of the reaction mixture with alkali leads to quantitative conversion of GH and DGH to compounds I and IV.

Isolation of I and IV from the reaction mixture involves certain problems. Both compounds have close solubility in water at temperatures below $60^{\circ} \mathrm{C}$, which prevents their separation by crystallization (Table 2). In addition, compounds I and IV are amphoteric and form salts both with strong acids and with bases. Therefore, the acidity of the reaction mixture strongly affects the yield of I and IV in the course of isolation. Compound I in aqueous solutions is characterized by $\mathrm{p} K_{\mathrm{a}} 4.85 \pm 0.03$ (deprotonation) and $\mathrm{p} K_{\mathrm{a}}\left(\mathrm{BH}^{+}\right) 2.71 \pm 0.05$ (deprotonation of the protonated form of \mathbf{I}). Compound IV is a diacidic base, and it can be expected that $\mathrm{p} K_{\mathrm{a}}\left(\mathrm{BH}^{+}\right)$ of its monoprotonated form will be about 4.0-4.7, as for the majority of other 5-amino-3-R-1,2,4-triazoles [18, 19]. The above-noted acid-base properties prevent simultaneous isolation of \mathbf{I} and IV in the free form.

Both reaction products are precipitated most completely if the reaction mixture after alkaline cyclization of guanylhydrazides is acidified with a concentrated HCl solution to $\mathrm{pH} 2.5-2.7$. According to HPLC, the degree of isolation of acid I is $90-92 \%$, and that of IV, $90-95 \%$. In the process, acid I is isolated in the free form, and acid IV, in the form of hydrochloride despite the fact that the latter is well soluble in water. Apparently, the solubility of the hydrochloride considerably decreases in the presence of NaCl formed by neutralization of the reaction mixture. On heating the mixture of I and IV in water, hydrochloride of IV dissolves, and virtually pure acid I remains in the precipitate. Compound IV is then isolated in the free form by alkalization of a solution of its hydrochloride with sodium carbonate to $\mathrm{pH} 9-10$. The yield of purified I and IV based on MA is 44-51 and $26-29 \%$, respectively.

When the goal of the synthesis is preparation of IV, it is preferable to perform the reaction at the molar ratio $\mathrm{MA}: \mathrm{AG}=1: 2$.

The dependence of the AG conversion α on the initial $\mathrm{H}_{2} \mathrm{O}$ concentration $c\left(\mathrm{H}_{2} \mathrm{O}\right)$ in the reaction mixture passes

Table 2. Solubility of I and IV

Compd.	Solubility, $\mathrm{g} / 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$, at indicated temperature,				
	1.0	33.5	61.5	75.0	91.0
	$0.280 \pm$	$0.635 \pm$	$0.82 \pm$	$2.12 \pm$	$3.27 \pm$
	0.006	+0.012	+0.02	+0.07	+0.03
IV	$0.260 \pm$	$0.847 \pm$	$1.63 \pm$	$4.24 \pm$	$6.89 \pm$
	0.006	0.003	0.02	0.02	0.07

through a maximum, as shown below $\left(70^{\circ} \mathrm{C}\right.$, molar ratio $\mathrm{MA}:$ aminoguanidine hydrochloride $: \mathrm{HCl}=1: 2: 0.33$, reaction time 3 h):

$c\left(\mathrm{H}_{2} \mathrm{O}\right)$, wt $\%$	3	12	18	23
α	73	95	93	89

This is due to the following facts: At $c\left(\mathrm{H}_{2} \mathrm{O}\right)<3 \mathrm{wt} \%$, GH and DGH formed in the process rapidly crystallize, and then the reaction proceeds very slowly. By the moment of crystallization, the AG conversion does not exceed 73%. Only on heating this mixture for 2 days, the AG conversion exceeding 90% can be attained. At the same time, with an increase in $c\left(\mathrm{H}_{2} \mathrm{O}\right)$ to $23 \mathrm{wt} \%$, the equilibrium conversion decreases to 89%.

The optimal value of $c\left(\mathrm{H}_{2} \mathrm{O}\right)$ is about $12 \mathrm{wt} \%$. This value is attained when using as starting reactants aminoguanidine hydrochloride and $36 \% \mathrm{HCl}$, with slight dilution of the reaction mixture with water. Under these conditions, the AG conversion in 2.5 h reaches $94-95 \%$, with the DGH yield reaching $83-85 \%$ and the GH yield not exceeding 14%. The use of II as reactant is not appropriate, because the amount of $\mathrm{H}_{2} \mathrm{O}$ released in its reaction with HCl is too large, which decreases the equilibrium yield of IV. After alkaline cyclization, neutralization of the reaction mixture, and recrystallization, the yield of IV is as high as $71-80 \%$, at the main substance content $\geq 98 \%$ according to HPLC.

EXPERIMENTAL

Compound II (Merck) contained no less than 98\% main substance. MA was of pure grade, and the other chemicals, of analytically pure grade.

The temperature of the reaction mixture was maintained with an accuracy of $\pm 0.5^{\circ} \mathrm{C}$ using an oil bath placed on a magnetic stirrer with a heater (IKA RCT basic), equipped with an external thermocouple. The solution acidity was determined with a $\mathrm{pH}-150 \mathrm{M}$ device using an ESL-63-07 glass electrode and an EVL-1M3 reference electrode. The AG concentration in reaction mixtures was determined
by iodatometric titration, and the concentrations of GH, DGH, I, and IV, chromatographically by known procedures [12]. The ionization constants of \mathbf{I} were determined by potentiometric titration [20].

Experiments on studying the effect of reaction conditions on the yield of GH and DGH were performed in $15-\mathrm{ml}$ glass test tubes. Each tube was charged with a mixture of $0.7651 \mathrm{~g}(0.07353 \mathrm{~mol})$ of MA , the required amount of II or aminoguanidine hydrochloride, 36% HCl , and, if necessary, $\mathrm{H}_{2} \mathrm{O}$. The test tubes were placed in a thermostat and heated with stirring until the reactants fully dissolved and the CO_{2} evolution ceased. After that, the test tubes were stoppered with rubber plugs and kept at a required temperature for a required time. Then the test tubes with the reaction mixture were quickly cooled with ice-cold water, and the contents were analyzed for AG, GH, and DGH.

5-Amino-1,2,4-triazol-3-ylacetic acid I and bis(5-amino-1,2,4-triazol-3-yl)methane IV. MA (45.9 g, $0.441 \mathrm{~mol})$ and II ($60 \mathrm{~g}, 0.441 \mathrm{~mol}$) were mixed in a $0.5-1$ round-bottom flask. To this mixture, we carefully added with stirring $51.7 \mathrm{~g}(42 \mathrm{ml}, 0.510 \mathrm{~mol})$ of 36% HCl . The resulting mixture was heated with stirring at $70^{\circ} \mathrm{C}$ to complete homogenization, after which it was kept at this temperature for $60-70 \mathrm{~min}$ and then cooled to $20^{\circ} \mathrm{C}$. To the resulting viscous mass we added 185 ml of $6.1 \mathrm{~N} \mathrm{NaOH}(1.129 \mathrm{~mol})$. The mixture was stirred and then heated at $90-95^{\circ} \mathrm{C}$ for 40 min . The resulting solution was cooled to $50-60^{\circ} \mathrm{C}$, carefully acidified with 36% HCl to $\mathrm{pH} 2.5-2.7$, and cooled to $5^{\circ} \mathrm{C}$. After 30 min , the precipitate that formed was filtered off and dried. The solid precipitate obtained ($68-71 \mathrm{~g}$) contained, according to HPLC data, about 55\% I and 35\% bis(5-amino-1,2,4-triazol-3-yl)methane hydrochloride. To separate the components, the mixture was suspended in 350 ml of $\mathrm{H}_{2} \mathrm{O}$, heated to boil with stirring, boiled for $3-5 \mathrm{~min}$, and then cooled to $20^{\circ} \mathrm{C}$. The precipitate was filtered off and dried at $120-130^{\circ} \mathrm{C}$. Compound I (27.6-31.9 g, $44-51 \%)$ was obtained; $\mathrm{mp} 187^{\circ} \mathrm{C}$ with decomposition (mp 190-192 $\left.{ }^{\circ} \mathrm{C}[11]\right) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: $3.59 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.68 \mathrm{br}$.s $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 11.63 \mathrm{br} . \mathrm{s}$ $(1 \mathrm{H}, \mathrm{NH})$. Mass spectrum, m/z ($\left.\mathrm{I}_{\text {rel }}, \%\right): 142(19)[\mathrm{M}]^{+}$, 98 (100), 68 (49), 57 (36), 43 (86), 42 (69), 41 (83).

Found, \%: C 34.00, H 4.19, N 39.18.
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}$.
Calculated, \%:C 33.81, H 4.26, N 39.42 .
The mother liquor after separating acid I was heated to boil, alkalized with $11-13 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to
$\mathrm{pH} 9-10$, evaporated to a volume of $170-200 \mathrm{ml}$, and cooled to $3-5^{\circ} \mathrm{C}$. The resulting precipitate was filtered off, recrystallized from 150 ml of $\mathrm{H}_{2} \mathrm{O}$, and dried at $120-130^{\circ} \mathrm{C}$. Compound II (10.3-11.5 g, 26-29\%) was obtained; mp $287-293^{\circ} \mathrm{C}\left(\mathrm{mp} 293^{\circ} \mathrm{C}\right.$ [13]). ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{DMSO}-d_{6}$), δ, ppm: $3.35 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.68$ br.s $\left(4 \mathrm{H}, 2 \mathrm{NH}_{2}\right), 11.63$ br.s $(2 \mathrm{H}, 2 \mathrm{NH})$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 180(36)[\mathrm{M}]^{+}, 124$ (36), 98 (100), 68 (19), 67 (20), 57 (40), 43 (89).

Found, \%: C 33.05, H 4.50, N 62.45.

$$
\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{8}
$$

Calculated, \%: C 33.33, H 4.48, N 62.19.
Bis(5-amino-1,2,4-triazol-3-yl)methane IV. MA $(40.0 \mathrm{~g}, 0.385 \mathrm{~mol}), 36 \% \mathrm{HCl}(12.9 \mathrm{~g}, 10.5 \mathrm{ml}, 0.127 \mathrm{~mol})$, $\mathrm{H}_{2} \mathrm{O}(15.6 \mathrm{ml})$, and aminoguanidine hydrochloride ($85 \mathrm{~g}, 0.769 \mathrm{~mol}$) were mixed in a $0.5-1$ round-bottom flask. The resulting mixture was heated with stirring at $70^{\circ} \mathrm{C}$ to complete homogenization, after which it was kept at this temperature for 3 h . The reaction mixture crystallized, and 150 ml of 6.1 N NaOH was added. The mixture was heated with stirring to dissolution and then stirred at $90-95^{\circ} \mathrm{C}$ for 40 min . Then the mixture was cooled to $5^{\circ} \mathrm{C}$ and allowed to stand at this temperature for 30 min , after which the precipitate was filtered off and dissolved in 500 ml of water. Sodium hydrogen carbonate was added to this solution to $\mathrm{pH} 9-10$, and the solution was evaporated to 250 ml and cooled to $3-5^{\circ} \mathrm{C}$. The precipitated crystals were filtered off and dried at $120-130^{\circ} \mathrm{C}$. Compound IV (49.2-55.4 g, 71-80\%) was obtained; mp $289-293^{\circ} \mathrm{C}$ (mp $293^{\circ} \mathrm{C}$ [13]). Samples of IV obtained by both procedures are identical in spectral properties.

CONCLUSIONS

(1) It is appropriate to perform the synthesis of 5-amino-1,2,4-triazol-3-ylacetic acid from malonic acid and aminoguanidine hydrocarbonate jointly with the preparation of bis(5-amino-1,2,4-triazol-3-yl)methane. The yield of the target products is determined by the yield of the intermediate malonic acid guanylhydrazides.
(2) The following conditions are suggested for preparing malonic acid guanylhydrazides: acid medium, catalysis by $36 \% \mathrm{HCl}, 70^{\circ} \mathrm{C}$, molar ratio malonic acid : aminoguanidine hydrocarbonate $: \mathrm{HCl}=1: 1: 1.15$, reaction time 60-70 min.
(3) If the goal of the synthesis is preparation of bis(5-amino-1,2,4-triazol-3-yl)methane, it is appropriate to
perform the synthesis from malonic acid and aminoguanidine hydrochloride, with catalysis by $36 \% \mathrm{HCl}$, at the molar ratio malonic acid : aminoguanidine hydrochloride : $\mathrm{HCl}=1: 2: 0.33$, temperature of $70^{\circ} \mathrm{C}$, and initial concentration of water in the reaction mixture of about 12%.

REFERENCES

1. Dervan, P.B., Bioorg. Med. Chem., 2001, vol. 9, no. 9, pp. 2215-2235.
2. Dzygiel, A., Rzeszotarska, B., Masiukiewicz, E., et al., Chem. Pharm. Bull., 2004, vol. 52, no. 2, pp. 192-198.
3. Masiukiewicz, E., Rzeszotarska, B., Wawrzycka-Gorczyca, I., and Koodziejczyk, E., Synth. Commun., 2007, vol. 37, no. 11, pp. 1917-1925.
4. US Patent 5990084.
5. US Patent 5064953.
6. Kofman, T.P., Uvarova, T.A., Kartseva, G.Yu., and Uspenskaya, T.L., Zh. Org. Khim., 1997, vol. 33, no. 12, pp. 1867-1876.
7. Chernyshev, V.M., Chernysheva, A.V., and Taranushich, V.A., Zh. Prikl. Khim., 2006, vol. 79, no. 5, pp. 792-795.
8. Pevzner, M.S., Ross. Khim. Zh., 1997, vol. 41, no. 2, pp. 73-83.
9. Kisileva, V.V., Gakh, A.A., and Fainzil'berg, A.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1990, no. 9, pp. 2075-2094.
10. USSR Inventor's Certificate no. 3204967.
11. Kofman, T.P., Uvarova, T.A., and Kartseva, G.Yu., Zh. Org. Khim., 1995, vol. 31, no. 2, pp. 271-275.
12. Chernysheva, A.V., Chernyshev, V.M., Korolenko, P.V., and Taranushich, V.A., Zh. Prikl. Khim., 2008, vol. 81, no. 10, pp. 1690-1695.
13. US Patent 2744116.
14. Barmin, M.I., Kartavykh, V.P., Korolev, E.A., et al., Zh. Obshch. Khim., 2001, vol. 71, no. 4, pp. 600-609.
15. US Patent 7294211.
16. Freidlin, G.N., Alifaticheskie dikarbonovye kisloty (Aliphatic Dicarboxylic Acids), Moscow: Khimiya, 1978.
17. Gunawardena, N.R. and Brill, T.B., J. Phys. Chem. A, 2001, vol. 105, no. 10, pp. 1876-1881.
18. Kröger, C.F. and Freiberg, W., Z. Chem., 1969, vol. 5, no. 10, pp. 381-382.
19. Voronkov, M.G., Kashik, T.V., Makarskii, V.V., et al., Dokl. Akad. Nauk SSSR, 1976, vol. 227, no. 5, pp. 1116-1119.
20. Albert, A. and Serjeant, E., Ionization Constants of Acids and Bases. A Laboratory Manual, New York: Wiley, 1962.
