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Abstract. Current approaches to smart cities have focused on
implementing technologies to harvest and analyse data through sensors
and artificial intelligence to improve urban performance from the
top-down. However, cities are complex systems of interconnected
layers that change at different speeds. More persistent layers, like
networks and occupation, must have smartness embedded in them
through smarter design processes. In recent years, there has been
an increase in digital tools for urban design, applying computational
design methods and data analytics strategies, enabling collaborative
and evidence-based approaches that support sustainable urban design.
A critical evaluation of their potential to inform design is necessary
to aid practitioners to choose and adopt these novel strategies and
tools in practice. This paper presents a critical review of selected
data-driven design cloud platforms, focusing on data-driven urban
design approaches that can enable the use of ICTs to steer cities into
a smarter future from the bottom-up.

Keywords. Smart Cities; Data-Driven Urban Design;
Computational Design.

1. Introduction
Smart cities have been defined as innovative approaches to increase the efficiency
of cities. There was a general assumption that developments in Information
and Communication Technologies (ICTs) would enable cities to become more
equitable and sustainable (M. Batty et al. 2012). This is what Grassl and Groß’s
(2019, p. 25) call the ”holistic smart city” discourse. Nonetheless, current practical
approaches to smart cities are better identified in their definition of “connected
smart cities”, that focus on implementing technologies to harvest and analyse data
through sensors and artificial intelligence to improve urban performance, in hopes
that urban development will follow.
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Hitherto, these improvements do not correlate with higher equitability and
sustainability in a city, unless these questions were already being addressed before
it began adopting smart technologies (Zheng et al. 2020). Thus, “holistic smart
cities” are unlikely to be achieved through technological development alone,
as cities behave as complex adaptive systems (Michael Batty, Bettencourt, and
Kirley 2019). Over relying on private companies to propose closed technological
solutions for various urban problems from the top-down, without accounting for
how people’s behaviour and the agency is being affected by the existing built
environment and by all the devices, apps and platforms available to them, e.g.
smartphones, social media or routing tools, can lead to unforeseen bottom-up
social, economic and environmental consequences (Zvolska et al. 2019). There
are layers of interconnected infrastructure in a city that change and are assimilated
at different speeds (van Schaick and Klaasen 2011). ICTs for smart cities are but
one of these layers, developing ever-evolving devices and software to harvest and
analyse data in the attempt to fix urban problems from the top-down (Bettencourt
2014).

There are other infrastructural layers, e.g. the substratum with its natural
resources, and the built environment, which, despite changing at slower paces,
also have their own potential to embed smartness through data-informed urban
design, to enable the “holistic smart city” concept to come to fruition (Grassl and
Groß, 2019; Kvan 2020). This time-dependent, design-driven approach to smart
cities has been understudied in existing frameworks (Yigitcanlar et al. 2018).
Nonetheless, in recent years, there has been an increase in digital tools for urban
design, applying computational design methods and data analytics strategies,
enabling collaborative and evidence-based approaches that support sustainable
urban design in early stages of the design process.

This paper aims to contribute to bridging the gap between urban design and
smart city ICTs, critically reviewing urban design data-driven tools based on key
evaluation criteria of interface development, data-driven flow, early stages of
the design process as well as its impact on a layered understanding of the city
and its alignment with an integrated and holistic view of the sustainable smart
city approach. A conceptual framework for approaching smart cities as layered,
time-dependent entities was developed, focusing on a data-driven urban design
approach is essential to enable the use of ICTs in a non-disruptive manner, to steer
cities into a smarter future from the bottom-up.

2. Context
Cities as Complex Adaptive Systems (CAS) has become a recurrent topic in
the fields of urban planning and design, characterised by emergent, non-linear,
behaviours that cannot be explained as the sum of their parts and should be
approached as complex systems, grounded in complexity theory (Holland 2014).
For Marshall (2009), urban planning for cities as CAS should apply small scale
design interventions to trigger self-organisation, allowing them to evolve as
ecosystems, from their internal interactions. This creates a state of indeterminacy,
in which planning and design outcomes are unpredictable (Verebes 2013). Hence,
urban planning and design should rely on the formulation of possible future
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scenarios through the observation of existing phenomena and extrapolation of
existing data. Thus, generative methods can be used to create prospective
scenarios to inform design decisions and improve urban development (Dovey and
Pafka 2016).

The concept of smart cities in its inception was strongly related to
technology-driven sustainable development. However, current practice
demonstrates a great difficulty in bringing those intentions to fruition. By
overfocusing on technology at the expense of the multidimensional aspects
related to smart cities, e.g. community, policy, ecology and design, holistic smart
cities remain out of reach (Yigitcanlar et al. 2016; Zheng et al. 2020).

We used the framework proposed by Yigitcanlar et al. (2018) as a starting
point to develop a layered time-dependent framework for holistic smart cities that
takes into account the concept of complex adaptive systems, in order to embed
smartness into different urban systems from the bottom-up, so that technology can
contribute to urban sustainability.

The framework development is based on the method proposed by Walloth
(2016) to approach cities as Emergent Nested Systems (ENS). ENS are complex
enclosing systems that change at a slower pace than the systems they enclose.
Changes within the enclosed subsystems trigger emergence and self-organisation
in the enclosing system. Therefore, predicting what individual interferences in
the subsystems can trigger in the whole is a challenging task. Understanding the
paces and rules with which subsystems change and how they affect emergence in
the enclosing system can be a way to plan localised interventions for influencing
the whole (Walloth 2016).

In the context of smart cities, by taking a layered approach to an urban system,
natural systems can be understood as an enclosing system for networks, that in turn
are enclosing systems for occupation. ICTs are systems enclosed by all of them,
and change at the fastest pace. While they affect the enclosing systems, they do
so at a slow pace. Much slower than the time they take to change themselves.

The Dutch Layers Approach (van Schaick and Klaasen, 2011) divides
the physical components of an urban system into Occupation, Networks,
and Substratum, according to the time they take to incur significant change.
Occupation changes significantly over a generation, networks every two
generations, and substratum takes over 100 years to change. For this framework
to be better adapted to smart cities, other layers, understood herein as nested
systems, should be added, such as those discussed by Yigitcanlar et al. (2018), i.e.
community, policy and technology. Most of these layers behave as nested systems,
with one system influencing the other at different temporal steps. Nonetheless,
while information and communication technologies (ICT’s) are influenced by
them, the interaction takes a longer time to go in the other direction. In the 20th
century cars completely changed urban networks and occupation patterns, but the
same has still not been observed for ICT’s. These technologies must become
embedded in urban networks and occupation to achieve holistic smartness by
influencing community behaviours and policy. To achieve this, design processes
and urban space production must change through data-driven, empirically-based,
predictive and optimisation methods.
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3. Methodology
To comprehend how ICT infrastructure is impacting current urban design practice,
interacting within the three urban system layers defined by van Schaick and
Klaasen (2011) as well as to understand the barriers that practitioners are facing
to adopt these strategies into their design process, this paper reviewed four
urban design cloud-based services that aim to deliver a data-driven platform
for designers, collaborators, investors, and other stakeholders that seeks an
evidence-based exploratory environment. A successful platform should provide
a user-friendly environment, support the collaboration between clients and
designers, and integrate available public and private data into the design process
to shape design decisions. While those strategies represent novel design-decision
tools, they need to be critically evaluated on their potential to impact and inform
design.

Figure 1. Diagram of relations between the three evaluation criteria.

The methodology was developed based on key evaluation criteria for interface
development, data-driven flow and design process as shown in figure 1. For each
key evaluation criteria, four sub-criteria were defined and, for each sub-criteria,
four questions were established. These questions were formulated in order to
obtain binary answers: yes or no. Each positive answer corresponds to a value
of 2 or 2.5 points, without the need for computing any partial points. This means
that only values 2 or 2.5 are assigned, see table 01. Subsequently, the scoring
system was plotted in radar charts to assess the ability of the tool to support the
design of smart territories.

According to Shneiderman et al. (2016), there are eight golden rules to
measure the performance of an interface development: Consistency, Usability,
Feedback, Cohesion (Design dialogues to yield closure), Error Prevention, Action
Reversal, User Control, and Reduction of Short Term Memory. In this study to
make the analysis more concise, we clustered the concepts in groups as follows;
Consistency, Usability (Usability and User Control), Responsiveness (Feedback),
Adaptability (Cohesion, Reduction of Short Term Memory, Error Prevention, and
Action Reversal). The questions essentially sought to assess, respectively, whether
the design of the interface seeks consistency, whether it seeks universal usability
and keeps users under control, whether it offers informative feedback, and whether
it designs dialogues to close errors and allow easy reversal of actions.
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The data-driven flow criteria aim to assess the interoperability and
collaborative potential of the design tool, as well as its availability of
comprehensive and general information. The stakeholders involved in this
process are clients, investors, community, and designers. The interoperability
verifies whether the design tool has a common data format, whether it allows
exchange information, whether it is based on an open standard and whether
it is compatible with others. The collaborative process measures specifically
the ability of the design tool to support a collaborative workflow among
stakeholders, and the capacity of users to work on the project in real-time,
with feedback and crowdsourced inputs. Comprehensive information measures
the information availability for community, clients, investors and designers.
Ultimately, the general information sub-criterion seeks to evaluate whether the
design tool addresses social, behavioural, environmental, perception and economic
information.

The design process assessment considered the triad: design, evaluation and
optimisation. It is understood that these three criteria are essential parts of the
digital design process. However, possible integration with other digital tools
has also been included as a criterion especially because it would make the
design process more flexible. Regarding sub-criteria, the design generation was
established to first assess the availability of geospatial data (such as satellite image,
topographical maps, street network, urban block perimeters and plot subdivision)
as an initial database for the design conception, and second to verify the generative
capacity, parametric control, and flexibility of the tool to allow creative thinking.
The design evaluation sub-criterion measured the ability of the tool to offer
social and visual perception, environmental and economic performance analyses,
as well as to make possible the design exploration of multiple alternatives to
aid the decision-making process. The design optimisation checked whether the
tool provides any type of optimisation, multi-objective optimisation or even
one near-optimal solution according to predefined fitness criteria. Finally, the
integration evaluated the capacity of the tool to exchange information with other
Computer-Aided Design (CAD) tools, such as the ease to import, export projects,
as well as the integration with other analysis tools.

3.1. SELECTION CRITERIA

The selection of design tools was based on three fundamental aspects, as follows:
being a cloud-based tool; focusing on urban design for smart territories, allowing
street network, plots, and building volumes to be modelled, and offering free trial
versions. Based on these three criteria, six cloud-based tools were identified:
Scout, Delve, SpaceMaker, Giraffe, Archistar.ai, and Digital Blue Foam. These
tools were identified through social media such as LinkedIn, Twitter, and Facebook
in which most of them have recently been launched.

It is also important to note that all developers were requested by email to offer
a trial version of the design tool so that the authors could test and evaluate their
features according to the pre-established criteria. The vast majority replied to the
request, except for Archistar.ai. In addition, the developers of Delve responded
that, currently, it is only offering a commercial version of the tool, and they expect



744 V. CALIXTO ET AL.

to make trial versions available for academia in 2021. The other four cloud-based
services named SpaceMaker, Giraffe, Digital Blue Foam, and Scout offered trial
versions enabling this research.

Table 1. Evaluation Criteria (Interface, Data-Driven Flow, and Design Process).

4. Results
4.1. SOUT

Scout interface design is defined by parameter sliders, analysis toggle buttons,
and a 3D viewport visualisation of the intervention. The range of the parameters
is predefined by the creator of the algorithm as well as the analysis toggle
button. The terminology in the prompts are identical, and the colours, fonts and
capitalisation are consistent. Because of the simplicity of the interface, there are
no exceptions, menus or help screens. Regarding its usability, the interface is easy
for novice users, however, it does not offer advanced customisation options or
hotkeys for expert user neither does it offer support to assist any disabilities. The
responsiveness of Scout is only related to its minor action feedback. The interface
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adaptability regards its ability to record actions, accept only valid inputs and save
content.

Analysing the data-driven flow criteria, regarding its interoperability, Scout
has a common file format to save the geometry (three.js) that could be read by other
platforms or software, allowing the exchange of data. Also, the file type Three.js
is based on an open standard. The collaboration is related only to its workflow
among different stakeholders, lacking real-time collaboration for a specific project,
community feedback or crowdsourced inputs. Regarding Scout comprehensibility
of the information among the different stakeholders, it is clear and comprehensible
among all stakeholders (community, clients, investors and designers). In the
demo version, Scout manages social, environmental, perception and economic
information.

Scout’s design process, regarding its design generation, Scout supports
parametric control of urban elements and allows design alternative generation. In
terms of performance evaluation and decision-making, Scout supports analysis
tools of social, perception, environmental, and performance and offers design
exploration of multiple alternatives. Scout does not have embedded optimisation
algorithms. Regarding its integration projects can be imported and it is integrated
with Rhino3D-Grasshopper allowing other analytical tools to be used through the
predefined algorithms. However, there are no ready-to-go functionalities to export
projects.

Figure 2. Scout Analysis.

4.2. DIGITAL BLUE FOAM

The Digital Blue Foam interface design is based on small icons, distributed
around a circled toolbar, rather than on menus. The terminology is identical in the
prompts and help screens. The visualisation of urban elements is schematic but
consistent, clear and coloured. Regarding its usability, the generation of buildings
is faster and automated, however, it is not possible to ensure that designers have
systematic parametric control of building generation. Digital Blue Foam does not
have advanced customisation options and hotkeys. Neither does it assist users
with disabilities. The responsiveness relies on its visual feedback. Respective
to its adaptability, it has an ‘undo’ option, it records actions, it is reversible for
previous stages and saves the design content.

The first concept of data-driven flow criteria is interoperability. Digital Blue
Foam is based on a common file format (three.js), allowing the exchange of data
and is an open standard. Regarding its collaboration, workflow among different
stakeholders is the only achieved sub-criteria. Nonetheless, all the criteria for
comprehension of the information among the different stakeholders were reached.
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Digital Blue Foammanages environmental and economic information in the demo
version.

As for design process on design generation, Digital Blue Foam allows
multiple design alternatives generation, supporting modification of objects and
promoting creative thinking. Moreover, it allows to easily set up a mix of building
functions (residential, commercial, office, leisure and education) through the
Program Mixer toolbar. On design optimisation and decision-making it includes
environmental, i.e. solar radiation and a wind rose and, and economic analyses,
i.e. gross floor area (GFA). Digital Blue Foam does not have any optimisation
algorithms. The integration in this tool meets all the set of sub-criteria. It is
possible to import and export projects as well as exporting the design to other
CAD tools through the SLT extension supporting posterior analysis.

Figure 3. Digital Blue Foam Analysis.

4.3. GIRAFFE

Giraffe interface design is based on Mapbox which enables site search,
exploration of surrounding areas and accessing geospatial data, e.g. existing street
network, blocks, plots and buildings volumes. The interface consistencymeets all
criteria. Regarding its usability, it offers thorough explanations and is manageable
for novice users. However, it lacks advanced customisation features or hotkeys.
Regarding its responsiveness, Giraffe offers feedback for major actions and visual
feedback. On adaptability. Giraffe records actions, does not allow inputting
wrong parameters, provides ways to get back to previous stages and saves the
design content.

On data-driven flow criteria, regarding its interoperability, it is based on
three.js as well, which allows data exchange. Regarding its collaboration,
workflow among different stakeholders in the only met sub-criteria. The
comprehension of the information among the different stakeholders attends all
criteria. Giraffe manages social, environmental, perception and economic data.

On design process, design generation, it meets all the defined criteria as well
as those for design performance evaluation and decision-making. However, it
does not include any optimisation algorithms in the native tool. Regarding its
integration, Giraffe also attends all criteria.

Figure 4. Giraffe Analysis.
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4.4. SPACEMAKER

SpaceMaker interface design meets all the sub-criteria regarding its consistency,
responsiveness and adaptability. As for its usability, it offers a set of tutorials on
how to use the tool and is easy to understand even for beginners.

On data-driven flow criteria, regarding its interoperability, as the other tools,
it is based on three.js, meeting data exchange and open standard. It also has a high
level of comprehension among all involved stakeholders. SpaceMaker manages
social, environmental, perception, and economic information. However, the only
criterion met under collaboration was workflow among stakeholders.

On design process, regarding design generation, SpaceMaker meets all
criteria. Under Design Performance and Decision Making the tool enables visual
perception, environmental, and economic analyses and allows the exploration of
multiple design alternatives. SpaceMaker was the only tool of those analysed
that had optimisation algorithms embedded into its default platform. However,
it does not allow multi-objective optimisation. Furthermore, it does not state
what optimisation algorithm is being used, working as a black box for the users.
Finally, in the demo version, projects cannot be imported. However, all the other
sub-criteria are met for integration.

Figure 5. SpaceMaker Analysis.

5. Conclusion
This paper critically reviews urban design cloud-based and data-driven tools
according to key evaluation criteria of interface development, data-driven flow
and design process to understand how they can contribute to an integrated and
holistic design of sustainable smart cities. In addition, the paper has introduced a
conceptual framework for approaching smart cities as layered and time-dependent
entities, with a focus on an urban design approach, to embed ICT in the occupation
and networks layers. As can be seen, various cloud-based and data-driven urban
design tools such as Scout, Delve, SpaceMaker, Giraffe, Archistar.ai and Digital
Blue Foam have recently emerged as a direct impact of advances in generative
design techniques and machine learning, a subset of artificial intelligence, that
has contributed significantly to the automation and efficiency in the urban design
process. These tools offer the ability to generate, evaluate, and optimise urban
models from the early stages of design. They aid architects, planners and
stakeholders to save resources, time and money, as well as to find optimal
design solutions. Moreover, they promise to empower designers to design smart
cities and neighbourhoods. Despite the potentialities of these new tools, a more
holistic approach is still needed which should comprise social, environmental, and
economic aspects, as well as behavioural and visual perception aspects of urban
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issues regarding the urban design interdisciplinary. Through this study, it has
become clear that there has been a larger effort to develop novel tools instead
of concentrating on improving their comprehensiveness. This will be crucial in
further developments in order to make these tools more widely applied for urban
design education and practice. Only then will this type of technology be able to
achieve an impact on the more persistent urban layers and imprint a long-lasting,
socially improving effect and steer cities into a smarter future from the bottom-up.
However, this study is limited to the evaluation of demo versions of these tools,
since the access to the full versions is still limited inmost cases. The demo versions
contain most of the features of full versions, but in most cases, there are resources
only offered in the full versions. For instance, Giraffe offers integration with other
microclimate analysis and parametric design tools which is available in its full
version. A possible future step for this research is to evaluate full versions and
consider more tools that were not included in this study. Furthermore, studies that
apply these tools in teaching environments are needed to objectively evaluate their
impact on the design process.
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