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Abstract. The optical properties of multi-layer InAs/InP quantum wires (QWRs) with two 
different spacer thicknesses have been investigated by means of room temperature surface 
photovoltage (SPV) and photoluminescence (PL) spectroscopies, combined with empirical 
tight binding electronic structure calculations and structural data. The SPV and PL spectra 
reveal several features, which energy positions are in good agreement. They have been 
ascribed to excitonic transitions, which take place in the QWR families with heights differing 
by an integer number of monolayers. Comparing the experimental results with the theoretical 
ones, we have estimated the QWR family heights and the average atomic concentration of 
phosphorus in the QWRs. From the simultaneous analysis of the SPV amplitude and phase 
spectra, based on our vector model for SPV signal representation, a deeper understanding of 
the SPV results and of the mechanisms of carrier separation in the sample is obtained. 

1. Introduction 
The interest in multi-layers of self-assembled InAs/InP quantum wires (QWRs) grown in the Stranski-
Krastanov mode is motivated by their promising applications in light emitting devices in the 1.3 - 1.55 
μm wavelength range used in optical fibre telecommunications [1]. The optical properties of these 
nanostructures have been studied by means of low-temperature photoluminescence (PL) spectroscopy, 
combined with electronic structure calculations in frames of the envelope function approximation. The 
PL spectra have revealed several wide bands, which have been generally attributed to emission of 
QWRs belonging to different families with heights differing by an integer number of monolayers 
(MLs) [2-5]. There are relatively few experimental investigations at room temperature (RT), which 
will be the operating temperature of a final device, based on the discussed multi-layers [6-8]. Due to 
its high sensitivity even at RT, the surface photovoltage (SPV) spectroscopy is an alternative to avoid 
the difficulties related to optical absorption measurements in nanostructures [9-11].  

In this work we apply SPV spectroscopy to study multi-layer InAs/InP QWRs at RT in 
combination with PL measurements, structural data from previous studies [3], and comparison with 
empirical tight binding (ETB) electronic structure calculations.  

16 ISCMP: Progress in Solid State and Molecular Electronics, Ionics and Photonics IOP Publishing
Journal of Physics: Conference Series 253 (2010) 012043 doi:10.1088/1742-6596/253/1/012043

c© 2010 IOP Publishing Ltd

1



 
 
 
 
 
 

2. Experimental and calculation details 
Two samples were grown on (001) semi-insulating (SI) InP:Fe substrates by solid-source molecular 
beam epitaxy. They contain a 150 nm InP buffer layer and a stack of seven InAs QWR layers, 
separated by InP spacers of thickness d = 10 and 20 nm in the two samples. The growth temperature 
was 515°C and 380°C for the QWRs and the InP spacers, respectively (figure 1). High resolution 
transmission electron microscopy (TEM) [3] has shown that the QWRs are oriented along [1-10] and 
their average height H and lateral width are around 3.2 nm and 10.3 nm, respectively. The residual 
doping in the buffer and the QWR structure is n-type, of the order of 1×1017 cm-3.  

 

 
Figure 1. Scheme of the samples. 

 
Details about the set-up used for SPV spectral measurements in metal-insulator-semiconductor 
operation mode and the measurement procedure can be found elsewhere [10, 12]. Here the 
semitransparent probe electrode was a SnO2 

film deposited on a quartz glass. It was adjusted to gently 
press the sample to a grounded copper platform. All measurements were performed with normal 
incident light chopped at 94Hz, keeping a constant photon flux density (Φ ≈ 1.5×1014 cm-2s-1 ± 2%) for 
all wavelengths, scanned from high towards low ones. The PL spectra were measured at RT using an 
Ar+ ion laser (514.5 nm line) a 0.19 TRIAX single monochromator (600 grooves/mm grating) and a 
N2-cooled InGaAs detector connected to a lock-in amplifier.  

The procedure for the ETB electronic structure calculations is described in detail in [13]. The 
intermixing that inevitably exists in such structures was taken into account by considering a nonzero 
phosphorus concentration [P] in the QWR, because this method is consistent with experimental 
observations for the InAs/InP system [13]. Since InAs/InP QWRs and dots are relatively flat, the 
effect of the lateral confinement on the transition energies is small [13] and was therefore neglected in 
our calculations. A temperature correction of 65 meV is subtracted from the calculated (at 0K) 
energies to account for the InAs band gap decrease between 0 and 300K [14].  

3. Results and discussion 
The SPV amplitude spectra of the samples with d = 10 and 20 nm, respectively, are shown on 

figures 2(a) and 2(b). In the energy range 0.75–0.9 eV they reveal a few steps or peaks superimposed 
on a smooth background. The PL spectra, given on the same figures, represent broad bands, which can 
be decomposed to a few Gaussians. The energy positions (in eV) of the SPV (PL) features for the 
sample with d = 10 nm are: 0.84 (0.83); 0.81 (0.80); 0.77 (0.77) and (0.72), while for the sample with 
d = 20 nm they are: 0.85 (0.84); 0.81 (0.81) and (0.78); the lowest-energy peaks are absent in the SPV 
spectra. The good agreement between the SPV and PL features implies that they originate from 
electronic transitions between the same electronic states in the samples. We have checked that these 
features are absent in the PL spectrum of bulk InP. Thus, in accordance with our previous works on PL 
spectroscopy of InAs/InP QWRs [2-4, 8], we can also ascribe the SPV features to excitonic transitions 
arising in QWR families with heights differing by an integer number of MLs. The small difference of 
~ 10 meV between the SPV and PL peak positions represents the Stokes shift for the QWR exciton.  

InP substrate and buffer 
layer 

 

d = 10, 20 nm

InP spacer 
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Figure 2. SPV amplitude and PL spectra of the samples with d = 10 (a) and 20 nm (b). The PL band is 

decomposed to Gaussians.  
 
In order to determine the QWR family heights we have compared the experimental results with 
numerical calculations of the electronic structure performed by the ETB method. The calculated 
transition energies for different QWR heights as a function of [P] are shown with solid lines in figure 
3. The horizontal dashed lines in the same figure represent the experimental peak energies for both 
samples. From the multiple intersections of the two line sets we have selected the ones giving the best 
agreement. The procedure is described and verified in [13]; it requires that i) H increase by 1 ML 
between peaks and ii) [P] remain nearly constant for the different QWR families. Hence, the results 
suggest that the peaks around 0.85, 0.81 and 0.77 eV originate form QWR families with heights 7, 8 
and 9 MLs, respectively.  
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Figure 3. Transition energies of a single 
InAsP/InP QWR as a function of the P 
content for QWRs heights from 6 to 12 MLs. 
The dashed lines show the SPV peak values 
and their relevant intersections with the 
calculated curves are illustrated by squares (d 
= 10 nm) and triangles (d = 20 nm). 

 
The PL peak with the lowest energy (0.72 eV) in the sample with d = 10 nm is much broader and 
could account for a number of families (with heights 10-12 ML). Alternatively, this emission could 
originate from larger QWRs formed by the overlapping of two or more small wires. Such wires have 
been observed by atomic-scale cross-sectional scanning tunneling microscopy [15].  

The intersections of the curves in figure 3 show also that a constant P concentration in the QWRs 
of the order of 8 % can effectively represent the effects of the InAs/InP intermixing on the optical 
transition energies. The error in [P] can be estimated to ± 4% and it results from the uncertainty in the 
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InAs/InP valence band offset (0.3-0.4 eV), which gives an error of ±(2-3)% [13], the experimental 
error in the transition energies (±5 meV) giving ±0.6% and the effect of the strain relaxation during the 
QWR formation (< 1% [13]) which is not taken into account in the calculations.  

Similar samples with InP spacer layers, grown at higher temperatures (515°C), have been 
investigated in our previous study [8]. The comparison with the present results shows that the current 
QWRs are higher, but have a lower equivalent P concentration. This height difference is supported by 
the TEM results [3]. It is explained by the fact that at higher growth temperature of the InP spacers an 
enhanced P/As exchange takes place, which favours the formation of lower InAs wires with smaller 
cross section aspect ratio, as pointed out in [3]. The lower equivalent P concentration obtained for the 
present QWRs corresponds with their less efficient P/As exchange and larger cross section aspect 
ratio. 

The slight difference in peak positions between the samples with d = 20 nm and d = 10 nm is 
probably due to the increase of the electron coupling between adjacent layers with decreasing d, as 
discussed in [4]. 

In order to obtain a deeper understanding of the SPV results and to study the mechanisms of carrier 
separation necessary for the SPV signal formation, we analyze in parallel the SPV amplitude and 
phase spectra shown on figure 4. For that purpose we have used our vector model [11], in which the 
SPV signal is represented by a radial vector, with magnitude equal to the SPV amplitude and angle 
with respect to the X-axis equal to the SPV phase. The occurrence of more than one SPV process is 
then represented by summation of the corresponding SPV vectors.  
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Figure 4. SPV amplitude and phase 
spectra of both samples in the 
whole spectral range under study. 

 
In the range 0.75 – 0.9 eV, where the QWR spectral features are observed in the PL and SPV 
amplitude spectra, the SPV phase is in IV-th quadrant (see figure 4). This indicates an upward energy 
band bending in the region of the QWR structure with respect to the bulk [10, 11]. In fact an upward 
band bending at the sample surface is expected because of the n-type residual doping of the multi-
layer structure and buffer layer. The QWR structure is then situated in the space charge region (SCR), 
which arises at the sample surface with a built-in electric field [see figure 5(b)]. The SPV signal from 
the QWRs is due to photocarriers, which thermally escape from the InAs potential wells into the InP 
barriers, where they are separated by the SCR built-in electric field. Since the carrier escape is easier 
for higher energy states, the SPV peaks at higher energies are stronger. Thus, the SPV spectra extend 
the information obtained by PL, where the lowest energy transition is predominantly observed. For 
energies from 0.9 to 1.27 eV the SPV phase remains nearly constant, while the amplitude smoothly 
increases, which suggests that in this range the optical absorption is associated with excited states in 
the multilayer structure.  
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Figure 5. SPV vectors for both 
interfaces (a); alignment of the 
energy bands (b); summation of the 
SPV vectors of the substrate (Sub) 
and of the multilayer structure 
(QWR) for both samples (c) 

 
At higher energies the SPV amplitude spectrum for both samples reveals a minimum around 1.29 eV 
followed by a strong step in the range 1.29 - 1.34 eV. In the same energy range a jump occurs in the 
SPV phase spectrum. The step is associated with band to band absorption in InP (bandgap energy 1.34 
eV). The amplitude minimum and the phase jump at 1.29 eV can be explained taking into account the 
nearly opposite phases of the SPV signals from the multilayer structure and from the bulk InP. The 
first one includes the signals from the InP spacer layers and from excited states in the InAs QWRs. 
The phase in this case is in IV-th quadrant due to the upward energy band bending, as explained above. 
The second one includes the signal from the interface buffer/substrate, where the band bending is 
downward with respect to the bulk, because of the different layouts of the Fermi levels in the two 
materials [n-type InP buffer and SI InP substrate, see figure 5(b)]. Therefore, the SPV signal 
associated with the band to band absorption in the bulk InP is represented by a vector in II-nd quadrant 
(vector Sub) [10, 11], contrary to the SPV vector of the multilayer structure (vector QWR).  

The superposition of the SPV signals from the multilayer structure and from the bulk InP is 
represented in figure 5(c) by summation of two SPV vectors nearly opposite in orientation (vector 
QWR in IV-th and vector Sub in II-nd quadrant). It is easy to understand that this superposition leads to 
a minimum in the SPV amplitude and a SPV phase jump, as observed around 1.29 eV. The different 
strength and direction of the SPV phase jump for the two samples can be explained by different 
orientation and magnitude of these sets of vectors. In the case of the sample with d = 10 nm, where the 
multilayer structure is thinner, the bulk InP vector is relatively strong as compared to the multilayer 
vector and forms an obtuse angle with it, as shown in figure 5(c) left. The growth of vector Sub leads 
to clockwise rotation of the overall SPV vector across III-rd quadrant. The bulk InP vector of the 
sample with d = 20 nm, where the multilayer structure is thicker, is relatively weak as compared to the 
multilayer vector and forms an obtuse angle with it, as shown in figure 5(c) right. Therefore the 
growth of vector Sub in this case leads only to a small anticlockwise rotation of the overall SPV vector 
and an initial SPV amplitude minimum at 1.29 eV. The following increase in the SPV amplitude is 
due to the increased contribution of the InP spacer layers [the QWR vector in figure 5(c) right].  

4. Conclusion 
We present a comparative study of the optical absorption and emission of multi-layer InAs/InP QWRs, 
performed by RT SPV and PL spectroscopies in combination with ETB calculations and structural 
data obtained in previous studies. The energies of the numerous features in the SPV spectra are in 
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good agreement with the ones observed in PL. They are interpreted as due to excitonic transitions, 
which arise in QWR families with different heights. The values of the later (7, 8 and 9 MLs) are 
estimated from the comparison of the experimental and the calculated transition energies. Using this 
comparison we have found also that the degree of P intermixing in the wires is equivalent to a constant 
P concentration of the order of 8%. 

The dependence of the QWR height on the growth temperature of the InP spacer layers is discussed 
and explained by the corresponding temperature dependent behaviour of the P/As exchange processes.  

Due to the residual n-type doping of the QWR structure and buffer layer, the energy bands are bent 
upward (downward) at the sample surface (at the interface buffer/substrate), which results in non-
trivial features in the SPV spectrum, which have been successfully explained with the help of our 
vector model for SPV signal representation. 

Finally, it should be noted that this study demonstrates the abilities of the SPV spectroscopy for 
characterization of complex nanostructures at RT.  
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