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Abstract

Polymorphisms in genes critical to cell cycle control are
outstanding candidates for association with ovarian
cancer risk; numerous genes have been interrogated by
multiple research groups using differing tagging single-
nucleotide polymorphism (SNP) sets. To maximize
information gleaned from existing genotype data, we
conducted a combined analysis of five independent
studies of invasive epithelial ovarian cancer. Up to 2,120
cases and 3,382 controls were genotyped in the course of
two collaborations at a variety of SNPs in 11 cell cycle
genes (CDKN2C, CDKN1A, CCND3, CCND1, CCND2,
CDKN1B, CDK2, CDK4, RB1, CDKN2D , and CCNE1)
and one gene region (CDKN2A-CDKN2B). Because of
the semi-overlapping nature of the 123 assayed tagging
SNPs, we performed multiple imputation based on

fastPHASE using data from White non-Hispanic study
participants and participants in the international Hap-
Map Consortium andNational Institute of Environmen-
tal Health Sciences SNPs Program. Logistic regression
assuming a log-additive model was done on combined
and imputed data. We observed strengthened signals in
imputation-based analyses at several SNPs, particularly
CDKN2A-CDKN2B rs3731239; CCND1 rs602652,
rs3212879, rs649392, and rs3212891; CDK2 rs2069391,
rs2069414, and rs17528736; and CCNE1 rs3218036. These
results exemplify the utility of imputation in candidate
gene studies and lend evidence to a role of cell cycle
genes in ovarian cancer etiology, suggest a reduced set of
SNPs to target in additional cases and controls. (Cancer
Epidemiol Biomarkers Prev 2009;18(3):935–44)

Introduction

Because genes regulating cell cycle control are excellent
candidates for cancer risk, multiple groups have targeted
these genes for etiologic investigation. Progression of
cells from G1 phase to S phase to G2 phase is closely
regulated by the retinoblastoma protein (pRb), cyclins,
cyclin-dependent kinases (CDK), and CDK inhibitors
(Fig. 1). Loss of growth control is a key trait of cancerous
cells, resulting from abnormalities in cell replication,
which is controlled by cell cycle genes (1, 2). Inhibitors

of the cyclin/CDK complexes also regulate cell cycle
progression by controlling the activation of these com-
plexes (3, 4). Studies of inherited variation in cell cycle
genes suggest that genotypes in this pathway may be
associated with risk of breast cancer (5, 6), prostate
cancer (7), lung cancer (8), bladder cancer (9, 10), and oral
cancer (11), but not necessarily colorectal cancer (12).

Evidence for a role of cell cycle variants in ovarian
cancer comes from several lines of research. Overexpres-
sion of cyclins D1, D2, and E1 and deletion of CDK
inhibitors 2A (p16) and 2B (p15) have been observed in
ovarian cancers (13-15). In addition, ovarian cancers fre-
quently have altered retinoblastoma protein (pRb), which
regulates the G1-to-S phase transition when cells either
arrest development or proliferate (16). The complex inter-
play of cyclins D1, D2, D3, and E1; CDK2 and CDK4; CDK
inhibitors 1A (p21) and 1B (p27); CDK4 inhibitors 2A
(p16), 2B (p15), 2C (p18), and 2D (p19); and pRb suggests
that perturbation of any of these molecules via germ-line
variation may predispose a woman to ovarian carcinogen-
esis. Finally, previous reports of inherited variation and
ovariancancer survivalhave shownsuggestive results (17, 18).

Improved precision of disease-risk estimates associat-
ed with single-nucleotide polymorphisms (SNP) in cell
cycle control genes can be obtained with pooled analyses
of several study populations. The use of tagSNPs and
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htSNPs has facilitated cost-savings in individual studies;
however, tagging SNP sets often vary across studies due
to the use of different algorithms, parameter values, data
sources, and genotyping platforms (19). In the context of
failed genotyping or multiple genome-wide platforms,
several tools for imputation and analysis of missing
genotypes have been developed (20-26). Although
potentially informative, these tools have not been
routinely applied to the candidate gene setting where
multiple studies targeted differing but correlated SNPs.

Here, we analyze data from five ovarian cancer study
populations that, as part of two collaborations, tagged
common variation in 11 cell cycle genes and in one gene
region (CDKN2C, CDKN1A, CCND3 , the CDKN2A-
CDKN2B region, CCND1, CCND2, CDKN1B, CDK2,
CDK4, RB1, CDKN2D , and CCNE1). A total of 123 SNPs
were genotyped but only 24 SNPs were genotyped in
both collaborations; because SNPs sets were correlated
but differed, we combined data using multiple imputa-
tion (17, 27). We present results of observed and imputed
analyses of ovarian cancer risk, suggest SNPs worthy of
additional genotyping, and provide guidance for the
application of this and other imputation methods.

Materials and Methods

Study Populations. The first genotyping effort (28, 29)
used subjects recruited into two case-control studies at
Mayo Clinic in Rochester, Minnesota (MAY) and at Duke
University in Durham, North Carolina (NCO). At Mayo
Clinic, cases were women of ages >20 y with histologically
confirmed epithelial ovarian cancer living in the Upper
Midwest and enrolled within 1 y of diagnosis. Controls
without ovarian cancer and who had at least one intact
ovary were recruited from among those seen for general
medical examinations and frequency matched to cases on
age and regionof residence.AtDukeUniversity, caseswere
women between ages of 20 and 74 y with histologically
confirmed primary epithelial ovarian cancer identified
using the North Carolina Central Cancer Registry rapid
case ascertainment system. Controls without ovarian
cancer andwhohad at least one intact ovarywere identified
from the same 48-county region as the cases using list-
assisted random digit dialing and frequency matched to
cases on race andage.DNAwas extracted frombloodusing
the Gentra AutoPure LS Purgene salting out methods
(Gentra); for Duke University participants, DNA was
whole-genome amplified with the REPLI-G protocol

Figure 1. Cell cycle control. In response to growth factor signaling, cyclin D1 (also cyclins D2 andD3) forms a complexwith CDK4. This
active complex phosporylates the tumor suppressor protein pRb, inactivating it and allowing the cell cycle to continue. Once freed from
pRb, the transcription factor E2F initiates gene expression of cyclin E1. Cyclin E1 forms a complex with CDK2; this complex
phosphorylates and inactivates p27 and phosphorylates pRb to continue its inactivation, which pushes the cell cycle past the G1 restriction
point into S phase. Progression of the cell cycle is regulated by inhibitors; p15, p16, p18, and p19 inhibit CDK4 and p21 inhibits both
CDK2 and CDK4. These inhibitors must be phosphorylated and degraded before the cell cycle can progress to the next phase.

Ovarian Cancer Genotype Imputation
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(Qiagen, Inc.; ref. 29).Non-White andHispanic participants
and cases with borderline tumors were excluded from the
analysis (one NCO case with unknown race was assumed
to be White non-Hispanic, and one NCO case with
unknown tumor behavior was assumed to be invasive);
additional details are provided elsewhere (30).

The second genotyping collaboration (17, 27) used cases
and controls from three different studies: the SEARCH
ovarian cancer study from East Anglia, United Kingdom
(SEA), the MALOVA cancer study from Denmark (MAL),
and the GEOCS study from Stanford University in Palo
Alto, California (STA). The SEARCH ovarian cancer study
included invasive epithelial ovarian cancer cases collected
from the East Anglian and West Midlands cancer
registries and controls randomly selected from
the European Prospective Investigation into Cancer and
Nutrition (EPIC)-Norfolk cohort study. The MALOVA
study contained invasive ovarian cancer cases and
population controls randomly drawn from a defined
study area in Denmark. The GEOCS study ascertained
participants from six counties in northern California
including invasive ovarian cancer cases and age-matched
controls obtained using random-digit dialing. Non-White
and Hispanic participants and cases with borderline
tumors were excluded from the analysis (33 SEA cases
and 1 SEA control with unknown racewere assumed to be
White non-Hispanic, and 75 SEA cases with unknown
tumor behavior were assumed to be invasive); additional
study participant details are provided elsewhere (31, 32).

SNP Selection. The first collaboration (MAY + NCO)
identified tagSNPs within 5 kb of each gene using the
algorithm of ldSelect (33) to bin pairwise-correlated SNPs
at r2 z0.80 with minor allele frequency (MAF) z0.05
among 60 unrelated Utah residents with Northern and
Western European ancestry (CEU) genotyped as part
of the international HapMap Consortium release 20
(HapMap, mapped to NCBI build 35; ref. 34). Within
linkage disequilibrium bins, tagSNPs with the maximum
Illumina-provided SNP_Score were selected. In addition
to tagSNPs, putative-functional SNPs were included
(within 1 kb upstream, 5’ untranslated region, 3’

untranslated region, or nonsynonymous) with MAF
z0.05 identified in Ensembl version 34 and Illumina-
provided SNP_Score >0.6. Sixty SNPs were selected.

The second collaboration (SEA +MAL + STA) used the
multimarker tagging algorithm of Tagger (35) to bin
SNPs pairwise-correlated or correlated with combina-
tions of SNPs with MAF z0.05 and Rs

2 z0.80 (36). CEU
data from HapMap (October 2005) were used, as well as
resequencing data when available (October 2005), from
the National Institute of Environmental Health Sciences
(NIEHS) SNPs Program (37). Analysis of NIEHS SNPs
used 62 individuals thought to have the least amount of
African ancestry from a panel of 90 individuals (PDR90);
additional information is provided elsewhere (17).
Eighty-seven SNPs were selected.

Genotyping. For MAY + NCO, genotyping of 1,086
genomic and 1,282 whole-genome amplified DNA sam-
ples (total of 2,368 including duplicates and laboratory
controls) on 2,051 unique study participants was done at
Mayo Clinic using the Illumina GoldenGate BeadArray
assay and BeadStudio software for automated genotype
clustering and calling according to standard protocol (38).
Samples with call rates <90% and SNPs with call rates
<95% were excluded. Of 2,051 participants genotyped, 10
were later found to be ineligible and were excluded, and
74 samples failed. Among SNPs with an overall call rate
z95%, concordance was 99.99% between duplicates of
genomic DNA, 99.97% between duplicates of whole-
genome amplified DNA, and 99.16% between genomic
and whole-genome amplified DNA, indicating adequate
genotyping of whole-genome amplified DNA (29).

SEA + MAL + STA samples were genotyped using
the TaqMan 7900HT Sequence Detection System accord-
ing to the manufacturer’s instructions. Each assay was
carried out using 10 ng of DNA in a 5-AL reaction
with TaqMan Universal PCR Master Mix (Applied
Biosystems), forward and reverse primers, and FAM-
and VIC-labeled probes designed by Applied Biosystems
(ABI Assay-by-Design). Primer and probe sequences
and assay conditions used for each polymorphism
analyzed are available on request. All assays were carried
out in 384-well arrays with 12 duplicate samples in each

Table 1. Cell cycle genes

Gene Chr. Start (bp) Size (kb) No. of SNPs

MAY + NCO* SEA + MAL + STA
c

CEU
b

NIEHS SNPsx

CDKN2C 1 51,206,196 6.7 1 2 7 19
CDKN1A 6 36,754,465 8.6 4 11 40 42
CCND3 6 42,010,649 113.8 7 6 87 32
CDKN2A-CDKN2B 9 21,957,751 41.6 9 17 76 96
CCND1 11 69,165,054 13.4 5 7 16 53
CCND2 12 4,253,199 31.6 4 14 83 102
CDKN1B 12 12,761,576 5.0 8 8 17 15
CDK2 12 54,646,826 6.0 7 2 23 24
CDK4 12 56,428,270 4.1 3 2 11 26
RB1 13 47,775,884 178.1 8 11 171 197
CDKN2D 19 10,538,138 2.5 2 2 15 5
CCNE1 19 34,994,741 12.3 2 4 19 48

60 86 565 659

*Source for tagging SNPs was HapMap release 20.
cSource for tagging SNPs was NIEHS SNPs, except CCND2 and CDKN1B , which used HapMap, and CDKN2C , which used both HapMap and NIEHS
SNPs (October 2005); CCND3 rs1051130 was excluded due to Hardy-Weinberg equilibrium P < 0.001.
bHapMap release 21a, within 10 kb of gene start or stop.
x September 2007.
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Table 2. Characteristics of 5,502 White non-Hispanic invasive cases and controls

MAY NCO MAL SEA STA

Case
(n = 287)

Control
(n = 462)

Case
(n = 382)

Control
(n = 479)

Case
(n = 447)

Control
(n = 1,221)

Case
(n = 717)

Control
(n = 852)

Case
(n = 287)

Control
(n = 368)

Age, y
Mean (SD) 61.6 (12.5) 60.0 (13.0) 56.8 (10.7) 54.8 (12.0) 59.9 (10.6) 56.8 (11.5) 55.7 (10.0) 52.7 (8.3) 51.2 (8.7) 48.3 (10.3)

Age quartile, n (%)
V46 y 30 (11) 69 (15) 68 (18) 123 (26) 53 (12) 243 (20) 112 (16) 202 (24) 82 (29) 137 (37)
47-53 y 52 (18) 78 (17) 82 (22) 118 (25) 83 (19) 293 (24) 178 (25) 323 (38) 76 (27) 105 (29)
54-62 y 70 (24) 113 (25) 108 (28) 80 (17) 114 (26) 247 (20) 236 (33) 205 (24) 110 (38) 104 (28)
63+ y 135 (47) 202 (44) 124 (33) 158 (33) 197 (44) 438 (36) 191 (27) 122 (14) 19 (7) 22 (6)

Age at menarche, y
Mean (SD) 12.8 (1.53) 13.2 (4.47) 12.5 (1.45) 12.7 (1.41) 13.6 (1.69) 13.6 (1.63) 12.9 (1.95) 12.9 (1.52) 12.5 (1.44) 12.8 (1.54)

Menopause status, n (%)
Pre/peri 70 (24) 108 (23) 73 (19) 154 (32) 74 (17) 373 (31) 240 (34) 557 (65) 14 (5) 182 (50)
Post 209 (73) 327 (71) 273 (72) 316 (66) 280 (63) 848 (70) 414 (58) 294 (35) 147 (51) 129 (35)
Unknown 8 (3) 27 (5.9) 36 (9) 9 (2) 93 (21) 0 (0) 63 (9) 1 (<1) 126 (44) 57 (16)

Ever used oral contraceptives, n (%)
Yes 133 (46) 261 (57) 240 (63) 328 (69) 146 (33) 686 (56) 297 (41) 580 (68) 209 (73) 311 (85)
No 139 (48) 164 (36) 131 (34) 147 (31) 207 (46) 535 (44) 399 (56) 271 (32) 76 (27) 55 (15)
Unknown 15 (5) 37 (8) 11 (3) 4 (<1) 94 (21) 0 (0) 21 (3) 1 (<1) 2 (<1) 2 (<1)

No. of live births, n (%)
0 47 (16) 64 (14) 77 (20) 62 (13) 54 (12) 72 (6) 117 (16) 111 (13) 70 (24) 59 (16)
1-2 97 (34) 153 (33) 185 (48) 268 (56) 157 (35) 510 (42) 343 (48) 387 (45) 111 (39) 156 (42)
3+ 137 (48) 218 (47) 116 (31) 149 (31) 143 (32) 639 (52) 223 (31) 353 (4) 106 (37) 151 (41)
Unknown 6 (2) 27 (6) 4 (1) 0 (0) 93 (21) 0 (0) 34 (5) 1 (0.1) 0 (0) 2 (<1)

Histology, n (%)
Serous 168 (59) — 234 (61) — 275 (62) — 254 (35) — 159 (55) —
Endometrioid 58 (20) — 58 (15) — 56 (13) — 129 (18) — 44 (15) —
Mucinous 9 (3) — 22 (6) — 43 (10) — 97 (14) — 24 (8) —
Clear cell 18 (6) — 32 (8) — 33 (7) — 62 (9) — 22 (8) —
Other/unknown epithelial* 43 (15) — 67 (18) — 40 (9) — 175 (24) — 38 (13) —

*Includes papillary, undifferentiated, mixed histologies, and other unknown epithelial adenocarcinomas.
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plate for quality control. Genotypes were determined
using Allelic Discrimination Sequence Detection software
(Applied Biosystems). Call rates ranged from 94.5% to
99.5% for all the studies and SNPs, and overall concor-
dance between duplicate samples was >99% (17, 27).

Other Data Sources and Harmonization of Alleles.
To impute missing study participant genotypes, we used
data from study participants as well as updated data
from the sources originally used to identify tagging
SNPs: 60 unrelated CEU individuals in HapMap version
21a9 (SNPs within 10 kb of each gene using genome build
36.3) and 62 individuals with minimal evidence of
African ancestry from NIEHS SNPs10 (resequenced

regions September 2007). A total of 911 SNPs were
identified from MAY + NCO, SEA + MAL + STA,
HapMap CEU, and NIEHS SNPs including 395 SNPs
with genotype data from two or more sources.

To verify allele consistency for 395 SNPs with
genotype data from two or more sources, we reviewed
study-designated allele names and MAFs across sources.
We found that, for 270 SNPs (68%), genotypes were
easily combined across studies (similar MAF, identical
nomenclature); for 112 SNPs (28%), genotypes were
combined following an obvious strand reversal for at
least one data source (similar MAF, reverse strand
nomenclature); and for 4 SNPs (1%), genotypes were
clearly inconsistent or of a nonobvious nature (e.g., C>G,
A>T, and MAF >0.40) and excluded for at least one
source (and data remained for two or more sources). For
5 SNPs (1%), genotypes that were clearly inconsistent

Figure 2. Significance of ordinal ORs using observed and imputed data. Ordinal P values at each SNP represented within gene in
chromosome order; not to physical scale.

9 http://hapmap.org/downloads/genotypes/2007-01/
10 http://egp.gs.washington.edu/finished_genes.html
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Table 3. Cell cycle SNPs and risk of ovarian cancer

Gene SNP Distance (bp) OR (95% CI)

MAY + NCO SEA + MAL + STA Combined Combined imputed:
HapMap + NIEHS

Combined imputed:
HapMap only

CDKN2C rs3176459 — — 1.00 (0.90-1.10) 1.00 (0.90-1.10) 0.98 (0.89-1.08) 0.98 (0.89-1.08)
rs12855 2,846 1.02 (0.80-1.30) 1.01 (0.86-1.19) 1.01 (0.89-1.16) 1.01 (0.88-1.15) 1.01 (0.88-1.15)

CDKN1A rs1977172 — 1.11 (0.90-1.38) — 1.11 (0.90-1.38) 1.12 (0.90-1.39) 1.09 (0.91-1.31)
rs3829963 2,632 1.19 (0.97-1.46) — 1.19 (0.97-1.46) 1.17 (0.96-1.42) 1.06 (0.92-1.22)
rs733590 817 0.87 (0.75-1.02) — 0.87 (0.75-1.02) 0.98 (0.87-1.10) 1.00 (0.93-1.08)
rs762624 385 — 1.09 (0.98-1.21) 1.09 (0.98-1.21) 1.08 (0.97-1.20) 1.08 (0.97-1.20)
rs2395655 108 — 1.10 (1.00-1.21) 1.10 (1.00-1.21) 1.04 (0.95-1.13) 1.03 (0.95-1.11)
rs3176331 1,829 — 1.02 (0.89-1.18) 1.02 (0.89-1.18) 1.00 (0.87-1.16) 1.01 (0.88-1.17)
rs3176336 1,291 — 0.97 (0.88-1.07) 0.97 (0.88-1.07) 0.97 (0.88-1.07) 0.97 (0.88-1.07)
rs3176343 1,451 — 1.05 (0.84-1.30) 1.05 (0.84-1.30) 1.04 (0.84-1.29) 1.04 (0.84-1.29)
rs1801270 1,704 — 0.95 (0.78-1.15) 0.95 (0.78-1.15) 0.93 (0.77-1.13) 0.95 (0.79-1.15)
rs3176352 368 — 1.08 (0.97-1.20) 1.08 (0.97-1.20) 1.08 (0.97-1.20) 1.01 (0.92-1.11)
rs1059234 1,258 — 0.96 (0.79-1.16) 0.96 (0.79-1.16) 0.96 (0.79-1.17) 0.96 (0.79-1.16)
rs6457937 754 — 0.92 (0.68-1.24) 0.92 (0.68-1.24) 0.91 (0.68-1.23) 0.91 (0.68-1.23)
rs3176359 391 — 1.61 (0.72-3.56) 1.61 (0.72-3.56) 1.63 (0.73-3.61) 1.63 (0.73-3.61)
rs7767246 4,473 0.82 (0.69-0.99) 1.11 (0.98-1.25) 1.01 (0.92-1.12) 1.00 (0.91-1.11) 1.02 (0.92-1.12)

CCND3 rs2479726 — 0.92 (0.79-1.08) — 0.92 (0.79-1.08) 0.93 (0.80-1.09) 0.93 (0.80-1.09)
rs3828855 2,310 0.98 (0.76-1.25) — 0.98 (0.76-1.25) 0.97 (0.76-1.25) 0.97 (0.76-1.25)
rs3218114 1,946 — 0.98 (0.86-1.10) 0.98 (0.86-1.10) 0.97 (0.86-1.10) 0.97 (0.86-1.10)
rs3218110 157 — 1.09 (0.98-1.22) 1.09 (0.98-1.22) 1.08 (0.97-1.21) 1.08 (0.97-1.21)
rs3218108 146 0.93 (0.79-1.09) — 0.93 (0.79-1.09) 0.93 (0.79-1.10) 0.93 (0.79-1.10)
rs9529 352 0.91 (0.78-1.07) 0.93 (0.84-1.03) 0.93 (0.85-1.01) 0.93 (0.85-1.01) 0.93 (0.85-1.01)
rs2479717 2,167 — 1.00 (0.90-1.12) 1.00 (0.90-1.12) 1.02 (0.92-1.13) 1.02 (0.92-1.13)
rs3218092 1,487 — 0.98 (0.87-1.11) 0.98 (0.87-1.11) 0.97 (0.86-1.10) 0.97 (0.86-1.10)
rs1410492 1,194 — 1.06 (0.95-1.18) 1.06 (0.95-1.18) 1.06 (0.95-1.18) 1.06 (0.95-1.18)
rs3218086 2,209 1.32 (1.10-1.58) — 1.32 (1.10-1.58) 1.31 (1.09-1.57) 1.31 (1.09-1.57)
rs3218085 115 1.17 (0.63-2.17) — 1.17 (0.63-2.17) 1.18 (0.63-2.20) 1.18 (0.63-2.20)
rs9381100 1,006 0.90 (0.76-1.06) — 0.90 (0.76-1.06) 0.89 (0.75-1.05) 0.89 (0.75-1.05)

CDKN2A—B rs3731257 — — 0.89 (0.80-1.00) 0.89 (0.80-1.00) 0.89 (0.80-1.00) 0.93 (0.85-1.03)
rs3088440 1,938 — 1.08 (0.91-1.28) 1.08 (0.91-1.28) 1.00 (0.86-1.16) 1.07 (0.91-1.26)
rs11515 40 — 1.07 (0.94-1.23) 1.07 (0.94-1.23) 1.06 (0.92-1.21) 0.98 (0.87-1.10)
rs3731249 2,717 0.92 (0.62-1.35) 0.89 (0.67-1.19) 0.91 (0.72-1.14) 0.90 (0.72-1.14) 0.90 (0.72-1.14)
rs3731239 3,302 — 1.05 (0.95-1.16) 1.05 (0.95-1.16) 1.08 (0.99-1.18) 1.11 (1.02-1.20)
rs2811709 5,933 0.80 (0.64-0.99) — 0.80 (0.64-0.99) 0.79 (0.64-0.99) 0.96 (0.85-1.08)
rs4074785 1,432 — 1.09 (0.92-1.28) 1.09 (0.92-1.28) 1.08 (0.92-1.28) 1.10 (0.93-1.29)
rs3731222 2,331 — 0.96 (0.83-1.10) 0.96 (0.83-1.10) 0.96 (0.84-1.11) 0.92 (0.82-1.04)
rs3731211 2,933 — 0.98 (0.88-1.09) 0.98 (0.88-1.09) 0.97 (0.88-1.08) 0.92 (0.84-1.00)
rs7036656 3,610 0.79 (0.67-0.93) — 0.79 (0.67-0.93) 0.79 (0.67-0.92) 0.94 (0.86-1.02)
rs3731197 914 — 1.03 (0.93-1.13) 1.03 (0.93-1.13) 1.02 (0.93-1.11) 1.03 (0.93-1.13)
rs3218020 6,501 — 0.99 (0.89-1.10) 0.99 (0.89-1.10) 0.98 (0.89-1.07) 1.00 (0.91-1.09)
rs2811712 163 — 1.05 (0.90-1.22) 1.05 (0.90-1.22) 1.04 (0.89-1.21) 0.95 (0.84-1.08)
rs3218012 625 — 1.00 (0.91-1.10) 1.00 (0.91-1.10) 0.98 (0.90-1.06) 0.98 (0.89-1.08)
rs3218009 97 1.19 (0.96-1.46) 0.99 (0.86-1.14) 1.05 (0.93-1.17) 1.04 (0.93-1.17) 1.04 (0.93-1.17)
rs3218005 1,490 — 1.06 (0.91-1.25) 1.06 (0.91-1.25) 1.02 (0.88-1.18) 0.95 (0.84-1.09)
rs3217992 2,976 — 0.97 (0.88-1.08) 0.97 (0.88-1.08) 0.96 (0.87-1.05) 0.98 (0.90-1.06)
rs1063192 144 1.09 (0.94-1.25) 0.98 (0.89-1.08) 1.01 (0.94-1.10) 1.01 (0.93-1.09) 1.02 (0.94-1.10)
rs3217986 1,963 — 1.10 (0.93-1.29) 1.10 (0.93-1.29) 1.08 (0.92-1.27) 1.09 (0.92-1.28)
rs2069418 4,368 1.11 (0.97-1.28) — 1.11 (0.97-1.28) 1.13 (0.98-1.31) 1.13 (0.98-1.31)
rs575427 1,779 0.84 (0.66-1.07) — 0.84 (0.66-1.07) 0.83 (0.65-1.07) 0.91 (0.79-1.04)
rs13298881 574 0.94 (0.75-1.19) — 0.94 (0.75-1.19) 0.92 (0.73-1.17) 1.09 (0.95-1.25)
rs10811640 1,360 0.97 (0.84-1.12) — 0.97 (0.84-1.12) 0.96 (0.83-1.10) 0.99 (0.91-1.07)

CCND1 rs602652 — — 1.11 (1.01-1.23) 1.11 (1.01-1.23) 1.08 (1.00-1.17) 1.14 (1.04-1.25)
rs3862792 214 — 0.79 (0.58-1.09) 0.79 (0.58-1.09) 0.79 (0.58-1.09) 0.79 (0.58-1.09)
rs603965 54 1.01 (0.88-1.17) 1.12 (1.02-1.23) 1.09 (1.00-1.17) 1.08 (1.00-1.17) 1.08 (1.00-1.17)
rs3212879 571 — 0.91 (0.83-1.00) 0.91 (0.83-1.00) 0.93 (0.86-1.01) 0.90 (0.82-0.99)
rs649392 1,312 1.00 (0.87-1.14) — 1.00 (0.87-1.14) 0.93 (0.86-1.01) 0.92 (0.85-1.00)
rs3212891 714 — 0.90 (0.82-1.00) 0.90 (0.82-1.00) 0.93 (0.86-1.00) 0.90 (0.82-0.99)
rs678653 1,230 1.01 (0.87-1.17) 0.96 (0.87-1.06) 0.97 (0.90-1.06) 0.97 (0.90-1.06) 0.97 (0.90-1.06)
rs7178 2,293 0.83 (0.64-1.09) 1.21 (1.02-1.45) 1.08 (0.93-1.24) 1.07 (0.93-1.24) 1.07 (0.93-1.24)
rs11603541 3,343 0.90 (0.72-1.13) — 0.90 (0.72-1.13) 0.90 (0.72-1.14) 0.91 (0.72-1.14)

CCND2 rs1049606 — 1.06 (0.92-1.22) — 1.06 (0.92-1.22) 1.04 (0.94-1.15) 1.08 (0.95-1.22)
rs3217795 3,028 — 0.95 (0.80-1.12) 0.95 (0.80-1.12) 0.95 (0.80-1.12) 0.95 (0.80-1.12)
rs3217805 2,020 — 0.96 (0.87-1.06) 0.96 (0.87-1.06) 1.01 (0.92-1.11) 1.01 (0.92-1.11)
rs3217820 2,288 — 1.03 (0.93-1.14) 1.03 (0.93-1.14) 0.95 (0.87-1.05) 0.95 (0.87-1.05)
rs3217852 7,394 — 0.97 (0.87-1.09) 0.97 (0.87-1.09) 0.98 (0.88-1.10) 0.99 (0.89-1.10)
rs3217862 1,321 — 0.95 (0.83-1.08) 0.95 (0.83-1.08) 0.95 (0.84-1.08) 0.95 (0.83-1.07)
rs3217863 409 — 1.05 (0.88-1.26) 1.05 (0.88-1.26) 1.05 (0.89-1.25) 1.08 (0.91-1.28)

(Continued on the following page)
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or of a nonobvious nature were excluded for at least one
source and only one source remained (thus not requiring
allele harmonizing), and for 4 SNPs (1%), genotypes that
were clearly inconsistent or of a nonobvious nature were
excluded for all sources and not used in analyses. Thus, a
resulting 391 harmonized SNPs were merged with 516
SNPs available from only one source. One SNP (CCND3
rs1051130) was then excluded due to Hardy-Weinberg
equilibrium P < 0.001 in the SEA + MAL + STA controls,
leaving 901 SNPs included in the final analytic data set

(122 SNPs genotyped by MAY + NCO or SEA + MAL +
STA). SNPs are tallied per gene and per population in
Table 1; a complete listing of analyzed SNPs, MAFs, and
call rates is provided in Supplementary Table S1.

Statistical Analysis. We ran a series of association
analyses using observed data from each collaboration
(MAY + NCO and SEA + MAL + STA), observed data
combined across both collaborations, and imputed data.
To impute missing genotypes, we used a hidden Markov

Table 3. Cell cycle SNPs and risk of ovarian cancer (Cont’d)

Gene SNP Distance (bp) OR (95% CI)

MAY + NCO SEA + MAL + STA Combined Combined imputed:
HapMap + NIEHS

Combined imputed:
HapMap only

rs3217901 5,419 — 1.03 (0.93-1.13) 1.03 (0.93-1.13) 1.01 (0.93-1.10) 1.01 (0.93-1.10)
rs3217906 415 — 1.03 (0.92-1.14) 1.03 (0.92-1.14) 1.02 (0.92-1.14) 1.02 (0.92-1.13)
rs3217916 2,869 — 0.92 (0.83-1.02) 0.92 (0.83-1.02) 0.94 (0.85-1.04) 0.95 (0.87-1.03)
rs3217925 2,966 — 0.91 (0.81-1.01) 0.91 (0.81-1.01) 0.92 (0.83-1.01) 0.94 (0.85-1.02)
rs3217926 44 1.03 (0.89-1.20) 0.98 (0.89-1.08) 0.99 (0.92-1.08) 0.99 (0.91-1.07) 0.99 (0.91-1.07)
rs1049612 1,079 1.04 (0.90-1.20) — 1.04 (0.90-1.20) 0.99 (0.88-1.12) 1.03 (0.93-1.13)
rs3217933 238 0.95 (0.80-1.12) 1.09 (0.97-1.21) 1.04 (0.95-1.14) 1.04 (0.95-1.14) 1.04 (0.95-1.14)
rs3217936 1,952 — 0.91 (0.82-1.01) 0.91 (0.82-1.01) 0.94 (0.85-1.02) 0.94 (0.87-1.03)

CDKN1B rs3759216 — 1.05 (0.91-1.21) 1.02 (0.93-1.13) 1.03 (0.95-1.12) 1.03 (0.95-1.11) 1.02 (0.94-1.10)
rs3759217 366 1.06 (0.86-1.31) 1.14 (0.99-1.32) 1.11 (0.99-1.26) 1.11 (0.99-1.25) 1.12 (0.99-1.26)
rs34330 2,243 0.94 (0.80-1.11) 0.91 (0.81-1.02) 0.92 (0.84-1.01) 0.92 (0.84-1.01) 0.92 (0.84-1.01)
rs2066827 404 — 0.84 (0.75-0.94) 0.84 (0.75-0.94) 0.84 (0.76-0.94) 0.85 (0.77-0.94)
rs34329 2,134 1.12 (0.96-1.30) 1.00 (0.90-1.11) 1.04 (0.95-1.13) 1.03 (0.95-1.13) 1.03 (0.95-1.12)
rs3093736 68 1.07 (0.72-1.59) 0.97 (0.75-1.26) 1.00 (0.80-1.24) 0.99 (0.80-1.23) 0.99 (0.80-1.23)
rs7330 1,616 1.05 (0.91-1.21) 1.01 (0.92-1.11) 1.02 (0.94-1.10) 1.02 (0.94-1.10) 1.02 (0.94-1.11)
rs1420023 1,194 0.84 (0.68-1.05) 0.98 (0.84-1.14) 0.94 (0.83-1.06) 0.93 (0.82-1.06) 0.93 (0.82-1.06)
rs34322 3,459 0.98 (0.85-1.13) — 0.98 (0.85-1.13) 0.97 (0.84-1.12) 1.02 (0.94-1.11)

CDK2 rs2069391 — 1.16 (0.89-1.52) — 1.16 (0.89-1.52) 1.15 (0.88-1.50) 1.21 (1.02-1.43)
rs2069408 4,443 0.94 (0.80-1.09) 0.94 (0.84-1.04) 0.94 (0.86-1.02) 0.93 (0.85-1.01) 0.93 (0.85-1.01)
rs2069414 1,378 1.55 (1.18-2.04) — 1.55 (1.18-2.04) 1.58 (1.20-2.09) 1.58 (1.20-2.09)
rs1045435 461 1.17 (0.90-1.53) 1.14 (0.97-1.34) 1.15 (1.00-1.32) 1.14 (1.00-1.31) 1.14 (1.00-1.31)
rs11171710 1,918 1.06 (0.92-1.22) — 1.06 (0.92-1.22) 1.07 (0.93-1.23) 1.05 (0.95-1.17)
rs17528736 440 1.15 (0.78-1.70) — 1.15 (0.78-1.70) 1.13 (0.77-1.67) 1.23 (1.01-1.48)
rs773108 1,393 0.93 (0.80-1.08) — 0.93 (0.80-1.08) 0.92 (0.79-1.08) 0.92 (0.85-1.00)

CDK4 rs2069506 — — 0.99 (0.89-1.09) 0.99 (0.89-1.09) 1.00 (0.92-1.08) 0.99 (0.90-1.09)
rs2069502 1,811 1.02 (0.88-1.18) — 1.02 (0.88-1.18) 1.00 (0.92-1.08) 1.00 (0.89-1.12)
rs2270777 491 0.90 (0.78-1.03) 1.03 (0.93-1.13) 0.99 (0.91-1.07) 0.99 (0.91-1.07) 0.99 (0.91-1.07)
rs2072052 1,563 1.03 (0.89-1.19) — 1.03 (0.89-1.19) 1.00 (0.92-1.08) 1.03 (0.89-1.20)

RB1 rs1981434 — — 0.97 (0.87-1.08) 0.97 (0.87-1.08) 0.97 (0.88-1.08) 0.98 (0.90-1.07)
rs2854345 10,082 — 1.00 (0.89-1.12) 1.00 (0.89-1.12) 1.00 (0.88-1.12) 1.00 (0.88-1.12)
rs4151467 28,687 1.07 (0.78-1.45) — 1.07 (0.78-1.45) 1.09 (0.80-1.48) 1.09 (0.80-1.48)
rs7329938 12,056 1.08 (0.87-1.33) — 1.08 (0.87-1.33) 1.08 (0.88-1.33) 1.09 (0.88-1.35)
rs4151510 13,196 1.08 (0.88-1.34) — 1.08 (0.88-1.34) 1.08 (0.95-1.24) 1.10 (0.89-1.36)
rs399413 3,394 — 1.02 (0.91-1.14) 1.02 (0.91-1.14) 0.96 (0.88-1.06) 1.00 (0.91-1.09)
rs4151540 7,091 — 0.96 (0.86-1.07) 0.96 (0.86-1.07) 0.94 (0.85-1.03) 0.96 (0.86-1.07)
rs9568036 16,276 1.03 (0.89-1.19) — 1.03 (0.89-1.19) 1.03 (0.89-1.19) 1.00 (0.91-1.10)
rs198604 12,127 1.00 (0.84-1.17) — 1.00 (0.84-1.17) 1.00 (0.85-1.18) 0.98 (0.89-1.07)
rs4151551 1,376 1.10 (0.85-1.41) 1.06 (0.90-1.25) 1.07 (0.93-1.23) 1.06 (0.93-1.22) 1.06 (0.93-1.22)
rs2854344 12,254 0.97 (0.73-1.28) 0.81 (0.66-0.99) 0.87 (0.74-1.02) 0.88 (0.75-1.04) 0.88 (0.75-1.04)
rs425834 14,800 — 1.04 (0.80-1.36) 1.04 (0.80-1.36) 1.05 (0.81-1.37) 1.05 (0.81-1.37)
rs4151611 35,438 — 0.91 (0.72-1.14) 0.91 (0.72-1.14) 0.90 (0.71-1.13) 0.89 (0.71-1.13)
rs4151620 1,128 — 1.00 (0.85-1.17) 1.00 (0.85-1.17) 1.04 (0.90-1.20) 1.02 (0.87-1.20)
rs3092904 2,422 — 0.98 (0.87-1.10) 0.98 (0.87-1.10) 0.96 (0.86-1.07) 0.97 (0.89-1.07)
rs4151636 5,253 — 0.93 (0.74-1.17) 0.93 (0.74-1.17) 0.92 (0.73-1.16) 0.92 (0.73-1.15)
rs990814 2,843 1.00 (0.85-1.17) — 1.00 (0.85-1.17) 1.01 (0.86-1.18) 0.98 (0.90-1.08)

CDKN2D rs3218222 — — 1.02 (0.91-1.14) 1.02 (0.91-1.14) 1.01 (0.91-1.12) 1.01 (0.91-1.12)
rs1465702 1,951 — 1.10 (0.88-1.39) 1.10 (0.88-1.39) 1.05 (0.86-1.29) 1.05 (0.86-1.29)
rs1465701 210 1.15 (0.97-1.35) — 1.15 (0.97-1.35) 1.16 (0.98-1.36) 1.16 (0.98-1.36)
rs17677316 1,399 0.90 (0.76-1.06) — 0.90 (0.76-1.06) 0.89 (0.75-1.05) 0.89 (0.75-1.05)

CCNE1 rs997669 — 0.97 (0.84-1.13) 1.07 (0.97-1.18) 1.04 (0.96-1.13) 1.04 (0.96-1.13) 1.04 (0.96-1.13)
rs3218036 1,201 — 1.11 (1.00-1.23) 1.11 (1.00-1.23) 1.07 (0.98-1.17) 1.12 (1.01-1.24)
rs3218038 211 — 1.03 (0.80-1.33) 1.03 (0.80-1.33) 1.02 (0.84-1.24) 1.02 (0.79-1.32)
rs1406 9,217 0.99 (0.84-1.18) — 0.99 (0.84-1.18) 0.98 (0.89-1.08) 1.00 (0.92-1.10)
rs3218076 158 — 1.02 (0.91-1.13) 1.02 (0.91-1.13) 1.01 (0.92-1.11) 1.00 (0.92-1.10)

NOTE: Bold emphasis indicates P < 0.05.
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model as implemented in fastPHASE (39), with 25
iterations and 20 random starts of the EM algorithm.
Five runs of fastPHASE were conducted using different
random seeds. A logistic regression model was then fit to
each of the five imputed data sets for each SNP of interest
and the resulting parameter and variance estimates were
extracted. Results were combined across imputation runs
using standard multiple imputation techniques comput-
ing both the within- and between-imputation variations
(40). The use of multiple imputation methods allowed us
to estimate the variance due to imputation and incorpo-
rate this into our overall SNP variance estimates. In
general, this imputation-based variance component was
small (mean, 1.7 � 10�5). The variance component was
largest for SNPs genotyped among MAY + NCO parti-
cipants only (mean, 3.7 � 10�5), slightly smaller for SNPs
genotyped as SEA + MAL + STA only (mean, 1.3 � 10�5),
and practically equal to zero for SNPs genotyped in both
collaborations (mean, 1.1 � 10�7). Because of an observed
slightly greater MAF discrepancy between study partic-
ipants and NIEHS SNPs participants than between study
participants and HapMap participants, imputations were
also carried out excluding NIEHS SNPs data.

Associations between genotypes and ovarian cancer
risk were assessed using logistic regression to estimate
odds ratios (OR) and 95% confidence intervals (95% CI)
assuming an ordinal (log-additive) genotypic effect. For
imputation-based analyses, we modeled the observed
number of copies of the minor allele for participants with
nonmissing genotypes for a given SNP and the estimated
most likely number of copies of the minor allele for
subjects with imputed genotypes. Association tests were
two-sided, adjusted for the potential confounding effects
of age and study population (MAY, NCO, SEA,MAL, and
STA), and carried out using the SAS software system (SAS
Institute, Inc.). Adjustment of P values due to multiple
testing was not conducted because interpretation was
based on relative changes in results due to imputation.

Results

Characteristics of 5,502 study participants (2,210 cases
and 3,382 controls) are shown in Table 2. The study
populations were generally similar, although MAY
participants were older (no upper age limit had been
used), STA participants included more oral contraceptive
users, and SEA included fewer known serous cases.
Using observed data only, four SNPs were associated
with risk of invasive ovarian cancer at P < 0.01 (Fig. 2):
CCND3 rs3218086 (MAY + NCO; increased risk),
CDKN2A-CDKN2B rs7036656 (MAY + NCO; decreased
risk), CDKN1B rs2066827 (SEA + MAL + STA; decreased
risk), and CDK2 rs2069414 (MAY + NCO; increased risk;
Table 3). Risk was associated at P < 0.05 with two
additional SNPs in the MAY + NCO population
(CDKN1A rs7767246 and CDKN2A-CDKN2B rs2811709,
both decreased risk) and seven additional SNPs in SEA +
MAL + STA (CDKN2A-CDKN2B rs3731257, decreased
risk; CCND1 rs602652, rs603695, and rs7178, increased
risk; CCND1 rs321891, decreased risk; CCNE1 rs3218036,
increased risk; and RB1 rs2854344, decreased risk;
Table 3; refs. 17, 27). No SNPs typed in both populations
were significant in combined analysis without reaching
significance in one of the study populations. Of four

SNPs typed in both populations and significant in only
one population, two yielded ORs in opposite directions
for null combined ORs (CDKN1A rs7767246 and CCND1
rs7178) and two were significant (P < 0.05) only in the
larger SEA + MAL + STA study (when combined,
CCND1 rs603965 remained at P < 0.05 whereas RB1
rs2854344 lost significance).

On the whole, imputed results did not differ from
results of combined analysis of observed data; P values
increased by a mean of 0.001 using HapMap + NIEHS
and decreased by a mean of 0.001 using HapMap only.
For SNPs genotyped in both collaborations, the effect
of imputation on results was minimal because only those
participants that failed genotyping were affected. For
SNPs genotyped in only one collaboration, use of only
HapMap led to slightly greater discrepancy between
observed and imputed P values, more often leading to
greater significance, than use of HapMap + NIEHS,
which varied P values to a lesser degree (Supplementary
Fig. S1). For SNPs selected using NIEHS and HapMap,
genotyped in SEA + MAL + STA, and imputed for
MAY + NCO samples, P values from imputation-based
analysis increased by a mean of 0.004 using NIEHS +
HapMap and a mean of 0.01 using HapMap only. For
SNPs selected using HapMap, genotyped in MAY +
NCO, and imputed for SEA + MAL + STA samples,
P values decreased by a mean of 0.01 using NIEHS +
HapMap and a mean of 0.03 using HapMap only. Thus,
the largest overall difference in results occurred when
imputation took place on the largest number of samples
(SEA + MAL + STA), and generally results became more
significant. For example, the OR for CDK2 rs2069414
increased from 1.55 (95% CI, 1.18-2.04; P = 0.002) in
MAY + NCO to an imputed OR of 1.58 (95% CI, 1.20-2.09;
P = 0.001), and the OR for CCND1 rs649392 decreased
from 1.00 (95% CI, 0.87-1.14; P = 0.95) in MAY + NCO
to an imputed OR of 0.92 (95% CI, 0.85-1.00; P = 0.05;
Table 3). In addition, two correlated CDK2 SNPs,
rs2069391 and rs17528736 (MAY + NCO controls,
r2 = 0.38; CEU, r2 = 0.56), became significant at
P < 0.05 when imputed with HapMap data; the OR
for rs17528736 increased from 1.15 (95% CI, 0.78-1.70;
P = 0.48) in MAY + NCO to an imputed OR of 1.23 (95%
CI, 1.01-1.48; P = 0.04). Both of these SNPs are
uncorrelated with CDK2 rs2069414 (r2 values <0.01 in
MAY + NCO and HapMap) indicative of independent
associations. These results suggest that additional risk
alleles in the SEA + MAL + STA population were
correlated with genotyped SNPs in MAY + NCO and
imputation increased power to detect associations.

Novel SNPs of interest also came to light with im-
putation of MAY +NCOdata, notably CDKN2A-CDKN2B
rs3731239, which increased from an OR of 1.05 (95%
CI, 0.95-1.16; P = 0.31) to an OR of 1.11 (95% CI, 1.02-1.20
P = 0.02) using HapMap, and CCND1 rs602652, which
increased from an OR of 1.11 (95% CI, 1.01-1.23; P = 0.03)
to an OR of 1.14 (95% CI, 1.04-1.25; P = 0.001) using
HapMap (Fig. 2). Additional SNPs in CCND1, CDKN2A-
CDKN2B, CDK2 , and CCNE1 became more significant
withHapMap-based imputation inMAY +NCO although
point estimates remained similar (Table 3; Fig. 2). As
above, these results suggest that additional risk alleles in
the MAY + NCO population were correlated with
genotyped SNPs in SEA + MAL + STA and imputation
increased power to detect associations.
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CCND1 results warrant particular attention. Linkage
disequilibrium patterns were similar across populations
(Supplementary Fig. S2). Using NIEHS SNPs data (the
study with maximal coverage of the nine SNPs genotyped
by either MAY + NCO or SEA + MAL + STA), there was
strong correlation between rs3212879, rs649392, and
rs3212891 (r2 values >0.86), rs602652 (r2 values >0.75),
and rs603965 (r2 values >0.64). Combined analysis of
observed study participant data yielded three P values
<0.05; two resulted from SEA + MAL + STA data alone
and one used data from MAY + NCO as well. Use of
imputation with study participant and HapMap data
increased the number of significant results from three to
five P values <0.05, although HapMap did not genotype
two of these SNPs (rs602652 and insertion/deletion
polymorphism rs321879; Supplementary Table S1). These
findings remind us that the underlying haplotype
structure used to impute genotypes relies on all available
data, here, a total of 20 SNPSwith data fromMAY +NCO,
SEA + MAL + STA, or HapMap. An additional 39 SNPs
were covered by NIEHS SNPs; inclusion of these data
attenuated ORs and resulted in only one P value <0.05
(rs603965). Whether these results are closer to the truth,
given that NIEHS SNPs participants were only presumed
to be White non-Hispanic, remains to be verified by
additional genotyping and fine-mapping.

In summary, our imputation-based analysis of SNPs in
key cell cycle genes did not reveal novel SNPs worthy of
follow-up in CDKN2C, CDKN1A, CCND3, CCND2,
CDKN1B, CDK4, RB1, or CDKN2D, but suggested a
handful of SNPs inCDKN2A-CDKN2B (rs3731239),CCND1
(the correlated SNPs rs602652, rs3212879, rs649392, and
rs3212891), CDK2 (rs2069414 and the correlated SNPs
rs17528736 and rs2069391), and CCNE1 (rs3218036), which
merit genotyping in the unassayed sample populations.

Discussion

Here, we report on analysis of 2,120 invasive ovarian
cancer cases and 3,382 controls of White non-Hispanic
ethnicity successfully genotyped on up to 122 SNPs but
only 24 SNPs with maximally genotyped participants.
Using data on 901 regional SNPs genotyped in study,
HapMap or NIEHS SNPs participants, we applied a
hidden Markov model to estimate underlying haplotypes
and imputed missing genotypes among study partic-
ipants. Analysis of imputation-based data revealed
additional evidence of association with risk of ovarian
cancer for SNPs in several genes. In particular, we find
that additional genotyping is warranted in the genes
encoding p16 and p15 (CDKN2A-CDKN2B), shown to
be overexpressed and methylated in ovarian cancer,
respectively (1, 41); cyclin D1 (CCND1), shown to be
abnormally expressed in ovarian cancer (42); CDK2
(CDK2), shown to inhibit G1 arrest in ovarian cancer
cells (43); and cyclin E1 (CCNE1), which is overexpressed
in ovarian cancer (15). Several of the SNPs associated
with ovarian cancer risk here have been studied in
relation to risk of breast, prostate, lung, bladder, and oral
cancers (5-11). Of particular interest is a SNP in the region
of CDKN2A-CDKN1B rs3731239 that was found to be
associated with decreased breast cancer risk (6) and
shows a protective association in the current analysis.

Our combined, imputation-based analysis strengthens
existing interrogations inwhich tagging SNPs are typed in

one collaboration and themost suggestive single SNPs are
brought to a consortium for replication. For example,
based on results from the SEA +MAL + STA collaboration
alone, four of the currently assessed SNPswere genotyped
inmore than 3,500 cases and 5,700 controls by the Ovarian
Cancer Association Consortium (CCND1 rs7178 and
rs603965, CDKN1B rs2066827, and CDKN2A-CDKN2B
rs3731257), and CDKN1B rs2066827 and CDKN2A-
CDKN2B rs3731257 remained associated (17). More
recently, one of the RB1 SNPs genotyped in SEA + MAL
+ STA (rs2854344) was assessed by the Ovarian Cancer
Association Consortium using more than 4,600 cases and
8,100 controls and found to replicate, despite null results
in MAY +NCO; another SNP in CDKN2A (rs2811712) did
not replicate (18). Combining multiple tagging SNP
studies using imputation when necessary will assist
preliminary candidate gene studies by (a) improving
power of ‘‘phase I’’ analyses and (b) highlighting specific
SNPs to do ‘‘fill-in’’ genotyping before consortium
genotyping. Here, data suggest additional SNPs to
interrogate in MAY + NCO or SEA + MAL + STA study
populations for maximal discriminatory power before
selection of SNPs in future large-scale genotyping efforts.

These analyses have the potential strengths of theo-
retically improved sample size at no additional genotyp-
ing cost. However, several caveats are warranted. As
with non–imputation-based analysis, the benefit of
larger sample size may increase the potential for study
heterogeneity. In addition, analyses make similar
assumptions as in tagging SNP selection including that
the populations used to estimate underlying haplotypes
are similar to study populations of interest, an assump-
tion which is not always testable. In the current analysis,
ethnicity of NIEHS SNPs participants was genetically
inferred, which may be particularly problematic. Here,
we also assumed that linkage disequilibrium is similar
among cases and controls and across all studies.
Analyses also assume that the densely typed population
is of sufficient sample size. Violation of these assump-
tions can impair inference of results. Finally, it is worth
noting that merging genotype data across multiple
studies and publicly available data requires great effort
to harmonize alleles; a conservative approach excluding
genotypes that are not easily combined is recommended.

We make modest suggestions for future imputation-
based analysis. Imputation of genotypes has typically
relied on single imputation; however, this approach
ignores the variation in estimation due to the imputation.
An accepted alternative is the use of multiple imputation,
in which a number of ‘‘imputed’’ data sets are created
and then analyzed using standard statistical methods
and models (40, 44-47) allowing one to estimate the
amount of variation attributable to the imputation
procedure. In general, the imputation variance compo-
nents for our study were small. The tool that we used
(fastPHASE) only provides the ‘‘most likely genotype’’ as
the imputed value. Multiple imputation based on this
most likely genotype may not capture the total amount
of variation due to imputation (i.e., if the posterior
probability is large for a particular genotype, one would
not see as much variation in most likely genotype due to
imputation). Allowing for imputation of a quantitative
value, such as an allele ‘‘dosage’’ variable with possible
values ranging from 0 to 2, may better capture the
variation due to imputation. In the current analyses, use
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of HapMap data only (without NIEHS SNPs data)
strengthened many associations, suggesting that either
(a) the NIEHS SNPs samples were not appropriate to use
as reference (if associations are true) or (b) the NIEHS
SNPs samples provided increased power to discriminate
true from false associations (if associations are false).
Additional genotyping is under way to examine the
accuracy of imputed genotypes and the consistency of
ovarian cancer association signals in CDKN2A-CDKN2B,
CCND1, CDK2 , and CCNE1 seen with imputed data.
Although developed primarily for genome-wide associa-
tion studies, we conclude that pooling genotypes and
using imputation techniques may also strengthen our
understanding of key candidate ovarian cancer pathways.
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