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Abstract. Any single-hidden-layer feedforward network based on Gaussian or asymp-
totically constant odd or even rational non-polynomial activation functions has the
same property as such networks based on hyperbolic tangent: input-output function
determines weights and biases up to a permutation of the hidden units and sign-flips.

1 Introduction

In recent years, capabilities of feedforward neural networks to approximate arbitrary
continuous or measurable functions have been intensively studied. Extending previ-
ous results for sigmoidals (e.g., Cybenko (1989) and Hornik et al. (1989)), Mhaskar
and Micchelli (1992) and Leshno et al. (1993) showed that the continuous activation
functions, which guarantee the universal approximation property for one-hidden-layer
networks, are exactly the non-polynomial functions (provided that mild conditions
hold). Using more than one hidden layer, one can allow any smooth non-linearity, so
polynomials of degree at least two also give rise to universal approximation in this
multilayer case (Kreinovich, 1991). Hence, theoretically there are many possible ac-
tivation functions. However, for all of them, the number of hidden units must grow
with the required accuracy.

Hecht-Nielsen (1990) proposed studying weight vectors which determine the same
input-output functions. His idea was that by choosing a single network parameter-
ization for each of the possible I/O functions, it would be possible to improve the
performance of training algorithms. Sussmann (1992) and Chen et al. (1993) have
shown that in the case of one-hidden-layer networks with hyperbolic tangent as ac-
tivation function, the network parameterization is determined uniquely up to a per-
mutation of hidden units and sign flips. Albertini and Sontag (1993) extended this
result to infinitely differentiable functions f with the properties f(0) = 0, f ′(0) 6= 0
and f ′′(0) = 0. Kůrková and Kainen (1993) showed that for asymptotically constant
activation functions, the problem of uniqueness is independent of the input dimension.
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Moreover, they showed that uniqueness holds when the activation function satisfies
two basic properties, being neither “self-affine” nor “affinely recursive”.

This paper extends uniqueness results to other activations, like Gaussian and cer-
tain rational functions such as 1/(1+x2). For the rational function case, our argument
involves analytic continuation. It is further shown that networks with polynomial ac-
tivation functions allow non-unique parameterization. Section 2 has definitions and
tools, main results are in the third section with proofs in section 4.

2 Uniqueness and sign-uniqueness

Any function s : R → R is called an activation function. The most widely used
activation function is the logistic sigmoid s(y) = 1/(1 + exp(−y)) which is affinely
equivalent to hyperbolic tangent: tanh(y) = 2s(2y − 1). Other activation functions
which are currently used include polynomials, exponentials, Gaussian and rational.
See, e.g., Hecht-Nielsen (1990), Kosko (1992).

For n a positive integer, a function f : Rn → R is representable by a one-hidden-
layer neural network (with s as activation function) if

f(x1, . . . , xn) =
K∑

k=1

βks(
n∑

i=1

wkixi + bk) + t

for some positive integer K, and real numbers βk, wki, bk, and t, where 1 ≤ k ≤ K
and 1 ≤ i ≤ n.

The tuple w = (K, β1, . . . , βK , w11, w12, . . . , w1n, w21, . . . , wK1, . . . , wKn, b1, . . . , bK , t),
is called the network parameterization. For every k from 1 to K, call βk the output
weight, wk = (wk1, . . . , wkn) the input weight vector and bk the bias. The function f
is called the input-output (or I/O) function of the network.

Two network parameterizations are called functionally equivalent if they induce
the same I/O function. In particular, simply permuting units in the hidden layer pro-
duces functionally equivalent parameterizations. We call this more restrictive notion
interchange equivalence.

A network parameterization is reduced if the following two conditions are true:
for every k, βk 6= 0 and wk 6= 0; different units in a hidden layer have different
parameterizations (i.e., if k 6= k′, then wk 6= wk′). The reader can easily verify the
following:

Proposition 1. Every network parameterization is functionally equivalent to a reduced
network parameterization.

A network parameterizaton is sign-reduced if for every hidden unit the first non-
zero entry of the input weight vector is positive. Recall that a function f is odd (resp.
even) if f(−t) = −f(t) (resp. f(−t) = f(t)). It is easy to check the following:

Proposition 2. If the activation function is odd or even, then every network param-
eterization is functionally equivalent to a sign-reduced network parameterization.
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An activation function has the uniqueness property if for the set of reduced network
parameterizations, functional equivalence and interchange equivalence coincide. If the
activation is also either even or odd, then it has the sign-uniqueness property if for the
set of sign-reduced network parameterizations, functional and interchange equivalence
coincide.

An activation function s that has finite limits at +∞ and −∞ is called asymptot-
ically constant. The following result was proved by Kůrková and Kainen (1993) using
a careful analysis of the affine geometry.

Theorem 1. If an activation function is asymptotically constant and does not have the
uniqueness (sign-uniqueness) property, then uniqueness (sign-uniqueness) is violated
by single-input networks.

Recall that the Gaussian function is exp(−x2) and that a rational function is the
ratio of two polynomials. Note that a rational function f/g is asymptotically constant
if and only if deg(f) ≤ deg(g).

3 Main results

Intuitively, an activation function has the uniqueness property if its graph cannot be
expressed as a sum of copies of itself which have been shifted and rescaled horizontally
and vertically. But proving uniqueness or non-uniqueness for specific functions may
require powerful techniques.

Theorem 2. The Gaussian function has the sign-uniqueness property.

Theorem 3. An even or odd, asymptotically constant, non-polynomial rational acti-
vation function has the sign-uniqueness property.

These results show that important activation functions do have the sign-uniqueness
property. However, there are other natural activation functions, like the ramp sigmoid,
which do not have sign-uniqueness. If ρ is the ramp sigmoid, defined by ρ(t) = t
for t ∈ [−1

2
, 1

2
] and constant outside the interval, then the reader can check that

ρ(t) = 1
2
(ρ(2t− 1

2
) + ρ(2t + 1

2
)) so sign-uniqueness is violated.

The exponential function s(y) = exp(y) also does not have the uniqueness property
since there are two functionally equivalent but not interchange equivalent single input,
single hidden unit networks, with the exponential activation function. For example,
take both to have input weight 1, where the first has bias 1 and output weight 1
while the second has bias 0 and output weight e. Similarly, the reader can check
that standard trigonometric formulas show that sine and cosine don’t have the sign-
uniqueness property.

The same result holds for polynomials.

Theorem 4. Polynomial functions do not have the uniqueness property; even or odd
polynomial functions do not have the sign-uniqueness property.
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Uniqueness enables easy description of “canonical” parameterizations since any
network parameterization is plainly interchange equivalent to one with the param-
eter vectors in lexicographic order; see, e.g., Kůrková and Kainen (1993). This is
important for learning because the search need only consider the canonical network
parameterizations. Algorithms based on gradient descent cannot be restricted to such
syntactically defined subsets as lexicographically ordered vectors, but other learning
methods (e.g., genetic) may be able to take advantage of the reduced set of network
parameterizations.

Fast learning is not the only possible criterion for choosing an activation function.
For example, polynomial activations do not satisfy the uniqueness property. However,
once the weights are chosen, the resulting network uses only addition and multipli-
cation to compute y from the xi and thus could be faster than a standard network
that uses the logistic sigmoid 1/(1 + exp(−y)). So if we are interested in computa-
tional complexity of the resulting neural network and not in the learning time, then
polynomial units might be acceptable in spite of their non-uniqueness. A general op-
timization approach to choosing an activation function was described by Kreinovich
and Quintana (1991).

4 Proofs

Proof of Theorem 2.
Since Gaussian is asymptotically constant, by Theorem 1, if sign-uniqueness is

violated, it must be violated by single-input networks. Thus, by Proposition 2, we
need to prove that whenever for all x, the following equality holds for two sign-reduced
parameterizations w,w′

K∑

k=1

βks(wk1x + bk) + t =
K′∑

k=1

β′ks(w
′
k1x + b′k) + t′, (1)

then K must equal K ′ and w′ is obtained from w by a permutation.
Let w, w′ be sign-reduced parameterizations satisfying (1). Since the parameter-

izations are sign-reduced, for all k, wk1 6= 0 and w′
k1 6= 0. Hence, taking the limit as

x →∞, we get t = t′ and thus

K∑

k=1

βk exp(−(wk1x + bk)
2) =

K′∑

k=1

β′k exp(−(w′
k1x + b′k)

2). (2)

By reordering the hidden units and, if necessary, interchanging the two sides of
(1), without loss of generality, we can assume that the following hold: (i) for all
k, 1 ≤ k ≤ K, w11 ≤ wk1 and if w11 = wk1, then b1 < bk (ii) for all k, 1 ≤ k ≤ K ′,
w11 ≤ w′

k1 and if w11 = w′
k1, then b1 < b′k.

Next we prove that there exists k, 1 ≤ k ≤ K ′, for which w′
k1 = w11 and b′k = b1.

We use the fundamental properties of the exponential function.
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Multiply both sides of (2) by exp((w11x + b1)
2), getting

K∑

k=1

βk exp(−(wk1x+bk)
2+(w11x+b1)

2) =
K′∑

k=1

β′k exp(−(w′
k1x+b′k)

2+(w11x+b1)
2). (3)

As x → ∞, since exp(0) = 1, the first term of the left-hand side of (3) tends to
β1 6= 0, while an easy calculation, using (i), shows that the other terms all tend to 0
so the limit of the left-hand side of (3) is non-zero.

If on the the right-hand side of (3) there were no k with w′
k1 = w11 and b′k = b1,

then, using (ii), all the terms on this side would tend to 0 as x → ∞, and so such k
exists.

The limit of the corresponding term is β′k so β1 = β′k. Therefore, we can subtract
the corresponding terms from both sides of (2) resulting in a similar equality but with
K − 1 units in the left-hand side. Repeating the same procedure shows that K = K ′

and the two parameterizations w and w′ correspond up to a permutation. 2

Proof of Theorem 3.
Let w, w′ be sign-reduced parameterizations satisfying (1). By Theorem 1 and

Proposition 2, it suffices (as before) to show that K = K ′ and that w′ is obtained from
w by a permutation. We prove this by contradiction.

If there is no such permutation, then one can rewrite (1) in the form

J∑

j=0

cjs(ajx + bj) + c = 0 (4)

where at least one aj > 0 (since s is odd or even) and cj 6= 0 (0 ≤ j ≤ J) and c. In
this equation, all the pairs (aj, bj) are different.

Similarly to the proof of Theorem 2, take j so that aj is the smallest of the positive
numbers aj and if there are several such j, choose the (unique) integer with bj smallest
possible. By permuting terms in (4), we may assume without loss of generality that
j = 0.

Hence,

s(a0x + b0) =
J∑

j=1

Cjs(ajx + bj) + C, (5)

where Cj = cj/(−c0) and C = c/(−c0).
To simplify this equation further, put y = a0x + b0, Aj = aj/a0 and Bj = bj −

ajb0/a0. Then reinterpreting (5),

s(y) =
J∑

j=1

Cjs(Ajy + Bj) + C. (6)

Since 0 < a0 ≤ aj, Aj = aj/a0 ≥ 1. Further, if Aj = 1, then Bj > 0.
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Since s(y) is a rational activation function, it can be extended to a complex rational
function s(z). Such a rational function of a complex variable is representable as a finite
sum (see, e.g., [Flanigan 1983]):

s(z) = P (z) +
∑

k,l

ckl

(z − zk)l
. (7)

where the zk are complex numbers, called poles, and P (z) is a polynomial. The poles
can be characterized as complex values z for which s(z) = ∞. Further, if z is a pole,
so is z∗ (the complex conjugate).

It is now easy to check that since s is an even or odd activation function, s(z) must
have a pole with positive imaginary part. That is, there exists zk such that =zk > 0.

¿From all such poles, let us find a pole with the largest possible value of =zk. If
there are several such poles, pick one among them for which the real part <zk is the
largest possible; in other words, a pole for which the tuple (=zk,<zk) is the largest
possible in the sense of the lexicographic ordering. Denote this pole by zp.

By uniqueness of analytic continuation, s(z) satisfies

s(z) =
J∑

j=1

Cjs(Ajz + Bj) + C. (8)

By (8) and the characterization of poles, there exists j, 1 ≤ j ≤ J , such that
Ajzp + Bj is also a pole, say zq. If Aj > 1, then =zq > =zp while if Aj = 1, then
Bj > 0 so <zq > <zp. This contradicts the maximality of zp with respect to the
lexicographic order. 2

Proof of Theorem 4.
Let us denote the degree of the polynomial P (y) by d. Then, P (y) = a0 + a1y +

. . . + ady
d for some aj. Let us take an arbitrary positive real number α, and form

∆P (y) = P (y+α)−P (y). Substituting the above expression for P (y) into the formula
for ∆P (y), we can easily see that terms of power d cancel each other, and therefore,
∆P (y) is a polynomial of degree ≤ d − 1. If we apply the same operation ∆ to this
polynomial ∆P (y), we will get a polynomial ∆2P (y) = ∆P (y + α) − ∆P (y) whose
degree is ≤ d− 2. After repeating this procedure d times, we get ∆dP (y) =const, and
thus ∆d+1P (y) = 0.

One can easily check by induction that

∆jP (y) =
j∑

k=0

(−1)kCj
kP (y + (j − k)α),

where Cj
k denotes binomial coefficients. In particular,

∆d+1P (y) =
d+1∑

k=0

(−1)kCd+1
k P (y + (d + 1− k)α).
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Therefore, from ∆d+1P (y) = 0, one can conclude that

−P (y) =
d+1∑

k=1

(−1)kCd+1
k P (y + (d + 1− k)α).

Hence, uniqueness is violated for n = 1, w = (K = 1, β1 = −1, w11 = 1, b1 = 0, t =
0), and w′ = (K ′ = d + 1, β′k = (−1)kCd+1

d+1−k, w
′
k1 = 1, b′k = (d + 1− k)α, t′ = 0). 2

Acknowledgments

This research was supported by NSF grant No. CDA-9015006, and a Research
Opportunity Award (for O.S.).

References

Albertini F., Sontag E.D. (1993). For neural networks, functions determines form,
Neural Networks 6(7), 975-990.

Chen A.M., Lu, H., Hecht-Nielsen R. (1993). On the geometry of feedforward neural
network error spaces. Neural Computation 5 (6).

Cybenko G. (1989). Approximation by superpositions of a sigmoidal function, Ma-
thematics of Control, Signals and Systems 2, 303–314.

Flanigan F. J. (1983). Complex variables: harmonic and analytic functions, Dover,
N.Y..

Hecht-Nielsen R. (1990). Neurocomputing. Addison-Wesley, Reading, MA.

Hecht-Nielsen R. (1990). On the algebraic structure of feedforward network weight
spaces. In Advanced Neural Computers (pp.129 –135), Elsevier.

Hornik K., Stinchcombe M., White H. (1989). Multilayer feedforward networks are
universal approximators, Neural Networks 2, 359–366.

Kosko B. (1992). Neural networks and fuzzy systems. Prentice Hall, Englewood
Cliffs, NJ.

Kreinovich V. (1991). Arbitrary nonlinearity is sufficient to present all functions by
neural networks: a theorem. Neural Networks 4, 381–383.

Kreinovich V., Quintana C. (1991). Neural networks: what non-linearity to choose?
In Proceedings of the 4th University of New Brunswick Artificial Intelligence
Workshop(pp. 627–637). Fredericton, N.B., Canada.

7



Kreinovich V., Sirisaengtaksin O. (1992). 3-layer neural networks are universal ap-
proximators for functionals and for control strategies, University of Texas at El
Paso, Computer Science Department, Technical Report UTEP-CS-92-27.
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