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Abstract: Ellipticine is a DNA-damaging agent acting as a prodrug whose 

pharmacological efficiencies and genotoxic side effects are dictated by activation with 

cytochrome P450 (CYP). Over the last decade we have gained extensive experience in 

using pure enzymes and various animal models that helped to identify CYPs metabolizing 

ellipticine. In this review we focus on comparison between the in vitro and in vivo  

studies and show a necessity of both approaches to obtain valid information on CYP 

enzymes contributing to ellipticine metabolism. Discrepancies were found between the 

CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating 

covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine 

in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on 

expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of 

CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding 

showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by 
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CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by 

CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to 

ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological 

effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by 

expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these 

enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked  

out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) 

extrapolation from in vitro data to the situation in vivo is not always possible, confirming 

the need for these animal models. 

Keywords: anticancer drug ellipticine; cytochrome P450 mediated DNA-damage;  

covalent DNA adducts; enzymes metabolizing ellipticine in vitro and in vivo 

 

1. Introduction 

A plant alkaloid ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole, Figure 1) found in several 

Apocynaceae plants and its derivatives are efficient anticancer compounds that function through 

multiple mechanisms participating in cell cycle arrest and the initiation of apoptosis (for a summary 

see: [1–6]). Ellipticine was found (I) to arrest cell cycle progression due to modulation of levels of 

cyclinB1 and Cdc2, and phosphorylation of Cdc2 in human mammary adenocarcinoma MCF-7 cells [7]; 

(II) to initiate apoptosis by several mechanisms such as formation of reactive oxygen species  

(ROS) inducing DNA damage, the activation of mitogen-activated protein kinases (MAPKs), release 

of cytochrome c and apoptosis-inducing factor (AIF) from the mitochondrial membrane, caspase 

activation as well as a caspase-independent pathway [8,9], triggering of Fas/Fas ligand pathway  

and modulation of proteins of the Bcl-2 family in several tumor cell lines [10]; (III) to disrupt 

mitochondrial function and (IV) to cause the apoptotic signaling that is amplified by cross-talk between 

the Fas death receptor and the mitochondrial apoptotic pathway (for a summary see: [3,4,7–10]). 

 

Figure 1. Ellipticine. Numbers 1–11 indicate locations of carbon and nitrogen atoms in the 

ellipticine molecule. 

Several studies also demonstrated that the p53 tumor suppressor protein is involved in  

ellipticine-mediated induction of cell cycle arrest and apoptosis [9–20]. Ellipticine inhibits p53 protein 

phosphorylation by a selective inhibition of CDK2 kinase in Lewis lung carcinoma and the human 

colon cancer cell line SW480 [11], and this effect on p53 correlated with cytotoxic activity of 

ellipticine [11]. Treatment of Saos 2 cells transfected with mutant p53 with ellipticine restored the 
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transactivation function of p53, resulting in the induction of p53-responsive p21Waf1 and MDM2 genes 

at protein levels and activation of a p53-responsive luciferase reporter [15]. The results found in the 

study of Sugikawa and coworkers [15] indicate that ellipticine induces a shift of mutant p53 

conformation towards wild-type and this activity is not caused by its function as an inhibitor of 

topoisomerase II, which is one of the DNA-damaging effects of ellipticine (for a summary see [1–6]). 

More importantly, ellipticine can even activate mutant p53 and induces p21Waf1 and MDM2 gene 

expression in vivo, in nude mouse tumor xenografts [16]. Moreover, Wang et al. [19] demonstrate that 

in mutant-p53 lymphoma cells, ellipticine-mediated reactivation of mutant p53 sensitizes these cells to 

treatment with further DNA-damaging drugs (i.e., doxorubicin). 

Ellipticine elevated the nuclear localization of endogenous p53 and exogenous mutant p53 in 

HCT116 colon cancer cells leading to transactivation of the p21 promoter. Nuclear localization of p53 

is frequently the consequence of a genotoxic stress by compounds inducing DNA damage  

(i.e., inhibitors of topoisomerase II) [21]. The ellipticine-mediated abundance of nuclear p53 was not 

associated with an increase in DNA double strand breaks. Therefore, this effect of ellipticine seems not 

to be dependent on the mechanism mediated by topoisomerase II inhibition, but on another genotoxic 

stress [22]. Further, ellipticine induced nuclear translocalization of p53 and of the serine/threonine 

kinase Akt (an enzyme providing a survival signal protecting cells from stress-induced apoptosis) and 

recruitment of autophagosomes in human non-small cell lung cancer (NSCLC) epithelial cells A549 [18]. 

Akt-related cell death also occurred in p53-deficient cells with stable expression of exogenous p53. 

Hence, as a DNA-damaging agent, ellipticine is a regulator in autophagy-related cell death by 

cooperation of p53 and Akt [18]. Ellipticine also activates the p53 pathway in glioblastoma cells;  

its impact on these cancer cells depends on the p53 status [14]. In a U87MG glioblastoma cell line 

expressing wild-type p53, ellipticine provoked an early G0/G1 cell cycle arrest, whereas in a U373 cell 

line expressing a p53 mutant it induced arrest in S and G2/M phases of the cell cycle [14]. 

All studies investigating the mechanism of ellipticine antitumor action indicate complex pathways 

leading to cancer cell death by this drug. Chemotherapy-induced cell cycle arrest and induction of 

apoptosis were shown to frequently result from DNA damage caused by exposure to a variety of 

chemotherapeutics including ellipticine. In addition, genotoxic stress as a result of multiple  

DNA-damage increases levels of nuclear p53 [21,22], the tumor suppressor protein shown to be 

involved in ellipticine-mediated induction of cell cycle arrest and apoptosis [10–16]. These findings 

suggest that DNA damage by ellipticine is crucial for its cytotoxic effects. 

2. DNA-Damaging Mechanisms of Ellipticine Cytotoxicity to Cancer Cells 

The most important DNA-damaging mechanisms of ellipticine were considered to be intercalation 

into DNA [5,23–26] and inhibition of DNA topoisomerase II activity [5,27,28]. Recently, Andrews 

and co-workers [29] demonstrated, however, that ellipticine and some of its derivatives are potent and 

specific inhibitors of RNA polymerase I (Pol-I) transcription and that this Pol-I inhibition occurs by  

a p53- and topoisomerase II-independent mechanism. They found that the drug influences the 

assembly and stability of preinitiation complexes by targeting the interaction between promoter 

recognition essential transcription factor SL1 and the rRNA promoter. In addition, Ghosh et al. [30] 

showed that along with DNA intercalation and/or topoisomerase II inhibition, interaction with the 
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telomeric DNA region and the resultant inhibition of telomerase activity might be an additional mode 

of action of ellipticine. Moreover, we showed that this antitumor agent also causes damage to the 

structural integrity of DNA through covalent binding, by forming covalent DNA adducts after its 

enzymatic activation with cytochrome P450 (CYP) or peroxidases [1–4,31–40]. Cytotoxicity of 

ellipticine in cells of several cancer lines sensitive to this drug such as HL-60 promyelocytic leukemia, 

T-cell leukemia CCRF-CEM, glioblastoma U87MG, neuroblastoma UKF-NB-3 and UKF-NB-4, 

thyroid cancer BHT-101, B-CPAP and 8505-C and breast adenocarcinoma MCF-7 corresponded to 

levels of ellipticine-derived DNA adducts generated after its enzymatic activation in most of these cell 

lines [41]. This indicates that covalent binding to DNA of reactive species generated by enzymatic 

bioactivation of ellipticine is one of the most important mechanisms responsible for ellipticine 

cytotoxicity in these cancer cells. The formation of ellipticine-DNA adducts ultimately forces cancer 

cells to initiate cell death signaling [9]. Based on these results, we suggest that ellipticine acts as a 

prodrug, which is metabolically activated to reactive species forming covalent DNA adducts causing 

genotoxic stress. Therefore, information on which enzymes are involved in the metabolism of 

ellipticine is critical to identify the pharmacological effects of ellipticine. Several in vitro and in vivo 

approaches have been developed to study the role of specific CYP and peroxidase enzymes in 

ellipticine metabolism. 

Over the past 10 years we have gained extensive experience in using the pure enzymes and the 

various animal models to study the ellipticine metabolism. During these studies, ellipticine was found 

to be oxidized by CYP and peroxidase enzymes to both electrophilic species forming covalent DNA 

adducts detected by 32P-postlabeling (Figure 2) and to detoxification metabolites [1–4,32–40,42–51]. 

Moreover, we characterized the reactions leading to their formation. 

 

 

Figure 2. Autoradiographs of thin layer chromatography (TLC) maps of 32P-labeled 

digests of calf thymus DNA reacted with ellipticine activated by hepatic microsomes from 

wild-type (WT) mice (A), with those from Hepatic Cytochrome P450 Reductase Null 

(HRN) mice pre-treated with benzo[a]pyrene (BaP) (B), from calf thymus DNA reacted 

with 13-hydroxyellipticine (C) [31] or 12-hydroxyellipticine (D) [32] of DNA from livers 

of WT (E) and HRN (F) mice treated intraperitoneally (i.p.) with 10 mg ellipticine/kg body 

weight [48] and of DNA from liver of Wistar rats treated i.p. with 40 mg ellipticine per 

kilogram body weight (G) [33,37]. Analyses were performed by the nuclease P1 version of 

the 32P-postlabeling assay. Adduct spots 1–7 and A correspond to the ellipticine-derived 

DNA adducts. Besides adduct 2, another strong adduct (spot X in panel D), which was not 

found in any other activation systems or in vivo was generated by 12-hydroxyellipticine. 

In this review we focus on comparison between the data found in the in vitro and in vivo studies 

investigating ellipticine metabolism and show a necessity of both approaches to obtain valid 

information on CYP enzymes participating in this process. 
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3. Metabolism of Ellipticine by Cytochromes P450 (CYPs), Peroxidases and Conjugation 

Enzymes in Vitro 

Utilizing numerous in vitro systems such as subcellular microsomal fractions and cells in culture 

expressing CYPs, isolated CYPs reconstituted with other components of the mixed-function-oxidase 

system [NADPH:CYP reductase (POR), cytochrome b5], and recombinant CYPs, human, rat, rabbit, 

and mouse CYP enzymes were found to oxidize ellipticine. Ellipticine is oxidized to five metabolites,  

7-hydroxy-, 9-hydroxy-, 12-hydroxy-, 13-hydroxyellipticine, and ellipticine N2-oxide (Figure 3),  

and at least two major ellipticine DNA-adducts were generated by these enzymatic  

systems [3,31,33–36,38–40,48,49]. 7-Hydroxy- and 9-hydroxyellipticine are efficiently excreted  

by experimental animals and considered to be the detoxification products of ellipticine [52,53].  

But 9-hydroxyellipticine is also an efficient inhibitor of Pol-I transcription in vitro with IC50 values in 

cells in the nanomolar range [29], intercalates into DNA, and inhibits topoisomerase II activity [54–56].  

It is therefore a pharmacologically important metabolite. 13-Hydroxy- and 12-hydroxyellipticine  

are the active metabolites, which spontaneously form ellipticine-13-ylium and ellipticine-12-ylium, 

which reacts with DNA to produce two major deoxyguanosine adducts (see adduct spots 1 and 2 in 

Figure 2 and the proposed structures of these DNA adducts in Figure 3) [2–4,31,32,34–36,39,40,49].  

In addition, ellipticine N2-oxide is also considered a potent active ellipticine metabolite, since it converts 

to 12-hydroxyellipticine [31], by the Polonowski rearrangement [57] (Figure 3). All these results suggest 

that the enzymes activating or detoxifying ellipticine are crucial for its pharmacological effects. Thus, 

the identification of enzymes necessary for ellipticine metabolism is of great importance. 

Using a variety of human recombinant CYPs, inhibitors of these enzymes in human hepatic 

microsomes and correlation analyses, the roles of individual CYPs in the formation of ellipticine 

metabolites was identified [31,34,35,40]. Human recombinant CYP1A1 and 1A2, followed by 

CYP1B1, are most effective in formation of 7-hydroxy- and 9-hydroxyellipticine detoxifying 

ellipticine (Figure 3) [31]. The active metabolite, 13-hydroxyellipticine, forming the ellipticine-DNA 

adduct 1 (Figure 2C), is generated predominantly by CYP3A4. Oxidation of ellipticine to another 

activation metabolite, 12-hydroxyellipticine, generating DNA adduct 2 (Figure 2D) is also catalyzed 

by CYP3A4, but more efficiently by CYP2C19. The N2-oxide of ellipticine is generated mainly by 

CYP2D6 beside CYP3A4 [31,34,35,39]. These results demonstrate that CYP3A4 is the most effective 

enzyme leading to ellipticine-DNA adducts 1 and 2, while adduct 2 is also generated by CYP2C19 and 

2D6. Moreover, orthologous CYP enzymes of rats and mice catalyze formation of these metabolites 

and DNA adducts [1–4,36,38]. This indicates that these animals might be suitable models mimicking 

the fate of ellipticine in human. 

Recently, we could show that levels of the DNA adduct formed by 13-hydroxyellipticine increased 

if this ellipticine metabolite was conjugated with sulfate or acetate by human sulfotransferases 1A1, 

1A2, 1A3 and 2A1, or N,O-acetyltransferases 1 and 2 (Figure 3) [34,58]. 

Besides CYP enzymes, peroxidases are able to oxidize ellipticine to metabolites generating covalent 

DNA adducts. Human myeloperoxidase, bovine lactoperoxidase, ovine cyclooxygenase (COX)-1, 

human COX-2 and plant horseradish peroxidase oxidize ellipticine in vitro to form up to four DNA 

adducts [32]. Even though mechanisms of oxidation of ellipticine by peroxidases and CYPs are different, 

two of the DNA adducts formed during oxidation of ellipticine by peroxidases are identical to those 
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produced by 13-hydroxy- and 12-hydroxyellipticine generated by CYPs [32]. Ellipticine oxidation to 

6,13-didehydroellipticine (the ellipticine methylene-imine) and ellipticine N2-oxide [32,59] explain the 

mechanisms of peroxidase-mediated formation of DNA adducts identical to those formed by CYPs 

(Figure 4). The two minor DNA adducts that are formed by peroxidases (spots 6 and 7 in Figure 2) [32], 

are also generated after ellipticine activation with hepatic microsomes from humans [31,60], rats [1,38,60], 

rabbits [1,39], and mice [48,61], and in several organs of mice (Figure 2E,F) and rats (Figure 2G) 

treated with ellipticine [33,37,48]. 
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Figure 3. Ellipticine metabolism by CYPs showing the identified metabolites and  

those proposed to form DNA adducts. The compounds shown in brackets were not 

detected under the experimental conditions and/or are not yet structurally characterized. 

The CYP enzymes predominantly oxidizing ellipticine shown were identified in our 

previous studies [31,34,35,38,39]. Reactions 1, 2 and 3 lead to ellipticine-13-ylium from  

13-hydroxyellipticine, 13-hydroxyellipticine sulfate and 13-hydroxyellipticine acetate, 

respectively, and rea 1b to ellipticine 12-ylium. ? indicates that the mechanisms of this 

reaction are not known. 
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Figure 4. Oxidation of ellipticine by peroxidases showing the characterized metabolites 

and those proposed to form DNA adducts. The compounds shown in brackets were not 

detected under the experimental conditions and are the electrophilic metabolites postulated 

as ultimate arylating species or the postulated N²-deoxyguanosine adducts (adapted from 

reference [32]). 

4. Oxidation of Ellipticine by CYP Enzymes in Vivo 

In order to extrapolate from the in vitro data to the in vivo situation, additional factors have to be 

considered such as route of administration, absorption, renal clearance, and tissue-specific expression 

of enzymes metabolizing ellipticine. To identify CYP enzymes responsible for activation of ellipticine  

in vivo, several animal models were used: (I) wild-type (WT) and Hepatic P450 Reductase Null (HRN) 

mice; (II) the same mouse models, in which expression of enzymes of the mixed-function oxidase 

system was induced by benzo[a]pyrene (BaP); and (III) Wistar rats. The data obtained with these 

animal models revealed a paradox: namely, that CYP1A enzymes appear to be more important for 

activation of ellipticine in vivo, despite being involved in its metabolic detoxification in vitro. 
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4.1. Utilization of Wild-Type (WT) and Hepatic P450 Reductase Null (HRN) Mice to Identify Enzymes 

Metabolizing Ellipticine in Vivo 

In HRN mice, POR, the most important electron donor to mouse CYPs, is deleted specifically in 

hepatocytes. This model was developed by Henderson et al. [62] to evaluate the role of both hepatic 

POR and CYPs in xenobiotic metabolism. Deletion of this enzyme results not only in the loss of 

essentially all hepatic CYP function, but also in the lack of direct reduction of xenobiotics by POR,  

an additional property of this enzyme. This mouse model has been used successfully to investigate  

the role of hepatic versus extra-hepatic CYP-catalyzed metabolism and the disposition of several 

carcinogens and drugs including ellipticine [48,62–69]. 

Using WT and HRN mouse lines, hepatic CYPs were demonstrated to be important in  

ellipticine-derived DNA adduct formation also in vivo, because up to seven ellipticine-specific  

DNA adducts were observed in liver, lung, kidney, spleen, colon and bladder (see Figure 2E,F for  

liver of WT and HRN mice). Deoxyguanosine adduct spots 1 and 2 derived from 13-hydroxy- and  

12-hydroxyellipticine, respectively (Figures 2 and 3), were the predominant adducts in all mouse  

tissues examined. 

The finding that ellipticine-DNA adducts are formed in all organs tested in these animals suggest 

that ellipticine or its metabolites are distributed via the blood stream to different organs and that these 

tissues may have the metabolic capacity to oxidatively activate ellipticine. As found by Chadwick and  

co-workers [52,53] ellipticine is very rapidly distributed from the blood, and its excretion is essentially 

complete by 24 h in several species including mice, rats, dogs, and monkeys. The rate of ellipticine 

elimination from blood was found to reflect the rate of metabolism of this drug [52]. The main  

organ responsible for its biotransformation was found to be the liver, forming predominantly  

9-hydroxyellipticine, which is excreted mainly in bile as its glucuronide or sulfate conjugate [52,53]. 

Other in vivo pathways involving hydroxylation at as yet unknown positions in the molecule have also 

been found [52,53]. As mentioned above, in in vitro experiments, ellipticine is oxidized by CYPs in 

hepatic microsomes from a variety of species, including humans, rats, rabbits and mice [31,39,48,49,60,61] 

to several hydroxylated derivatives, with 9-hydroxy-, 12-hydroxy- and 13-hydroxyellipticine as the 

major metabolites in most species. However, because 13-hydroxy- and 12-hydroxyellipticine are 

reactive and have been found to form the two major ellipticine-DNA adducts [31,32,39,47], they will 

not be easily detectable in vivo. In addition, in these early studies radioactively labelled ellipticine was 

found to be deposited in a number of organs with the highest levels in the liver, followed by kidney, 

lung, intestine and spleen, and was located primarily in the nuclear fraction [52]. Our more recent data 

would suggest that covalent binding of ellipticine to DNA can explain this localization [32,33,48]. 

The levels of ellipticine-DNA adducts in the livers of HRN mice were lower (by up to 65%) than 

those in WT mice, demonstrating that CYP enzyme activity is important for the oxidative activation of 

ellipticine to metabolites generating these adducts. Whereas hepatic CYP-mediated ellipticine DNA 

binding was reduced in HRN mice, adduct levels in extrahepatic organs were up to 4.7-fold higher 

(Figure 5). 

These tissues therefore have the metabolic capacity to oxidize ellipticine and, more importantly,  

the same reactive species forming DNA adducts are produced as in the liver, probably by both CYP 

catalysis and maybe peroxidases. 
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Figure 5. Total levels of ellipticine-DNA adducts determined and quantified by  
32P-postlabelling analysis of DNA isolated from organs of HRN and WT mice treated  

i.p. with 10 mg ellipticine/kg body weight. F = fold higher and/or lower DNA adducts in 

HRN than WT mice. Columns, mean; bars, SD (n = 3); each DNA sample was analysed 

twice. ** p < 0.01. RAL, relative adduct labeling. 

Experiments utilizing ex vivo incubations of ellipticine with hepatic microsomes of WT and HRN 

mice and those of these mice exposed to BaP, as well as employing inhibitors of the most important 

CYP enzymes catalyzing detoxification and activation of ellipticine in vitro, CYP1A and 3A, 

respectively, helped to resolve which of these CYPs play a role in the mouse models. As expected, 

treatment of WT and HRN mice with BaP significantly induced expression of CYP1A, predominantly 

of CYP1A1 in liver (up to 175-fold), both at the transcriptional and translation levels [61,65]. This 

carcinogen also increased the expression of POR protein and its enzymatic activity in livers of these 

mouse models, but to a much lower extent, up to 2.9-fold. More interestingly, exposure of WT and 

HRN mice to BaP was also found to result in an increased expression of cytochrome b5, a protein of 

the microsomal mixed-function-oxidase system, in livers of these mice [66]. 

In the presence of NADPH, a cofactor of POR- and CYP-dependent enzyme systems, the ex vivo 

incubations with ellipticine, DNA and hepatic microsomes of untreated (control) WT and HRN mice 

and mice treated with BaP led to activation of this drug to ellipticine-derived DNA adducts (Figures 2A,B 

and 6), confirming the role of CYPs in ellipticine activation. Arachidonic acid, a cofactor for  

COX-dependent oxidation [48,64,70–72], also mediated formation of ellipticine-DNA adducts 1 and 2  

in hepatic microsomes of all mice used. This suggests that COX also activates ellipticine in mouse  

liver [48,61], but arachidonic acid as a cofactor was much less effective than NADPH (Figure 6). 
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Figure 6. DNA adduct formation by ellipticine activated with microsomes isolated from 

livers of untreated Hepatic Cytochrome P450 Reductase Null (HRN) or wild-type (WT) 

mice (A) and from mice treated with BaP (B) as determined by 32P-postlabeling. F = fold 

higher DNA adducts levels in microsomes from WT mice compared to HRN mice. 

Columns: Mean RAL (relative adduct labeling) ± standard deviations (SD) shown 

represents total levels of DNA adducts of four determinations (duplicate analyses of two 

independent in vitro incubations). Values significantly different from HRN mice: * p < 0.05, 

** p < 0.01, *** p < 0.001. Control = without cofactor; AA = arachidonic acid;  

α-NF = α-naphthoflavone; α-LA = α-lipoic acid. 
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Surprisingly, levels of ellipticine-derived DNA adducts formed in the ex vivo incubations of HRN 

mice liver microsomes with NADPH were only 1.4-fold lower than amounts formed by hepatic 

microsomes from WT mice (Figure 6), even though POR expression in livers of HRN mice was two 

orders of magnitude lower. This finding indicates that ellipticine activation should be at least partially 

catalyzed also by enzymes with POR-independent activity [48]. Beside peroxidases that were found to 

activate ellipticine [32], the CYP2S1 enzyme, which is abundantly expressed in several tissues [73–76], 

might be such an enzyme, because it catalyzes the oxidation of compounds having polycyclic  

aromatic structures similar to ellipticine without participation of POR [75,76]. Whereas a role of  

a COX peroxidase in hepatic microsomes of WT and HRN mice was proven (see Figure 6) [48,61],  

the participation of CYP2S1 in ellipticine activation awaits further examination. Therefore, the human 

recombinant CYP2S1 enzyme heterologously expressed in Escherichia coli was prepared in our 

laboratory [77] and will be utilized to investigate efficiency of this CYP in ellipticine oxidation in an 

additional study. 

At least two adducts (spots 1 and 2 in Figure 2A,B), which were identical to those generated in vivo 

in mice treated with ellipticine (Figure 2E,F) were formed by mouse hepatic microsomes. Furthermore, 

ellipticine-derived DNA adduct, spot A, was found as a minor adduct (Figure 2A), predominantly  

in microsomes isolated from HRN mice [48]. In incubations containing hepatic microsomes  

of WT and HRN mice treated with BaP, an additional adduct spot, corresponding to the  

10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (dG-N2-BPDE) adduct 

of BaP-7,8-dihydrodiol-9,10-epoxide with DNA in vitro and in vivo [65,78] was also detected (Figure 2B). 

This finding indicates that residual BaP is present in microsomes isolated from livers of WT and  

HRN mice treated with BaP, and is activated by CYP1A1 in combination with microsomal epoxide 

hydrolase to form this adduct. 

Ketoconazole, a selective inhibitor of CYP3A [79,80], inhibited formation of ellipticine-DNA 

adducts in hepatic microsomes of untreated (control) WT and HRN mice, by ~60% (Figure 6A), 

confirming a role of CYP3A in ellipticine activation in mouse liver. However, the effect of this 

inhibitor was much lower in hepatic microsomes of BaP-treated WT and HRN mice, only by ~10% 

(Figure 6B). In mice exposed to BaP the contribution of CYP3A is much lower, because of the 

massive CYP1A induction by BaP. Surprisingly, this increased level of CYP1A, the enzymes that 

mainly detoxify ellipticine in vitro, led to higher amounts of ellipticine-DNA adducts formed (Figure 6), 

predominantly of adduct 1 [61]. Moreover, a selective inhibitor of CYP1A activities, α-naphthoflavone 

(α-NF) [79], inhibited formation of ellipticine-DNA adducts in all mice except HRN mice exposed  

to BaP (Figure 6). Induction of CYP1A in HRN mice by BaP also resulted in increased levels of 

ellipticine-DNA adducts, but α-NF caused an increase rather than a decrease in formation of 

ellipticine-DNA adducts (Figure 6). Therefore, here the BaP induced CYP1A enzymes seem to 

increase ellipticine detoxification. 

Ellipticine metabolites formed in hepatic microsomes from all mouse lines used in previous  

studies [48,61] were analogous; 9-hydroxy-, 12-hydroxy-, 13-hydroxy, 7-hydroxyellipticine and N2-oxide 

of ellipticine were formed (Figure 7). However, the patterns of individual metabolites in WT and HRN 

mice, either control (untreated) or treated with BaP, were different. In incubations with HRN microsomes 

from untreated mice, 9-hydroxyellipticine levels were only one sixth, while the amounts of 13-hydroxy- 

and 12-hydroxyellipticine, were about one half of the levels in incubations with WT microsomes. 
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Figure 7. Levels of ellipticine metabolites formed by hepatic microsomes (0.2 mg protein) 

of Hepatic Cytochrome P450 Reductase Null (HRN) and wild-type (WT) mice from 10 μM 

ellipticine and by hepatic microsomes of HRN and WT mice pre-treated with BaP. Levels 

of ellipticine metabolites were determined by high performance liquid chromatography 

(HPLC) [31,60] and are averages ± standard deviations of triplicate incubations. Values 

significantly different from untreated mice: * p < 0.05, ** p < 0.01, *** p < 0.001. 

Exposure of mice to BaP induced CYP1A and resulted, as expected, in an increase in formation  

of 9-hydroxy- and 7-hydroxyellipticine (Figure 7). This result is consistent with previous studies where 

CYP1A1 and 1A2 were the major enzymes forming these metabolites [31,35,40]. Treatment of  

WT mice with BaP, however, also resulted in up to 2.5-fold higher levels of 13-hydroxy- and  

12-hydroxyellipticine (Figure 7), the metabolites that were found to be formed in vitro mainly by 

CYP3A, and much less efficiently by CYP1A1 [31,39]. Hence not only CYP3A, but also CYP1A 

expressed in mouse liver are important for activation of ellipticine to ellipticine-DNA adducts in WT 

mice only, while in HRN mice the detoxification only is induced by BaP explaining the DNA adduct 

levels. These findings show that in contrast to the pure in vitro CYP systems (CYPs reconstituted with 

POR), CYP1A enzymes are responsible for ellipticine activation to form DNA adducts in mouse  

liver [48,61]. 

4.2. Ellipticine Metabolism in Wistar Rats 

In order to further identify CYP enzymes responsible for activation and detoxification of  

ellipticine in vivo, Wistar rats were used. Also in this animal model, ellipticine treatment resulted in  

ellipticine-derived DNA adduct generation in several healthy organs (liver, kidney, lung, spleen, breast, 

heart and brain) (see Figure 2G for rat liver) [3,33,37] and in DNA of mammary adenocarcinoma [3]. 

The levels of ellipticine-derived DNA adducts generated in these adenocarcinomas were almost  

2-fold higher than in normal healthy mammary tissue. This finding indicates that other CYPs such as 

CYP1B1, able to activate ellipticine may be expressed at higher levels in this adenocarcinoma [41] 
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than in peritumoral tissues. Indeed, we [41], and others [81–83] previously showed CYP1B1 to be a 

typical CYP expressed in breast cancer. 

Genotoxic side effects of ellipticine in healthy organs of experimental animals in vivo may of course 

also be determined by expression levels of CYP enzymes activating ellipticine in these tissues [33,37,48]. 

Indeed, several studies have found a positive correlation between DNA adduct levels of carcinogens or 

genotoxic agents, their persistence and their mutagenicity and/or tumorigenicity [84–88]. To better 

understand the role of ellipticine-DNA adducts in genotoxic side effects in healthy tissues, we have 

analyzed the persistence of ellipticine-DNA adducts in liver, lung, kidney, spleen, heart, and brain of 

rats to model the bioactivation of ellipticine in humans treated with ellipticine [33]. Only very low 

levels of adducts persisted only in some tissues. In addition, not all ellipticine-DNA adducts persist in 

the tissues analyzed in the study (only adducts 1, 2, 4, and 5) [33]. This finding demonstrates that 

healthy tissues of rats treated with ellipticine possess effective DNA repair systems to remove certain 

lesions and suggests a relatively low impact of the genotoxic side effects of ellipticine during cancer 

treatment in humans. 

Also in rats, formation of ellipticine-DNA adduct 1 is dependent not only on levels of CYP3A,  

but also on those of CYP1A1. The levels of ellipticine DNA adduct 1 in analyzed organs correlated not 

only with expression levels of CYP3A, but also with those of CYP1A1 in the same organs, which 

again does not correspond to the situation in vitro. As outlined above, in the in vitro systems, CYP3A 

is mainly responsible for formation of ellipticine-DNA adducts and CYP1A predominantly oxidizes 

ellipticine to its detoxification metabolites [3,4,36]. In-vitro studies investigating the effect of 

cytochrome b5 on the metabolism of ellipticine explained the discrepancies between CYP oxidation of 

ellipticine in vitro and in vivo, because this protein has a crucial role in directing individual CYP 

enzymes to ellipticine activation or detoxification. Moreover, the induced expression of cytochrome b5 

protein in liver of rats treated with ellipticine [35,51] suggests that cytochrome b5 may modulate the 

CYP-mediated bioactivation and detoxification of ellipticine in this animal model in vivo as well. 

Cytochrome b5 is an important component of the microsomal mixed-function-oxidase system and 

can influence the metabolism of xenobiotics [69,78,89–95]. For more than four decades, the role of 

cytochrome b5 in CYP catalysis has been controversial, and based entirely on in vitro data, which 

showed that cytochrome b5 could inhibit or stimulate CYP activity depending on a number of variables 

including CYP isoenzyme, substrate and cytochrome b5 concentration [89–94]. In order to investigate 

the role of cytochrome b5 in ellipticine metabolism we conducted some in vitro experiments using 

human liver microsomes, hepatic microsomes from control and ellipticine-pretreated rats and 

reconstituted systems with human CYP1A1, CYP1A2, CYP3A4, POR, and cytochrome b5 in different 

ratios [34,35,39,49,51,96]. We found that cytochrome b5 alters the ratio of ellipticine metabolites 

generated by CYP1A1, 1A2, and 3A4. Whereas the amounts of the detoxification metabolites  

(7-hydroxy- and 9-hydroxyellipticine) are either decreased (CYP1A1/2) or not changed (CYP3A4) 

with cytochrome b5 added to the reconstituted system, the amounts of the active metabolites,  

12-hydroxy- and 13-hydroxyellipticine, increased considerably, leading to higher ellipticine-DNA 

adduct levels [34,35,39]. 
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4.3. Studies with Human Microsomes and Cancer Cells 

Because in the studies described above with isolated enzymes the ratios of the various partners  

of CYP are generated experimentally, a more physiological model to identify human enzymes 

responsible for ellipticine activation was used, namely, human hepatic microsomes [31,39]. These 

microsomal fractions contain a mixture of human CYPs, POR, cytochrome b5 and its reductase 

(NADH:cytochrome b5 reductase). Thus, they comprise the essential components of the enzymatic 

system metabolizing drugs, mimicking well a situation in human liver, where a majority of drug 

metabolism occurs [78,95]. Human hepatic microsomes oxidize ellipticine mainly to 13-hydroxy- and 

12-hydroxyellipticine, whereas 7-hydroxy-, 9-hydroxyellipticine and ellipticine N2-oxide are generated 

at more than 10-fold lower amounts (see table 2 in [39]). Similar results were found in hepatic 

microsomes of rats [60]. As a consequence, high levels of both major ellipticine-DNA adducts are 

formed when DNA is added to the microsomal incubations. The amounts formed correlated with the 

activity of the major CYPs found previously to form the metabolites generating these DNA adducts 

(see above) [31,39]. 

All these results explained why the CYP1A enzymes are more important in ellipticine activation  

in vivo; their activity is modulated by cytochrome b5. These results also demonstrated that not only the 

expression levels of CYP1A and 3A in several species including human, but also the amounts of 

expressed cytochrome b5 dictate the oxidative activation and detoxification of ellipticine in vivo. 

Moreover, because ellipticine itself is capable of inducing expression of CYP1A (predominantly 

CYP1A1), POR, and cytochrome b5 [51,96], it increases its own metabolism leading predominantly to 

activation of this drug to reactive species forming DNA adducts [34,35], thereby modulating its own 

pharmacological potential. 

The ellipticine-derived DNA adducts formed by enzymatic activation of ellipticine in vitro and  

in vivo were also found in human tumor cells, in which CYP enzymes are expressed. The adducts  

were found in human adenocarcinoma MCF-7 [41], neuroblastoma IMR-32, UKF-NB-3, and  

UKF-NB-4 [43,44], glioblastoma U87MG [46], and BHT-101, B-CPAP and 8505-C thyroid cancer 

cells [45] exposed to ellipticine. Cytotoxicity of ellipticine corresponded to the amounts of ellipticine-DNA 

adducts formed in the specific cancer cells and depended on expression levels of CYP enzymes 

metabolizing ellipticine (CYP1A1, 1B1, and 3A4) and/or cytochrome b5 in these cells [36,41,43–46]. 

High expression levels of cytochrome b5 together with those of CYP1A1 and 3A4 lead to more 

ellipticine-DNA adducts and higher cytotoxicity of ellipticine predominantly in neuroblastoma  

UKF-NB-4, glioblastoma U87MG and thyroid cancer cells [14,36,41,43–45]. These findings again 

demonstrate the importance of expression of CYPs, but also of cytochrome b5, in the tumor and normal 

tissue, because the ratios of these enzymes determine the pharmacological effects of ellipticine. 

5. Conclusions 

The data summarized in this review demonstrate that the DNA-damaging anticancer alkaloid 

ellipticine might be considered a prodrug, whose major mechanism of action is mediated by an 

enzymatic activation leading to formation of covalent DNA adducts in target tissues. These  

ellipticine-DNA adducts are formed in both healthy and tumor tissues and cells, but they do not persist 
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in healthy tissues. The data show that cytotoxic effects of ellipticine in tumor tissues are dictated by  

(I) levels of CYP expression (and/or peroxidase expression); (II) levels of cytochrome b5 expression; 

and (III) its own potency to induce CYP1A1, CYP3A and cytochrome b5 in tumor tissues and cells. 

The results also demonstrate that animal models, where levels of biotransformation enzymes either 

knocked out or induced, are appropriate tools to identify enzymes responsible for the metabolic 

activation and detoxification of ellipticine. They also demonstrate that extrapolation from in vitro data 

to the situation in vivo is not always possible, confirming the need for these animal models. 

Even though the role of cytochrome b5 in modulation of ellipticine metabolism in vitro was clearly 

shown, its effect in vivo is still quite enigmatic. Two mouse lines, one with a conditional hepatic 

deletion of cytochrome b5 (HBN, Hepatic cytochrome b5 Null) [97] and a double conditional mutant, 

HBRN (Hepatic cytochrome b5/P450 Reductase Null), in which both enzymes are deleted specifically 

in the liver [98], which were recently developed in the laboratory of Wolf and coworkers [97,98], may 

help to resolve the role of cytochrome b5 in CYP-mediated metabolism of ellipticine in vivo. 

The results summarized in this review form the basis to further predict the susceptibility of  

human cancers to ellipticine and suggest this alkaloid for treatment in combination with CYP gene 

transfer (CYP-gene-directed enzyme-prodrug therapy) [99,100], which has the potential to provide 

efficient activation of ellipticine in target tumor tissue, thereby increasing the anticancer potential  

of this prodrug. Furthermore, two of the ellipticine metabolites formed by oxidation with CYPs  

in combination with cytochrome b5, 13-hydroxy- and 12-hydroxyellipticine, are reactive enough to 

decompose spontaneously to the carbenium ions forming DNA adducts that are predominantly 

responsible for killing cancer cells. Both these ellipticine metabolites are, therefore, excellent 

candidates for tumor-specific targeting by appropriate derivatives, including their encapsulated forms 

into nanocarriers. Research into such targeted carrier systems for active ellipticine metabolites is a 

major research aim on the path to clinical application of ellipticine in tumor therapy. 
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