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Abstract. In this paper we give asymptotic series expansions in ¢ =
||E|| for the bound of the perturbation || exp(t(A+ E)) —exp(tA)|| in the
matrix exponential exp(tA).

1 Introduction

Bounds and perturbation bounds for the matrix exponential exp(¢tA), where A
is a (complex) n x n matrix, have been proposed by B. Kagstrom [5] and C. Van
Loan [11] in 1977, see also [4] and [2]. However, as shown in [6] and [10] these
bounds give rather pessimistic results for some defective matrices. In particular
an overestimation of the real perturbation of hundreds of orders of magnitude
was observed for low order and well behaved systems z' = Azx.

In this paper we give improved perturbation bounds of the form

A(t) = [[exp(t(A + E)) —exp(tA)|| < f(t,¢), e = [[E]|

where F is a perturbation in A. For this purpose we use bounds for || exp(tA)]|
based on Schur and Jordan decompositions of A. After that a linear r-th order
differential equation for f 1s derived, where r is the dimension of the dominant
Jordan block of A. A study of this equation allows to obtain improved pertur-
bation bounds which are often better than the known in the literature.

Asymptotic series expansions in ¢ (treated as a small parameter) are also
given.

The above results are applicable to the development of condition and error
estimates for the solution of linear and nonlinear differential equations.

We denote by ||.|| the matrix 2-norm in F”", where F is the set of real
numbers R or the set of complex numbers C. The unit n x n matrix is denoted
I, and N, is the nilpotent n x n matrix with unit elements at positions (7,7 + 1)
and zeros otherwise.

Throughout the paper A is a fixed n X n real or complex matrix with spectral
abscissa o = max {Re(X) : X € spect(A)}, where spect(A) is the spectrum of A.



2 Problem Statement

The matrix exponential exp : F?"? — F™*” defined by the power series

exp(4) = Z T
i=0

appears in the solution of linear differential equations, e.g.

Y'(t) = AY (1) + Y (t) B+ C(t)
Y(0) =Y

where Y (t) € F*":

Y(t) = exp(tA)Yyexp(tB) + /0 exp((t — s)A)C exp((t — s)B)ds .

In practice, the mathematical model of a real phenomenon is always contam-
inated with measurement errors. Also, when solving a numerical problem by a
numerically stable method, the computed solution is near to the exact solution
of a slightly perturbed problem. In all these situations one has to deal not with
the “exact” value exp(tA) but rather with the perturbed matrix exp(¢t(A + E)),
where £ € F™" is the perturbation in the matrix A. Usually the inequality
IEII/I|A|l < 1 is fulfilled reflecting the fact that the perturbation is relatively

small. Hence the problem arises to estimate the norm of the matrix

H(t,E) :=exp(t(A+ E)) — exp(tA)

as a function of the current time ¢ and the quantity || E||. It is easy to show that

H(t,E)= /Ot exp((t — s)A)E exp(s(A + E))ds .

Let
h(t, ) == max{|[H(t, E)|| : |[E]| < e} .

Then our aim is to find an asymptotic bound of the form

h(t,e) < ieihi(t) .

The expression for H(t, E) may be represented as a sum of terms H,, (¢, E)

of order m 1n E: o
H(t,E) = Hn(t, E)
m=1

where

[ Hm(t, EM| = O(IEN™), 1Bl = 0; m=1,2,...



We have .
H(t, E) :fo exp((t — 8)A)Gon (5, E)ds

where o m
s” j
CACIEED D~ D DI | 2
r=m—1 14 Fim=r—-m+1 k=1

In particular, we have

Gi(s, E) = EZ %AT = Eexp(sA)
r=0 '

Gz(s,E):Eii—: > ApAT
r=1

i+j=r—1

S i Al A
Gg(s,E)_EZr! Y AEAEAF
r=2 itjtk=r—2

Note that Hy(1,.),
1
H(1,E)= f exp((1 — s)A)E exp(sA)ds,
0

is the Frechet derivative of the function X +— exp(X) at the point X = A, see
also [9].

3 Estimates for the Matrix Exponential

When finding perturbation bounds for the matrix exponential, some bounds for
the norm of the exponential || exp(¢A)|| itself are usually used [5,11,8].
Several estimates of the form

lexp(tA)|| < C(8) exp(t(a + 5))

are known, where $ may be chosen arbitrarily from certain interval (0,5), and
C(B) is a certain expression such that C'(3) — oo as 8 — 0. These estimates
lead to immediate perturbation bounds for the matrix exponential; the latter,
however, are often too pessimistic if A is defective. That is why we shall use the
more sophisticated bounds based on the Schur and Jordan canonical forms of
A. To make all the results comparable, we assume that A has a single n x n
Jordan block J with an eigenvalue A with o = Re(A). This is not a restrictive
assumption since the general case may be reduced to this particular case if we
consider only the dominant Jordan block of A corresponding to the eigenvalue
A of A with Re(A) = o

Denote by ¢4 the minimum condition number of the transformation matrix
T € F*" reducing A into its Jordan normal form J = T~'AT = I, 4+ Ny,:

ca = min{||T|| |T7Y|: T7rAT = J}



(note that such ¢4 exists, see [7].) Then

[[exp(tA)|| = 1T exp(t/)T~H|| < callexp(tJ)]

and since
—tF
||exp(tJ])|| = ||exp(At) Z nk' < exp(at) Z_:k_
we have
n—1 k:
||exp(tA)|| < caexp(at Z o (1)
k=0

Consider now the Schur form S = U¥ AU = A, + N of A, where U € Fn?
is an unitary matrix and N is a strictly upper triangular matrix. Denote

va=min{||N||: U*U = I,, U AU = AL, + N}
Then we have

[[exp(tA)|| = |U exp(tS)U™ || = || exp(tS)|| = || exp(At) exp(N)]| =
= |exp(At) ||| exp(N1)|| = exp(at)|| exp(NE)]| .

Hence
n

|

E

L (vat)®
k!

||exp(tA)|| = exp(at) < exp(at)

Il

k=0

Relations (1) and (2) may be written in an unified manner as

=3
|
—

—
»
prog
N

ol

||exp(tA)|] < e(t) = bexp(at)w(t), w(t) =

=
I
o

where

Table 1.

Jordan ca 1

Schur 1 va




Denote F' = E/e. Since

H'(t,F) = AH(t,E) +cF(H(t, E) + exp(tA))
H(0,E)=0

we may express H as
t
H(t,E)= 6/ exp((t —s)A)F(H (s, E) + exp(sA))ds .
0
Hence

h(t,e) < 6/0 e(t —s)(h(s,e) +e(s))ds .

Thus
h(t,e) < u(t)

where u 1s the solution to the majorant Volterra integral equation

u(t) = 6/0 e(t —s)(u(s) +e(s))ds .

Setting
u(t) = bexp(at)z(t) — e(t) = bexp(at)(z(t) —w(t))

we get
z(t) =w(t) + /1/0 w(t —s)z(s)ds, p:=c¢b .

The solution of (3) may be represented as a convergent power series

)= @)
where
zo(t) = w(t)

zr(t) :/0 w(t —s)zr—1(s)ds, r > 1 .

In particular, for r = 1 we have

z1(t) = /0 w(t — s)w(s)ds

and the norm of the Frechet derivative is estimated from

2n—2

wlgh n—1—k
[H (1, B)|| < pbexp(a) (Z%+ > %H i ﬂ’“)
k=0 "~ k=n ’



Another way to solve (3) is via a reduction to an n-th order linear differential
equation. Indeed, differentiating both sides of (3) n times we get the initial value
problem

n—1
z(")(t) =pu Z B"_l_iz(i)(t)
i=0

Z0)=b(B+eb)*; k=0,1,....n—1 .
Setting 7 = 8¢, v = /B and z(7/f) = y(r) we obtain (the differentiation is

now in 7)

n—1

() =v Y v (4)
k=0

yM0)=(14+v) k=0,1,...,n—1 .

The solution of the initial value problem (4) may be represented as

Y= yn(T) = Zysyn,s(T)

where
(s+1)n—1 ik

Yn,s(T) = ck(n,s)m )
k=s

ck(n,s) = (Zii)n

and (f)n are the so called n-nomial coefficients defined from

Here

(n—=1)s

(I+a4- 42" = ¥ (j)nxl :

=0
The coefficients ¢ (n, s) satisfy the recurrence relation [1, 3]
n—1
ck(n, s) = ch_i(n,s —1), es(n,s) =1 .
Z':

0
For n = 2 the coefficients (:)2 are equal to the binomial coefficients (:)

4 Examples

Example 1. To illustrate the effectiveness of the estimate proposed, consider
the problem of estimating the perturbation in the matrix exponential, where we
choose the matrices A, £ € R?? as

-1 1 0 0
A—[ 0—1]’E—[10—40]



The results are shown at the table bellow, where the second column contains
the exact perturbed quantity, estl is the estimate based on the exact solution of
the differential equation for z, est2 is the asymptotic bound using the dominant
term in the solution for z and est3 is the bound proposed in [4].

Table 2.

t |1 exP(t(l’l“etf()t);)elrp(tA)” estl est2 est3

1]0.763 x 1077 0.606 x 1072 0.300 x 10%2]0.400 x 10~°
10 [ 0.180 x 1072 0.878 x 107!| 0.438 x 1071| 0.122

20| 0.681 x 1072 0.406 x 1071] 0.200 x 1011| 0.920
30(0.152 x 107! 0.246 x 1071 0.122 x 1071 0.316 x 107!
401 0.270 x 107! 0.169 x 107!| 0.839 0.792 x 107!
50 | 0.423 x 107! 0.125 x 1071] 0.628 0.168 x 1012
100 | 0.175 0.553 0.349 0.280 x 107°

Example 2. This example is similar to Example 1 where A is a 3 x 3 Jordan
block with an eigenvalue -1 and E has a single nonzero entry 10~% in position
(3,1). The results are as follows.

Table 3.

t I eXp(t(l’lqetf()t);)elrp(tA)ll estl est2 est3

1]0.684 x 1077 0.341 x 107°[0.120 x 1072]0.625 x 10~
10{0.204 x 1072 0.135 x 1072 0.593 x 1071 [0.396 x 10!
2010.141 x 107! 0.312 x 1071 0.181 x 1071 |0.152 x 10*®
30/0.464 x 107! 0.120 x 1071 0.100 x 1071 |0.294 x 10**
400.110 0.700 0.804 0.818 x 10T°
5010.218 0.681 0.849 0.566 x 10*7
100]0.222 x 10! 0.417 x 1071 0.379 x 107*{0.370 x 107*7

The proposed estimates are asymptotically better than this from [4]. In fact,
we have est3/est]l — 0o as t — 0o. The examples show that our estimates are
better even for moderate values of .

The proposed perturbation bounds require more computational effort com-
pared to those in [4]. However, both approaches involve the preliminary compu-
tation (or estimation) of either Jordan or Schur form of A. The extra amount of
computations required by our approach is due to the need to find the coefficients
cx(n, s) which, for a given order n of A, may be done in advance.
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