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ABSTRACT

By moving computation and caching to the network edge, 
Mobile Edge Computing (MEC) offloads core networks and 
shortens data access latencies, which is important for large 
scale mobile multimedia services. Increasing the density of 
edge data centers to service these multimedia requests is un­
economical. Recent research has proven the benefits of in­
volving devices in the delivery of multimedia services. This is 
done by exploiting the idle computation and storage resources 
via device-to-device (D2D) communication, i.e., by forming 
a so-called Mobile Device Cloud (MDC). Despite the flex­
ibility and cost efficiency of this MDC paradigm, the timely 
allocation of caching resources to satisfy the dynamic user de­
mands is challenging. This is mainly due to the uncertainty in 
resource availability of mobile devices. To this end, we pro­
pose Edge-Boost, a novel MDC caching architecture for low- 
latency multimedia streaming services. We develop a novel 
fluid-based model to capture the dynamically changing net­
work status. Additionally, we propose a dynamic caching al­
location to jointly minimize caching cost and service latency. 
Edge-Boost achieves over 20% higher average cache utiliza­
tion and 15% shorter average access latency than the state-of- 
the-art MDC approach.

Index Terms— Mobile Edge Computing, Multimedia 
Processing, Low Latency 1

1. INTRODUCTION

Recent estimates predict a more than 20-fold increase in vir­
tual reality traffic and over 25% increase in internet video traf­
fic over the next five years. In this context, Mobile Edge Com­
puting (MEC), which deploys computation and storage re­
source at the network edge, has been showcased as a promis­
ing solution for large scale multimedia services [1], [2], How­
ever, MEC deployments are very costly. Generally, it is be­
coming more and more difficult to keep up with the increasing 
demands for multimedia services in upcoming 5G networks.

Recently, leveraging Device-to-Device (D2D) commu­
nications to involve the mobile equipment nodes (MEs) in 
the loop of multimedia delivery has gained attention in both 
academia and industry. In this device-involved paradigm, 
MEs contribute their own storage resources [3], [4] to service

each other via D2D links, hence flexibly enhancing the edge 
cloud capability (scalability). Such a resource-rich environ­
ment of mobile devices that are substituted for the expensive 
MEC is called a Mobile Device Cloud (MDC). Such an MDC 
can be managed through extending MEC management frame­
works, e.g., [5]. However, despite the MDC promises and 
general management frameworks, several operational chal­
lenges need to be investigated before bringing this paradigm 
into reality: First, unlike edge data centers, the availability 
of caching resources at MEs is highly dynamic due to the 
random ME behaviors. On the other hand, MEs contribute 
their own bandwidth, storage, and energy resources to pro­
vide services; these resources may get exhausted when they 
are aggressively utilized. In addition, the continuous ME 
movements and the limited D2D communication range may 
result in intermittent content delivery. All these factors make 
it challenging to reliably deliver low-latency multimedia ser­
vices in MDCs.

This paper makes the following contributions:

•  We design an Edge-Boost framework for edge caching 
in MDCs. To capture the variations of content replicas 
based on video demands, we develop a novel algorithm 
relying on a fluid model.

•  We formulate the caching configuration in MDCs as 
an online optimization problem and propose an Edge- 
Boost caching algorithm. Contrary to the conventional 
caching methods that statically allocate the caching re­
sources, Edge-Boost first estimates the population of 
different states in each time slot and then jointly min­
imizes the peak population of clients waiting for con­
tent and the number of replicas; thus, Edge-Boost opti­
mizes the video access delay and the number of content 
copies.

•  We conduct simulations to validate the performance of 
the proposed Edge-Boost framework. By measuring 
the average access latency and cache hit ratio of Edge- 
Boost under different scenarios, we show that Edge- 
Boost achieves better delay reduction and cache utiliza­
tion than the state-of-the-art caching strategy.

The rest of the paper is organized as follows. Section 2 de­
lineates the novelty of the proposed solution with a brief dis-
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cussion on the most recent related work. Sections 3 and 4 
present the system design and the associated problem formu­
lation. Section 5 presents the proposed algorithm. Section 6 
presents the performance evaluation and Section 7 provides 
concluding remarks.

2. RELATED WORK

Extensive studies have been conducted recendy for replac­
ing the edge caching capacity by device storage resources via 
D2D links. For instance, Zhang et al. in [6] utilized mobile 
vehicles as smart caching agents to offload the caching tasks 
from the Base Station (BS) using a vehicular edge structure. 
However, the random vehicular movements change vehicu­
lar caching, which had not been considered. Neglecting this 
characteristic of the vehicular environment signiflcandy im­
pairs the caching demand estimation, which in turn negatively 
affects the caching performance.

Wu et al. built a content sharing framework relying on the 
D2D assisted caching paradigm [7]. A collaborative cache 
management scheme is proposed that includes a distributed 
caching decision and updating policy. Li et al. proposed a 
delay-aware caching algorithm over D2D links [8]. By lo­
cating the best carrier, the proposed caching policy aims to 
minimize the transmission delay and to improve the through­
put. Although these solutions positively regulate the caching 
capacity, they ignore the demand variations.

In [9], a Chord-based overlay structure is employed for 
effectively searching content providers in D2D networks. A 
two stage PID-based LTE traffic controller is then proposed to 
determine the offloading scale. However, the instability of the 
overlay structure incurs high maintenance overhead. Despite 
the caching benefits, all of the above solutions rely on the 
probability-based content popularity estimation. These mod­
els consider the request dynamics in mobile environments 
which result in inaccurate estimation of content popularity. 
Thus, to provide high efficiency video caching by estimating 
the video content requests, it is critical to observe the high 
variations of user demands.

In [10], 5G D2D caching for information centric network­
ing (ICN) is proposed by formulating a fluid-based model that 
considers the 5G ICN caching dynamics. However, the for­
mulated model ignores caching demand variations in highly 
mobile scenarios, such as in edge device clouds. In con­
trast, we address the challenge of satisfying demand varia­
tions that [10] did not consider. Since, the states of the mobile 
clients should be redefined according to the content distribu­
tion process of an MDC, our design involves five novel state 
definitions that encompass all possible state transitions in a 
D2D system and are easy to implement.

Fig. 1. Edge-Boost resource management framework

3. SYSTEM ARCHITECTURE

Fig. 1 illustrates the proposed video distribution framework 
over an MDC-enabled mobile network. The proposed edge- 
boost framework focuses on the caching time scale; we as­
sume that the video streaming at the time scale of individual 
video frames employs some conventional high-performance 
video streaming scheme, e.g., [11,12]. In the edge-boost 
framework, the controlling module at each BS mainly consists 
of State Manager, Caching Scheduler, Locator and Database 
Mapping, as well as Caching Demand Estimation. The State 
Manager collects the user states. A specific state is assigned 
to each mobile client to indicate its current operation (i.e., 
“caching” state, “requesting” state) for a given content item. 
Coupled with the location information, the client status is 
maintained by the locator and the database mapping unit. The 
fluid-based dynamic state model is built by monitoring the 
time variations of the client states. Further, the caching de­
mand estimation module captures the evolution of the demand 
and supply capacity. Once the requested replicas for each 
content object have been determined, the content scheduler 
assigns the caching task to each in-area mobile client follow­
ing the proposed allocation algorithm.

At the ME, the Caching Operation Module collects the 
caching content through requests to the BSs. To enable a ME- 
assisted video content distribution, the BSs based on 5G-D2D 
profiles, discover the D2D pairs for one-hop content deliv­
ery. Specifically, for received requests, the BSs first check the 
database to locate valid replicas of the requested content. If 
one or more content holders are located in the D2D communi­
cation range of a requester, a D2D link between the provider 
and requester is established for content delivery. Otherwise, 
the BS serves the request by utilizing its own bandwidth.

3.1. Video distribution through mobile edge caching

We divide the network into multiple areas, whereby each area 
corresponds to an MDC. Each area a consists of an MDC 
deployed at the BS and a set of mobile devices, denoted by 
Ba and M a, respectively. Let K  denote the universe of con-
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Fig. 2. Novel state transition design for edge caching video 
system

tent, according to the procedure of distributing the given con­
tent k (k € K )  in a, each mobile device can be defined by 
either of the following three roles: normal nodes are non­
participants of the distribution k\ a consumer requests the 
content k; caching nodes hold a copy of k. Based on the 
role assigned to MEs, we further define five different states:

1. In-area state: an ME in this state is a normal node en­
tering the area a. We denote by I ( t ) the population 
fraction of MEs in this state at time t.

2. Requesting state: an ME in this state is requesting the 
content k, we denote by R (t) the population fraction of 
nodes in this state at time t.

3. Caching state: an ME in this state has been assigned a 
copy of k and can be used to serve other MEs. C(t) 
denotes the population fraction of MEs in this state.

4. Satisfied state: a requesting ME that has received a re­
quested content k enters this state, we define the X  (t) 
as the portion of MEs in this state.

5. Out-area state: an MEs in this state has moved out of 
the area a, 0 {t) represents the population fraction of 
MEs in this state.

Each ME in network is in one of the five state; hence, the sum 
of all state population fraction should constantly equal one.

3.2. Fluid-based model for content distribution

Transitions between these five states are interpreted as shown 
in Fig.2. Owing to space limitations we only define the dy­
namics of transitions as follows:

Transition 1: If an out-area state ME enters the area a, 
it will convert to the in  — area state. We assume that ME 
movements follow the random way point (RWP) model [13].

Transition 2, 3, 4, and 5: If an in-area ME request con­
tent k, it enters the requesting state. Modeling the request 
arrival rates as Poisson processes, the probability of an ME 
requesting content k within a short time interval A t can be 
denoted A  ̂At, where Afc is the Poisson rate. For short At, 
A t —> dt. We denote the rate of transition 2 by (t). 
When an ME has been selected to cache k, it will convert 
to the “caching” status. We denote ipk (t) as the caching pa­
rameter to determine the proportions of agents to cache the 
content at time t. i.e., ifik (t) represents the caching policy. 
For instance, ipk (t ) =  1 indicates that all MEs in state I  (t ) 
cache content k. When an ME obtains the requested k, its 
state converts to the satisfied state. Assuming the caching 
cluster (MDC) is transparent to end users, the video system at 
area a can be treated as an M/M/l queue [14], whose arrival 
rate and service rate are /3*J (t) Bd and U + ipk (t) I  (t) B u, 
respectively, where U denotes the constant MDC service rate. 
Bd and B u are the download and upload bandwidth, respec­
tively. The average waiting delay before acquiring the con­
tent equals 1/U  +  fik l (t ) Bd — ipk (t ) I  (i) B u, the proba­
bility of a node in I  (t) converting to state X  (t ) equals to 
U +  pkJ (t) Bd — <fik (t) I  (t ) B u. Further, the conversion rate 
equals R  (f) [U + I  (t) (fikBd — <Pk (t) Bu)\. An ME in the 
caching status may also become interested in the content. As 
the requested content is already local, it can direcdy convert 
to the satisfied status. Similar as Transition  2, the conver­
sion rate of Transition 5 can be characterized by C (t) fik-

Transitions 6, 7, 8, 9, and 10: As an ME in area a can 
move out arbitrarily, all states will transit to the out-area state. 
The conditional probability density function of ME with mov­
ing range S„ at coordinates (xn , yn) is characterised by a 
piece-wise function / ( r ) ,  where r denotes the distance from 
the corresponding BS; Fn (Sn) \ (xn, yn) denotes the proba­
bility distribution of the BS area. In Transition 10, as the ME 
caching space is limited, a caching eviction occurs when the 
storage is full. We denote Vk for the eviction probability of 
content k which is the inverse of fc’s average cache lifetime

E ( T k) = /3k 1 ef>keTk
~0kTk (Tfc + ̂ )

g /S fc 'T fc
+  Tk , (1 )

whereby Tk is the eviction threshold time. The dynamics of 
all states is characterized by the following O.D.E functions 
with initial state1 (I  ( t o ) , R  ( t o ) , C  ( t o ) , X  ( t o ) , O ( to )) :

^  = mow-nthw+EiTkr'c it)  o  

AI^  =  f i k I ( t ) - [ F l (x0, y0) + Wk (t)]R(t)  (3) 

=  Wk( t ) R ( t ) + p k C ( t ) - F i ( x 0, y0)X( t ) (4)  *

'without loss of generality, we assume that to=0, namely, the start-up 
time of the system
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dC7(t) 

d t
dO (t) 

d t

<pk ( t ) I ( t ) - L ( t ) C ( t )  (5)

Fi (x0, yo) [1 - 0  (t)] -  f ( r )Q (t ) ,  (6)

with 7 (t) = [o(t) + /3k + Fi(x0,y 0)], W(t) = I{t)\U  +  
IW kB d-<pk{t)Bu)\, and L(t) =  x 0,yo)-

4. PROBLEM FORMULATION

The optimal allocation policy for mobile edge scenario should 
consider the trade-off between service capacity and caching 
consumption. We formulate the objective function of the 
caching allocations as:

J  (<pk) =  a R  (Tm) +  PC (Tm) , (7)

wherea —p  =  1 andTm =  {Tm \Rk (Tm) =  maxteT R k (t)} 
indicates the peak load of the video system. Hence, the 
first term penalizes the system when there is a high peak 
load and second term penalizes when there is excessive 
caching redundancy2. Additionally, the mobile scenarios 
vary stochastically (node states and network topology), thus, 
it is necessary to formulate caching optimization as an online 
optimization problem that can adapt to the caching allo­
cation dynamically. We assume that the time is slotted as 
T  =  {T  (1), T  (2), T  (3 ) ,. . .} . For simplicity, we assume 
that the slot time A T  (i ) =  T  (i + 1) — T  (i) = A T  is con­
stant. Thus, the time varying form of the objective function 
(7) at AT* can be expressed as:

Jk (<pk (T  (*))) =  a R k (Tm (»)) +  pCk (Tm (»)), (8)

where R k (Tm (i)) and Ck (Tm (i)) are the R {Tm) and 
C  (Tm) of content k during the time interval (T (i) , T  (* +  !))• 
The caching optimization in BS area a is:

N

Minimize E E Jk (<pk (T(i)))  (9)
i = l  T ( i ) e T

s .t  0 <<pk ( T ( i ) ) , V T ( i ) e T .  (10)

in Section 3, the calculation of the numerical solution of (2)- 
(6) requires the initial value of the number of users in dif­
ferent states; moreover deriving f ( r )  and F[ (xo, yo) requires 
the average speed V,  while deriving E  (Xfc)-1 requires pk.

We first discuss how to derive the initial state of Edge- 
Boost. Each ME in area a maintains a 4-tuple {N^ (T ( i ) ) , 
IRfc (T ( i)) , Cfc (T ( i )) , Sfc (T (i))} to identify its state for 
every content k, whereby IN, R, C, £  are defined as the in-area, 
requesting, caching and satisfied state, respectively. Each 
value in this 4-tuple is a 0 or 1 indicating whether the ME 
is in the corresponding state or not. For example, when ME 
i has received video content k, the corresponding 4-tuple will 
be {0,0,0,1}. Based on this 4-tuple design, the BSs are able 
to estimate the initial state at time t. Specifically, by collect­
ing this 4-tuple from all MEs in the serving area, the BS of 
area a calculates the numbers of users in the in-area, request­
ing, caching, and satisfied state for all content items at time t. 
Each BS also shares the number of users in its area with other 
BSs in order to estimate the users in the out-area state. The 
requesting rate of pk for each content can be derived as the ra­
tio between the number of users in the requesting state and the 
total number of users in area o. MEs also upload the moving 
speed at time t  to the BSs for average speed estimation.

To derive the optimal caching policy ijjk (T  (*)) for every 
content k at each time slot T  (i), each BS traverses through 
an interval V' € [0, 1] and selects the ip with the minimum 
Jk (ip) value as ip* (T (*)). We define the caching gap as the 
difference between the optimum number of replicas and the 
current number of replicas

Gk = max{0,rk ( T ( i ) ) - C ( T ( i ) ) } .  (11)

Gk indicates how much caching space is required to achieve 
the optimum at T(i ).  According to Gk, the caching space 
Ck (T (i) ) for each content k is allocated according to the rule:

Ck (T(i)) = (12)

k€K

where K, is the set of video content, and C is the available 
caching space in area a, given by

5. ALGORITHM DESIGN

We address the user dynamics with an online optimal caching 
allocation mechanism based on solving problems. For sim­
plicity, in solving Eqns. (9) and (10) we assume that each ME 
contributes the same cache storage space S. At each time slot 
t , t  €T ,  our proposed algorithm first calculates the J  (ip) un­
der different tp (t) via solving the ODE functions (2)-(6). Due 
to the problem complexity, we use Heun’s method to compute 
numerical solutions for (2)-(6). According to the discussion

2As C  (Tm ) indicates the caching overhead, this formulation inherently
considers the energy consumption for caching

c= E (5- E^w+^k(*)))• (i3)
«ei„(T(«)) \  fce/c /

The BS broadcasts caching replicas for each content follow­
ing Eqn. (13). The caching policy is described in Algorithm
1. Lines 4 to 6 evaluate the Jk values and make assignment 
to Gk. Finally, Ck is computed.

6. PERFORMANCE EVALUATION

We perform our simulations with MATLAB on a 4 GB RAM, 
Intel Xeon system. We consider a 2000 x 2000 m2 network
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0.5

Algorithm 1: Caching Allocation Alg. at T  (i)
Input: 4-tuples of users in Ia (T  (* * * 1)), alloc, cache 

space S  for each user, search step size cu 
Output: Cfc (T  (i))

1 while k £ K do
2 Jk (ipmax) =  0,
3 while ip <  1 do
4 Calculate the Jk (ip); if  Jk (ip) >  Jk (ipmax)

then
5 i J k (lp max ) « -  J k (ipy,

6 _ Gk <- max{0, Jk (t) -  C (T  (*))};

7 6V _̂ CGk—.7 G k <r- E  G k  ,
ke K

area with eight 5G-NR (new radio) BSs deployed at arbi­
trary locations. The communication range of each BS is set 
to 500 m. We simulate a total of 300 MEs, each equipped 
with a 5G-D2D communication module. The D2D commu­
nication range is set to 150 m and bandwidth to 30 Mbps. 
We use 20 different video instances with 200 s inter-request 
times per user. The video segments are 2 s long with a bitrate 
of 4000 Kbps, resulting in a chunk size of 1 MB. The arrival 
rate of each video request follows a Poisson distribution with 
parameter A randomly chosen between [2, 20]. When the re­
quested video is determined, the corresponding segments will 
be consequently accessed by ME. The simulation time is set 
to 1000 s and 95% confidence intervals are evaluated. ME 
movements follow the Random Way Point (RWP) model that 
independently chooses a destination and moving speed within 
given ranges. We consider the performance metrics:

•  AAL (average access latency): The time interval be­
tween sending the request and receiving the first packet 
of the requested content is defined as the access latency. 
The mean value of the access latency in the simulation 
at time t  is considered as the AAL at t.

•  CHR (cache hit ratio): The ratio between the total 
number of requests and the number of satisfied requests 
at time t  are defined as the CHR at t.

We compare our Edge-Boost with the state-of-the-art Random 
Cache policy in [10].

6.1. Simulation Results

Variation of Caching Size: Figs. 3(a) and (b) show the AAL 
and CHR as a function of the caching size. Each data point in 
Fig. 3(a) and (b) represents the AAL at 1000 s and the over­
all average CHR during the simulation. The caching space of 
each ME ranges from 1% to 4%. A decreasing AAL trend 
with the increase of caching size is observed. This is justified 
by the fact that the probability of accessing content within one

Fig. 3. Variation of caching size, (a) AAL vs. Caching Size 
(b) CHR vs. Caching Size
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Fig. 4. Variation of simulation time, (a) AAL vs. Caching 
Size (b) CHR vs. Caching Size

hop increases with the caching capacity. In addition, Edge- 
Boost out-performs the random strategy [10] with upto 25% 
lower AAL. According to Fig. 3(b), the CHRs of both meth­
ods increase with growing caching capacity. This can be at­
tributed to the fact that a larger caching size yields a higher 
cache hit probability. Due to the accurate and timely estima­
tion of content demand, Edge-Boost has a higher CHR than 
random caching [10] across the entire range of considered 
caching space. For instance, for a cache size of 4%, Edge- 
Boost achieves a 28% higher CHR than random caching.

Variation of Simulation Time: Figs. 4(a) and (b) show the 
AAL and CHR as a function of the simulation time for fixed 
caching spaces of 2, 3, and 4%. In Fig. 4(a), shows increasing 
AAL trends for both Edge-Boost and Random Cache. These 
ALL increases are due to the increasing scale of pending re­
quests as the simulation time advances in the system of con­
stant capacity. The overall Edge-Boost AAL is lower than 
that of state-of-the-art random caching [10]. For instance, 
the Edge-Boost curves corresponding to 3% and 4% caching 
space indicate a lower AAL than than the random caching 
curves for 4% caching space. The CHR fluctuates in every 
state during the simulation, which is mainly because of the 
dynamic request arrivals. In general, Edge-Boost achieves a 
higher CHR, mainly because Edge-Boost dynamically allo­
cates the caching space for each content according to esti­
mates of future demands.

Variation of Moving Velocity: Figs. 5(a) and (b) show the 
AAL and CHR of Edge-Boost and random caching as a func­
tion of the level of velocity. We consider five velocity range 
levels [1, 5] m/s, [5, 10] m/s, [10, 15] m/s, [15, 20] m/s, and
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V elo city  R ange(m / s)

Fig. 5. Variation of velocity range, (a) AAL vs. Caching Size 
(b) CHR vs. Caching Size

[20, 25] m/s. As Fig. 5 (a) shows, the AAL increases with 
the increase in moving speed, which is mainly because of in­
creased D2D link fluctuations caused by the increasing mov­
ing speed. As expected, we observe from Fig. 5(b) that the 
CHR decreases when the moving speeds of vehicles are ac­
celerated. Further, Fig. 5 shows that Edge-Boost outperforms 
random caching for all velocity ranges. For example, for the 
moving speed [10, 15] m/s, Edge-Boost achieves about 40% 
higher CHR and 20% shorter AAL, respectively, than random 
caching [10].

7. CONCLUSION AND FUTURE WORK

We have studied the problem of optimally allocating caching 
in Mobile Device Clouds (MDCs). We have proposed the 
Edge-Boost framework for caching dynamics in MDCs. Fur­
ther, a fluid-based model, which can provide timely estimates 
of caching demand constrained by the variation of content re­
quests in mobile environment has been proposed. Addition­
ally, an online caching optimization algorithm Edge-Boost 
based on fluid-based model is designed. Our evaluation re­
sults show that Edge-Boost achieves higher cache hit ratios 
(typically 20% higher) and shorter average access laten­
cies (typically 15% shorter) than the state-of-the-art random 
caching strategy [10]. An important future research direction 
is to examine the energy constraints of the devices in MDCs. 
Moreover, future research should examine the MDC man­
agement of in hybrid SDN infrastructures that mix legacy 
non-SDN with SDN equipment [15],
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