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Abstract—Vehicular applications such as Augmented Reality
(AR), Virtual Reality (VR), and High Definition Map (HD Map)
are known for their latency-sensitive traits. But, dynamic schedul-
ing at the MAC layer incurs significant signalling overhead (in
terms of Scheduling Requests (SRs) in Uplink (UL)), leading
to non-negligible latency in 5G NR. To address this issue, 5G
NR introduces Configuration Grant (CG) for UL transmission,
which pre-allocates radio resources to UEs (vehicles), thereby
reducing signalling overhead between a vehicle and the Base
Station (gNB). However, the high-speed mobility of vehicles results
in rapid changes in channel conditions. Employing CG in a
vehicular scenario can lead to incorrect assignment of transmission
parameters (e.g., Modulation and Coding Scheme (MCS)), thereby
adversely impacting the vehicles’ Packet Delivery Ratio (PDR). To
address this issue, this paper proposes a CG allocation algorithm
that utilizes a Machine Learning (ML)-driven approach to predict
the future MCS of vehicles. A data-driven ML model, derived from
a real-world dataset, assists the radio resource scheduler and is
evaluated using the NS-3 5G-LENA CG module. The ML-assisted
CG allocation algorithm demonstrates significant improvements in
terms of PDR and spectrum usage efficiency in vehicular scenarios.

Index Terms—Configured Grant, Vehicular Applications, Ma-
chine Learning, Radio Resource Scheduling.

I. INTRODUCTION

VEHICULAR applications, such as High-Definition Map
(HD-map), Augmented Reality (AR), Virtual Reality

(VR), and services assisted by the Vehicle-to-Everything (V2X)
network, have the potential to significantly enhance traffic
efficiency, road safety, and alleviate congestion. These applica-
tions are computationally intensive and generate Uplink (UL)
traffic, necessitating the successful delivery at least 99.99% of
packets with a packet delivery time below one msec [1]. To
reduce packet delivery time, 3GPP has introduced several new
technologies as part of 5G New Radio (NR) such as Configured
Grant (CG), multiple numerologies, Bandwidth Parts (BWPs),
service multiplexing, and mini-slotting.

To minimize packet latency at the MAC layer, 5G NR
specifications [2], [3] introduce two types of UL channel access
methods. In dynamic scheduling, a UE1 sends a Scheduling
Request (SR) to a gNB, seeking radio resource allocation for
data transmission. The gNB performs scheduling and provides
a Scheduling Grant (SG) to the UE (vehicle), containing a time-
frequency grid and transmission parameters (e.g., Modulation

1Throughout this paper we use the terms vehicles and UEs interchangeably.

and Coding Scheme (MCS)). Once the SG is received, the
vehicle can transmit data in its assigned slot. However, this
kind of additional signaling overhead between the vehicle and
gNB can introduce delays that may violate latency requirements
for some of the vehicular applications. To eliminate latency-
inducing scheduling operations, CG channel access method is
put forward, which pre-allocates radio resources in advance
based on the periodicity (i.e., Inter Packet Arrival Time (IPAT))
and packet size of UL traffic. In [4], the authors explored the
CG mechanism for shared channel resources, addressing both
periodic and sporadic (random) traffic of UEs in an Industry
4.0 factory environment. Another study by the authors of [5]
demonstrated that employing CG with different scheduling
policies reduces Radio Link Control (RLC) delay compared
to dynamic scheduling. However, to the best of the authors’
knowledge, the influence of UE mobility on Packet Delivery
Ratio (PDR) and radio resource efficiency has not been thor-
oughly investigated. Therefore, there is a need to examine CG
allocation in vehicular networks and the associated trade-offs
that impact the overall performance of vehicular applications.

In vehicular environment, CG allocation approach becomes
challenging due to high-speed of vehicles that experience
rapid channel variations, causing frequent fluctuations in SINR
values. Due to this reason, implementing CG in a V2X network
can adversely affect vehicles’ PDR, leading to significant
performance degradation in vehicular applications. Therefore,
predicting SINR values and using them to appropriately set
MCS for subsequent UL transmissions play an important role
in assigning necessary radio resources to a vehicle for CG
allocation to ensure successful packet delivery. Thereafter,
careful adjustment of CG allocation at appropriate intervals
(i.e., CG configuration window (CGw)) is necessary for the
conservation of radio resources. The main contributions of this
paper are as follows:

• We study the effect of changing CG configuration window
(i.e., CGw) on PDR and radio resources usages. Here,
the CGw should be carefully chosen to ensure effective
smoothing out channel variations caused by the fast fading
of a vehicle while also considering the time-dependent
changes in path loss.

• We propose a Long Short-Term Memory (LSTM) CG



allocation scheme for V2X networks. Here, LSTM model
is trained using Berlin V2X dataset [6] to predict MCS of
UEs for assisting the MAC scheduler in allocating CGs.

• Simulation results show that the proposed LSTM-assisted
radio scheduling algorithm and changing CG allocation
according to chosen CGw increases PDR by 14%, 44%
and saves radio resources by 6%, 2% for numerologies 1
and 2, respectively, over baseline schedulers.

The rest of the paper is organised as follows: Section II
presents the related work. Section III explains system model in
detail. Section IV presents CG scheduling in vehicular scenario.
Section V illustrates simulation setup, Berlin V2X Dataset
and discusses performance evaluation, depicted through graphs.
Finally, we conclude our paper in Section VI

II. RELATED WORK

Although there has been research efforts [4], [5] focusing on
the use of CG for sensor data in the context of Industry 4.0
factory use case, the primary emphasis has been on selecting
optimal CG and meeting latency requirements for UEs in spo-
radic or random traffic scenarios. Further, utilization of machine
learning approaches to assist in CG method has been explored
in research. For instance, in [7], multiple active CGs are
employed for URLLC UEs to support bursty traffic. The authors
propose a Double Deep Q-Network-based algorithm to allocate
resources while adhering to latency. In another study [8], an
energy model based on real-world setups is introduced to pre-
dict smart grid traffic, followed by radio resource allocation for
CG aimed at improving latency and spectrum usage efficiency.
Additionally, in [9], an Auto-Regressive Integrated Moving
Average (ARIMA) model is proposed for predicting future
traffic demands using real-world data. This prediction model
facilitates radio resource management between URLLC and
Enhanced Mobile Broadband (eMBB) slices for CG allocation.

Differing from prior studies, this paper presents a novel
contribution by predicting the MCS value to do CG allocation
and setting the CGw based on the average vehicle speed. The
aim is to investigate their combined impact on PDR and radio
resource utilization efficiency, while considering the associated
trade-offs. To the best of our knowledge, this is the first work
to propose a machine learning approach that predicts MCS and
adjusts the CG allocation based on the average vehicle speed,
with the objective of enhancing PDR in V2X networks.

III. SYSTEM MODEL

To study the impact of CG transmission on the PDR of
vehicles in a 5G NR V2X network, we examine a scenario
where V vehicles operate within the coverage of a single gNB.
The vehicles generate data packets with a certain periodicity
(i.e., IPAT) and fixed data sizes. The gNB plays a key role
in efficiently allocating CGs to these vehicles, utilizing traffic
information received from the vehicles and channel state in-
formation. This process involves vehicles sharing their traffic
details, including periodicity and size of data packets, with the
gNB using Radio Resource Control (RRC) messages, thereby
facilitating the effective allocation of CG.

To facilitate radio resource allocation, the gNB employs a
scheduling algorithm and sends associated transmission param-
eters, including the UL MCS and Resource Blocks (RBs), to
the vehicles. To do that, the gNB utilizes RRC message to
convey the allocation of RBs along with the starting, ending
slots and UL MCS to the vehicles for Type-1 CG allocation
which adheres to the 5G specs [10]. The gNB can adjust the
assigned RBs and UL MCS to vehicles using RRC reconfigu-
ration messages at specified intervals i.e., CGw. This flexibility
enables the gNB to reassign RBs and adjust MCS based on the
UL transmission requirements of the vehicles, which in turn
depend on the vehicles’ speeds, as illustrated in Fig. 1. The
dynamic nature of RBs assignment with appropriate MCS value
contributes to efficient radio resource utilization in vehicular
networks.
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Figure 1: System model illustrating CG configuration, UL data
transfer, and CG reconfiguration as a vehicle moves inside the
coverage region of a gNodeB.
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Figure 2: Training and operation flow of LSTM prediction
module using a dataset for predicting MCS values to assist
the MAC scheduler. CG configuration message is shown for
initial CG allocation while CG reconfiguration message is used
to modify transmission parameters (e.g., UL MCS and RBs
allotted) of a vehicle at specified CGw intervals.



IV. CG SCHEDULING IN VEHICULAR SCENARIO

In this section, we present a radio resource scheduling
mechanism for the CG allocation to minimize packet drops
in a vehicular scenario. Packet drops can occur because the
gNB pre-assigns transmission parameters {UL MCS, RBs} for
future UL data transmissions which may not be robust/sufficient
due to vehicle maneuver. In case more RBs are assigned than
required, then wastage of resources happens, thereby reducing
spectral efficiency. Conversely, fewer RBs are assigned than
required by using higher MCS values; packet drop occurs
during transmission, decreasing PDR and counteracting this key
goal. Here, CGw plays a significant role in increasing PDR
and conserving radio resources. A smaller CGw increases the
number of control messages required but could result in reduced
radio resource consumption by setting MCS appropriately as
per current channel conditions. Hence, the main challenge is
to efficiently allocate RBs for each vehicle and configure an
accurate CGw for CG allocation.

Algorithm 1 LSTM-Assisted CG Allocation
inputs : VallMCS = {v1, v2, . . . , vi} (i ∈ V),

vi =
{
mcs1,mcs2, . . . ,mcs|CGw|

}
,

Rv = {}, MCSv = {} , V
output: Number of RBs per UE Rv (v ∈ V)
forall vi ∈ VallMCS do

// Initialize a list to store predicted MCS values
MCSpred ← ϕ
// Predict MCS values using LSTM model
MCSpred ← LSTMpredict(vi)
// Find the minimum MCS from MCSpred list
MCSv ← MinimumValue(MCSpred)

end
/* Calculate CG allocation for each UE based on the
corresponding minimum MCS value */
Rv ← CalculateCGallocation(MCSv)

To achieve efficient CG allocation, we leverage a machine
learning mechanism, specifically LSTM, to predict the MCS of
vehicles, as depicted in Fig. 2. LSTM is a variant of Recurrent
Neural Network (RNN) specifically designed to capture and
learn long-term dependencies by leveraging the information
retained from previous iterations of the learning process [11].
At every CG allocation, historical MCS data of the vehicle,
serves as input for the LSTM model to predict future MCS
of the vehicle as given in Algorithm 1. The algorithm begins
with an empty set of RBs allocated to each UE v, v ∈ V
i.e., Rv = ∅. The algorithm then iterates over all the UEs in
VallMCS , where each UE vi =

{
mcs1,mcs2, . . . ,mcs|CGw|

}
contains previous CGw MCS values. Next, for each UE v in
VallMCS , it predicts the MCS values for v using the LSTM
model (LSTMpredict ()) and stores in MCSpred. After that,
the algorithm finds the minimum MCS (MinimumValue ())
value MCSv among the predicted values MCSpred for each
vehicle v. Finally, the algorithm calculates the number of RBs

for CG allocation (CalculateCGallocation ()) for the
vehicle v, using minimum MCS values in MCSv and updates
it in Rv , v ∈ V .

In this process, the LSTM model assists the radio resource
scheduler in allocating UL RBs to vehicles using Type-1 CG.
Subsequently, the gNB conveys new transmission parameters
(UL MCS and RBs) to a vehicle using the RRC reconfiguration
message at every CGw. Upon receiving the new transmission
parameters from the gNB, the vehicle starts using these param-
eters to send pending packets. Further, the UL grant recurs
using the approach mentioned in [2] for each symbol in a
duration of CGw. Here, a larger CGw offers the possibility
of more accurately predicting MCS value for a vehicle. The
reason behind this is the wider range of MCS data a larger
CGw encompasses, which contributes to better training of the
LSTM model. Consequently, such accurate predictions could
lead to improvements in CG allocation for a vehicle. At every
CGw, the input values to the LSTM model are adjusted based
on the vehicle’s MCS value history from the last CGw. Thus,
an efficient LSTM model assigns RBs to a vehicle by assigning
probable MCS values for a vehicle. Essentially, the LSTM
model is used to balance the trade-off between RBs usage
efficiency and PDR of vehicles.

V. SIMULATION AND PERFORMANCE EVALUATION

In this section, we discuss the simulation setup, the dataset
used to train the LSTM model, and simulation results. Addi-
tionally, we explore different CG allocation schemes employed
in the study.

A. Simulation Setup

As a case study, we used HD-Map application to evaluate
the performance of the proposed scheme using NS-3’s 5G-
LENA module [5]. We consider the highway scenario where
road segments taken from a city in Canada (i.e., Winnipeg)
consist of a two-way Pembina Canada Highway of 250 meters
stretch in length. Further, Rapid Cellular Network Simulation
Framework (RACE) [12] is used to generate customised ve-
hicular traffic. RACE framework uses the Simulation of Urban
Mobility (SUMO)2 and OpenstreetMap3 to generate the vehicle
traffic and real cellular infrastructure dataset provided by the
Canadian organization of Innovation, Science and Economic
Development (ISED)4 is used in this study. Vehicles generate
Constant Bit Rate (CBR) traffic for UL transmission with fixed
periodicity and packet size. Here, simulation parameters are
summarized in Table I and set according to [5]. Herein, each
simulation is repeated with 10 different random seeds and
results are presented with 95% confidence intervals.

B. Berlin V2X Dataset

We use the publicly available Berlin V2X dataset [6] to train
LSTM model. Berlin V2X is a measurement campaign to cap-
ture vehicle and wireless network data over highways, avenues,

2http://www.sumo.dlr.de/userdoc/SUMO.html
3http://www.openstreetmap.org/
4https://sms-sgs.ic.gc.ca/eic/site/sms-sgs-prod.nsf/eng/h 00010.html



Table I: Simulation Parameters

Parameter Value
Number of vehicles |V| 15
Mobility model Krauss
Average vehicle speed (Vspeed) 20 - 80 kmph
5G NR gNB/Vehicle TX power 46/23 dBm
5G NR gNB antenna tilt 15◦

5G NR gNG/Vehicle antenna height 25/1.5 meter
Carrier frequency 5.9 GHz
Channel model UMa LoS
5G NR gNB antenna model OmniDirectional
Vehicle antenna model Isotropic
Channel bandwidth 30 MHz
5G NR numerology (µ) 1, 2

5GL-OFDMA
LSTM-5GL-OFDMA

MAC scheduler RB-OFDMA
LSTM-RB-OFDMA
SR-Based-RR

Packet Size (L) of HD Map App 60 bytes
Packet Periodicity (IPAT) of HD Map App 10 msec
Slot Configurations 1D13U
CG Configuration Window (CGw) 5-15 seconds
Simulation Time 50 seconds

tunnels, residential and West Berlin Park to do machine learning
studies. In this dataset, the two vehicles are 1.2 to 3 km apart,
and the route stretches to 17.2 km. Vehicle data is collected for
45 minutes driving on weekdays for three days for a granularity
of 10 msec. Here, vehicles are connected to a remote server
over 4G. The UL/DL data is generated using MobileInsight,
Tcpdump and Iperf tools by placing dedicated measurement
equipment on the vehicles.

The parameters of LSTM: The parameters of LSTM model
encompass its feature, timestamp, lead-time, and learning
rate η. The feature of the LSTM is determined by the dimen-
sionality of the input data. Since the prediction model takes
only the previous MCS value, which is one-dimensional data,
the feature is set to 1. The timestamp parameter dictates the
number of historical values used to predict subsequent values.
After conducting numerous experiments, it has been observed
that setting the timestamp to 15 yields optimal accuracy for the
LSTM model. Therefore, the timestamp is fixed at 15. Lead-
time denotes the future time span for which data prediction
is required, and it is set as the duration of CGw. Regarding
the learning rate η, a default value of 0.01, as documented in
Keras [13], is chosen. Finally, the ideal number of training
epochs for the LSTM model has been found to be 100,
following extensive experimentation. We have split the dataset
into two parts for training and validation, where the validation
part is one-fourth of the data.

C. Comparison Schemes

We consider the following state-of-the-art, proposed, and
baseline CG radio resource scheduling schemes:

• 5GL-OFDMA [5]: 5GL-OFDMA, a constrained version
of OFDMA in 5G NR, allocates one RB in the frequency
domain and all the OFDMA symbols within a slot to a

UE. Additionally, 5GL-OFDMA allows the division of
the OFDMA symbols within a slot into two or more seg-
ments, each with a different or equal number of OFDMA
symbols. The radio resources within each segment can be
accessed by the UEs assigned to the same antenna beam.

• RB-OFDMA [5]: The RB-OFDMA scheduling policy op-
timizes resource allocation by minimizing the number of
RBs assigned to UEs. UEs are divided into sets, where the
last set of UEs may have fewer RBs assigned compared
to other sets. The scheduling policy follows a first-come,
first-served order, and radio resources are allocated from
the first to the last symbol within a slot. RB-OFDMA
efficiently distributes RBs among the maximum number of
UEs, considering the minimum RBs required for each UE.
RB-OFDMA calculates the minimum number of OFDMA
symbols in the frequency domain and RBs in the time
domain for resource assignment, aiming to minimize the
number of RBs unallocated to UEs. Additionally, each UE
is guaranteed to receive at least some arbitrary RBs.

• LSTM-5GL-OFDMA: LSTM-5GL-OFDMA is a LSTM-
assisted 5GL-OFDMA algorithm that takes predicted MCS
inputs from the LSTM model.

• LSTM-RB-OFDMA: LSTM-RB-OFDMA is an LSTM-
assisted RB-OFDMA algorithm that utilizes predicted
MCS values as inputs from the LSTM model.

• SR-Based-Round Robin (SR-Based-RR): SR-Based-RR
scheduler allocates a fixed amount of RBs to each user
in a sequential order. SR-Based-RR ensures that each UE
gets an equal opportunity to access the shared resources.

The state-of-the-art CG resource allocation schemes are 5GL-
OFDMA and RB-OFDMA, while LSTM-5GL-OFDMA and
LSTM-RB-OFDMA are our proposed LSTM-assisted schemes,
and the SR-Based-RR serves as the baseline. The following
performance metrics are used to evaluate the performance:

• Packet Delivery Ratio (PDR): PDR signifies the proportion
of successfully delivered packets in comparison to the total
number of packets sent in a network.

• RLC delay: The RLC delay refers to the time elapsed from
the generation of a packet at the RLC layer of a UE to its
reception at the RLC layer of the gNB.

• Average RBs allocation: This metric is used to evaluate the
efficiency and effectiveness of RB utilization. It indicates
the percentage of allocated RBs by different CG allocation
schemes, calculated with respect to the total number of
RBs used for the SR-Based-RR scheduling.

D. Simulation Results and Analysis
1) Effect of CGw on PDR: To assess the impact of CGw

on PDR, we varied the CGw size from 5 to 20 seconds with a
step size of 5 seconds for LSTM-5GL-OFDMA and LSTM-RB-
OFDMA. In Fig. 3, we plotted the PDR for Vspeed = 60 kmph,
µ = 1, and the packet size L = 60 by varying CGw. The
results demonstrate that with an increase in CGw from 5
to 20 seconds, the PDR improves until reaching the value
of 15 seconds for both LSTM-RB-OFDMA and LSTM-5GL-
OFDMA. The prediction of MCS values by the LSTM model



depends on the size of CGw. Properly tuning the CGw can lead
to improved PDR, particularly when the CGw is aligned with
the environmental conditions (i.e., vehicle mobility patterns).
For the remainder of the simulation, we fixed the CGw value
to 15 seconds for Vspeed = 60 kmph.
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Figure 3: PDR for HD Map application with µ = 1 by varying
CGw for V = 15 with Vspeed = 60 kmph where L = 60.

2) PDR and RLC delay: Figs. 4(a) and 4(b) show the
PDR and RLC delay for LSTM-5GL-OFDMA, LSTM-RB-
OFDMA, 5GL-OFDMA, RB-OFDMA and SR-based-RR (aka
dynamic scheduling) approach for µ = 1 and µ = 2 for
Vspeed = 60 kmph. As we can see from the plots, LSTM-
5GL-OFDMA and LSTM-RB-OFDMA perform better in terms
of PDR and are close to SR-based-RR. This demonstrates the
efficacy of the predicted MCS values using the LSTM model. In
contrast, 5GL-OFDMA and RB-OFDMA achieve lower PDR
because they do not use robust transmission parameters {UL
MCS, RBs}. Further, RB-OFDMA incurs less RLC delay com-
pared to 5GL-OFDMA due to the efficient allocation of RBs
resulting in latency/PDR trade-offs. However, 5GL-OFDMA is
more robust for vehicle mobility because allocation happens
in the frequency domain rather than in time/frequency, thereby
achieving better PDR as compared with RB-OFDMA. On the
other hand, SR based approach performs best in terms of PDR
but is always accompanied by an extensive RLC delay caused
by control messages exchanged between gNB and vehicles.
However, PDR is low for µ = 2 compared to µ = 1 for all
radio resource algorithms due to the fragmentation of packets
happening more in µ = 2 because of the reduced slot time.
The LSTM-5GL-OFDMA algorithm shows a consistent upward
trend in comparison to LSTM-RB-OFDMA, 5GL-OFDMA,
RB-OFDMA and results in an increase in PDR of 14% and
44% for µ = 1 and µ = 2, respectively, when compared to
5GL-OFDMA.

3) Speed of vehicles: To study the impact of the speed of
vehicles on PDR for different radio resource algorithms, the
average speed of vehicles is changed using acceleration and
speed parameters of vehicles in SUMO. Thereafter, results for
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Figure 4: Result observed for HD Map application by varying
numerology for V = 15 with Vspeed = 60 kmph where L = 60
and CGw = 15.

different numerologies are taken by exporting SUMO traces in
NS-3. As shown in Figs. 5(a) and 5(b), PDR drops with an in-
crease in the average speed of vehicles from Vspeed = 20 kmph
to Vspeed = 80 kmph for µ = 1 and µ = 2 for all algorithms
under study. Impressively, LSTM-5GL-OFDMA performs close
to the SR-based-RR approach for both numerologies.

4) Average RBs allocation: Fig. 6 depicts the average ra-
dio resource allocation of LSTM-5GL-OFDMA, LSTM-RB-
OFDMA 5GL-OFDMA and RB-OFDMA for µ = 1 and µ = 2
for Vspeed = 60 kmph and L = 60. We can observe that
RB-OFDMA uses 20% and 19% more radio resources than
5GL-OFDMA to serve vehicle demand for µ = 1 and µ = 2,
respectively, but RB-OFDMA incurs less RLC delay. Moreover,
LSTM-RB-OFDMA and LSTM-5GL-OFDMA use 14%, 6%
and 20%, 2% less RBs than RB-OFDMA, and 5GL-OFDMA
for µ = 1 and µ = 2, respectively. The reason is, ML-
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Figure 5: Result observed for HD Map application by varying
speed of vehicles for V = 15 where L = 60 and CGw = 15.
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Figure 6: RBs allocation with respect to SR-based-RR observed
by varying numerology for V = 15 with Vspeed = 60 kmph
where L = 60 and CGw = 15.

driven LSTM predictive model forecasts vehicle’s transmission
parameters {UL MCS, RBs} for vehicles. Thereafter, the gNB
reconfigures transmission parameters using RRC reconfigura-
tion messages at a specified window of CGw = 15, enabling
radio resource savings.

VI. CONCLUSIONS

This paper presented the first insight into using Configured
Grant (CG) in Vehicle-to-Everything (V2X) networks. Here,
we considered a case study where vehicles run HD-Map
applications which CBR traffic. To efficiently allocate CG
in a vehicular scenario, we proposed an LSTM-assisted CG
algorithm. The LSTM model was trained using a real dataset
from Berlin V2X, enabling accurate predictions of a vehicle’s
future MCS and assisting in efficient radio resource scheduling.
Specifically, the efficacy of the LSTM model demonstrated
PDR enhancement and radio resource saving for vehicles by
changing the transmission parameters of a CG using RRC
reconfiguration messages at a fixed window size. Moreover, we
showed that the allocation of radio resources in the frequency
domain is more robust as compared to time-frequency domain
allocation for moving vehicles. This paper lays the groundwork
for future research for CG usages in V2X networks.
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