
Vedran Dunjko- University of Innsbruck
Vedran Dunjko
- University of Innsbruck
About
157
Publications
22,855
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,490
Citations
Introduction
Current institution
Publications
Publications (157)
This white paper discusses and explores the various points of intersection between quantum computing and artificial intelligence (AI). It describes how quantum computing could support the development of innovative AI solutions. It also examines use cases of classical AI that can empower research and development in quantum technologies, with a focus...
The most general examples of quantum learning advantages involve data labeled by cryptographic or intrinsically quantum functions, where classical learners are limited by the infeasibility of evaluating the labeling functions using polynomial-sized classical circuits. While broad in scope, such results reveal little about advantages arising from th...
In a series of recent works, an interesting quantum generative model based on parameterized instantaneous polynomial quantum (IQP) circuits has emerged as they can be trained efficiently classically using any loss function that depends only on the expectation values of observables of the model. The model is proven not to be universal for generating...
Variational quantum eigensolver (VQE) is one of the most prominent algorithms using near-term quantum devices, designed to find the ground state of a Hamiltonian. In VQE, a classical optimizer iteratively updates the parameters in the quantum circuit. Among various optimization methods, quantum natural gradient descent (QNG) stands out as a promisi...
A central question in machine learning is how reliable the predictions of a trained model are. Reliability includes the identification of instances for which a model is likely not to be trusted based on an analysis of the learning system itself. Such unreliability for an input may arise from the model family providing a variety of hypotheses consis...
Parametrized quantum circuits (PQC) are quantum circuits which consist of both fixed and parametrized gates. In recent approaches to quantum machine learning (QML), PQCs are essentially ubiquitous and play the role analogous to classical neural networks. They are used to learn various types of data, with an underlying expectation that if the PQC is...
The double descent phenomenon challenges traditional statistical learning theory by revealing scenarios where larger models do not necessarily lead to reduced performance on unseen data. While this counterintuitive behavior has been observed in a variety of classical machine learning models, particularly modern neural network architectures, it rema...
Expectation Value Samplers (EVSs) are quantum-computer-based generative models that can learn high-dimensional continuous distributions by measuring the expectation values of parameterized quantum circuits regarding selected observables. However, such models may require unaffordable quantum resources for good performance. This work explores the imp...
Determining whether an abstract simplicial complex, a discrete object often approximating a manifold, contains multi-dimensional holes is a task deeply connected to quantum mechanics and proven to be QMA1-hard by Crichigno and Kohler. This task can be expressed in linear algebraic terms, equivalent to testing the non-triviality of the kernel of an...
A focus of recent research in quantum computing has been on developing quantum algorithms for differential equations solving using variational methods on near-term quantum devices. A promising approach involves variational algorithms, which combine classical Runge-Kutta methods with quantum computations. However, a rigorous error analysis, essentia...
The conventional paradigm of quantum computing is discrete: it utilizes discrete sets of gates to realize bitstring-to-bitstring mappings, some of them arguably intractable for classical computers. In parameterized quantum approaches, widely used in quantum optimization and quantum machine learning, the input becomes continuous and the output repre...
Classical simulation of quantum physics is a central approach to investigating physical phenomena. Quantum computers enhance computational capabilities beyond those of classical resources, but it remains unclear to what extent existing limited quantum computers can contribute to this enhancement. In this work, we explore a new hybrid, efficient qua...
Topological data analysis (TDA) aims to extract noise-robust features from a data set by examining the number and persistence of holes in its topology. We show that a computational problem closely related to a core task in TDA -- determining whether a given hole persists across different length scales -- is $\mathsf{BQP}_1$-hard and contained in $\...
This paper furthers existing evidence that quantum computers are capable of computations beyond classical computers. Specifically, we strengthen the collapse of the polynomial hierarchy to the second level if: (i) Quantum computers with postselection are as powerful as classical computers with postselection ($\mathsf{PostBQP=PostBPP}$), (ii) any on...
Quantum architecture search (QAS) involves optimizing both the quantum parametric circuit configuration but also its parameters for a variational quantum algorithm. Thus, the problem is known to be multi-level as the performance of a given architecture is unknown until its parameters are tuned using classical routines. Moreover, the task becomes ev...
Quantum computers offer an intriguing path for a paradigmatic change of computing in the natural sciences and beyond, with the potential for achieving a so-called quantum advantage—namely, a significant (in some cases exponential) speedup of numerical simulations. The rapid development of hardware devices with various realizations of qubits enables...
Quantum architecture search (QAS) involves optimizing both the quantum parametric circuit configuration but also its parameters for a variational quantum algorithm. Thus, the problem is known to be multi-level as the performance of a given architecture is unknown until its parameters are tuned using classical routines. Moreover, the task becomes ev...
Quantum machine learning is often highlighted as one of the most promising practical applications for which quantum computers could provide a computational advantage. However, a major obstacle to the widespread use of quantum machine learning models in practice is that these models, even once trained, still require access to a quantum computer in o...
The quest for successful variational quantum machine learning (QML) relies on the design of suitable parametrized quantum circuits (PQCs), as analogues to neural networks in classical machine learning. Successful QML models must fulfill the properties of trainability and non-dequantization, among others. Recent works have highlighted an intricate i...
Advice classes in computational complexity have frequently been used to model real-world scenarios encountered in cryptography, quantum computing and machine learning, where some computational task may be broken down into a preprocessing and deployment phase, each associated with a different complexity. However, in these scenarios, the advice given...
One of the most natural connections between quantum and classical machine learning has been established in the context of kernel methods. Kernel methods rely on kernels, which are inner products of feature vectors living in large feature spaces. Quantum kernels are typically evaluated by explicitly constructing quantum feature states and then takin...
The key challenge in the noisy intermediate-scale quantum era is finding useful circuits compatible with current device limitations. Variational quantum algorithms (VQAs) offer a potential solution by fixing the circuit architecture and optimizing individual gate parameters in an external loop. However, parameter optimization can become intractable...
Lloyd [Nat. Commun. , 10138 (2016)] were first to demonstrate the promise of quantum algorithms for computing Betti numbers, a way to characterize topological features of data sets. Here, we propose, analyze, and optimize an improved quantum algorithm for topological data analysis (TDA) with reduced scaling, including a method for preparing Dicke s...
The variational quantum algorithms are crucial for the application of NISQ computers. Such algorithms require short quantum circuits, which are more amenable to implementation on near-term hardware, and many such methods have been developed. One of particular interest is the so-called variational quantum state diagonalization method, which constitu...
In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond th...
State-of-the-art quantum computers can only reliably execute circuits with limited qubit numbers and computational depth. This severely reduces the scope of algorithms that can be run. While numerous techniques have been invented to exploit few-qubit devices, corresponding schemes for depth-limited computations are less explored. This work investig...
Recent advances in quantum computers are demonstrating the ability to solve problems at a scale beyond brute force classical simulation. As such, a widespread interest in quantum algorithms has developed in many areas, with optimization being one of the most pronounced domains. Across computer science and physics, there are a number of algorithmic...
Efficient methods for the representation and simulation of quantum states and quantum operations are crucial for the optimization of quantum circuits. Decision diagrams (DDs), a well-studied data structure originally used to represent Boolean functions, have proven capable of capturing relevant aspects of quantum systems, but their limits are not w...
As restricted quantum computers become available, research focuses on finding meaningful applications. For example, in quantum machine learning, a special type of quantum circuit called a quantum neural network is one of the most investigated approaches. However, we know little about suitable circuit architectures or important model hyperparameters...
Quantum computers hold great promise to enhance machine learning, but their current qubit counts restrict the realisation of this promise. To deal with this limitation the community has produced a set of techniques for evaluating large quantum circuits on smaller quantum devices. These techniques work by evaluating many smaller circuits on the smal...
Parametrized quantum circuits (PQC) are quantum circuits which consist of both fixed and parametrized gates. In recent approaches to quantum machine learning (QML), PQCs are essentially ubiquitous and play the role analogous to classical neural networks. They are used to learn various types of data, with an underlying expectation that if the PQC is...
Quantum computers offer an intriguing path for a paradigmatic change of computing in the natural sciences and beyond, with the potential for achieving a so-called quantum advantage, namely a significant (in some cases exponential) speed-up of numerical simulations. The rapid development of hardware devices with various realizations of qubits enable...
Despite significant effort, the quantum machine learning community has only demonstrated quantum learning advantages for artificial cryptography-inspired datasets when dealing with classical data. In this paper we address the challenge of finding learning problems where quantum learning algorithms can achieve a provable exponential speedup over cla...
The development of variational quantum algorithms is crucial for the application of NISQ computers. Such algorithms require short quantum circuits, which are more amenable to implementation on near-term hardware, and many such methods have been developed. One of particular interest is the so-called the variational diagonalization method, which cons...
Quantum machine learning is often highlighted as one of the most promising uses for a quantum computer to solve practical problems. However, a major obstacle to the widespread use of quantum machine learning models in practice is that these models, even once trained, still require access to a quantum computer in order to be evaluated on new data. T...
Variational quantum algorithms are the leading candidate for advantage on near-term quantum hardware. When training a parametrized quantum circuit in this setting to solve a specific problem, the choice of ansatz is one of the most important factors that determines the trainability and performance of the algorithm. In quantum machine learning (QML)...
Quantum and quantum-inspired machine learning has emerged as a promising and challenging research field due to the increased popularity of quantum computing, especially with near-term devices. Theoretical contributions point toward generative modeling as a promising direction to realize the first examples of real-world quantum advantages from these...
Variational quantum algorithms (VQAs) offer a promising path toward using near-term quantum hardware for applications in academic and industrial research. These algorithms aim to find approximate solutions to quantum problems by optimizing a parametrized quantum circuit using a classical optimization algorithm. A successful VQA requires fast and re...
Variational quantum machine learning algorithms have become the focus of recent research on how to utilize near-term quantum devices for machine learning tasks. They are considered suitable for this as the circuits that are run can be tailored to the device, and a big part of the computation is delegated to the classical optimizer. It has also been...
Computationally intractable tasks are often encountered in physics and optimization. They usually comprise a cost function to be optimized over a so-called feasible set, which is specified by a set of constraints. This may yield, in general, to difficult and nonconvex optimization tasks. A number of standard methods are used to tackle such problems...
Understanding the evolution of a multi-qubit quantum system, or elucidating what portion of the Hilbert space is occupied by a quantum dataset becomes increasingly hard with the number of qubits. In this context, the visualisation of sets of multi-qubit pure quantum states on a single image can be helpful. However, the current approaches to visuali...
Machine learning algorithms based on parametrized quantum circuits are prime candidates for near-term applications on noisy quantum computers. In this direction, various types of quantum machine learning models have been introduced and studied extensively. Yet, our understanding of how these models compare, both mutually and to classical models, re...
Quantum machine learning (QML) models based on parameterized quantum circuits are often highlighted as candidates for quantum computing's near-term “killer application''. However, the understanding of the empirical and generalization performance of these models is still in its infancy. In this paper we study how to balance between training accuracy...
The coherence times of state-of-the art quantum computers significantly restricts the feasible computational depth. This, among other limitations such as small qubit numbers, severely reduces the scope of algorithms that can be run. While numerous techniques have been invented to make the most out of fewer-qubit devices, analogous schemes for depth...
Understanding the power and limitations of quantum access to data in machine learning tasks is primordial to assess the potential of quantum computing in artificial intelligence. Previous works have already shown that speed-ups in learning are possible when given quantum access to reinforcement learning environments. Yet, the applicability of quant...
Variational quantum machine learning algorithms have become the focus of recent research on how to utilize near-term quantum devices for machine learning tasks. They are considered suitable for this as the circuits that are run can be tailored to the device, and a big part of the computation is delegated to the classical optimizer. It has also been...
As combinatorial optimization is one of the main quantum computing applications, many methods based on parameterized quantum circuits are being developed. In general, a set of parameters are being tweaked to optimize a cost function out of the quantum circuit output. One of these algorithms, the Quantum Approximate Optimization Algorithm stands out...
Even after decades of quantum computing development, examples of generally useful quantum algorithms with exponential speedups over classical counterparts are scarce. Recent progress in quantum algorithms for linear-algebra positioned quantum machine learning (QML) as a potential source of such useful exponential improvements. Yet, in an unexpected...
As restricted quantum computers are slowly becoming a reality, the search for meaningful first applications intensifies. In this domain, one of the more investigated approaches is the use of a special type of quantum circuit – a so-called quantum neural network – to serve as a basis for a machine learning model. Roughly speaking, as the name sugges...
Lloyd et al. were first to demonstrate the promise of quantum algorithms for computing Betti numbers, a way to characterize topological features of data sets. Here, we propose, analyze, and optimize an improved quantum algorithm for topological data analysis (TDA) with reduced scaling, including a method for preparing Dicke states based on inequali...
Despite years of effort, the quantum machine learning community has only been able to show quantum learning advantages for certain contrived cryptography-inspired datasets in the case of classical data. In this note, we discuss the challenges of finding learning problems that quantum learning algorithms can learn much faster than any classical lear...
Variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) in recent years have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond the...
As restricted quantum computers are slowly becoming a reality, the search for meaningful first applications intensifies. In this domain, one of the more investigated approaches is the use of a special type of quantum circuit - a so-called quantum neural network -- to serve as a basis for a machine learning model. Roughly speaking, as the name sugge...
Quantum machine learning (QML) has been identified as one of the key fields that could reap advantages from near-term quantum devices, next to optimization and quantum chemistry. Research in this area has focused primarily on variational quantum algorithms (VQAs), and several proposals to enhance supervised, unsupervised and reinforcement learning...
In these Lecture Notes, we provide a comprehensive introduction to the most recent advances in the application of machine learning methods in quantum sciences. We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms for phase classification, representation of many-body quantum states,...
Quantum computers hold great promise to enhance machine learning, but their current qubit counts restrict the realisation of this promise. In an attempt to placate this limitation techniques can be applied for evaluating a quantum circuit using a machine with fewer qubits than the circuit naively requires. These techniques work by evaluating many s...
As combinatorial optimization is one of the main quantum computing applications, many methods based on parameterized quantum circuits are being developed. In general, a set of parameters are being tweaked to optimize a cost function out of the quantum circuit output. One of these algorithms, the Quantum Approximate Optimization Algorithm stands out...
In recent years, quantum-enhanced machine learning has emerged as a particularly fruitful application of quantum algorithms, covering aspects of supervised, unsupervised and reinforcement learning. Reinforcement learning offers numerous options of how quantum theory can be applied, and is arguably the least explored, from a quantum perspective. Her...
Variational quantum algorithms (VQA) are considered as some of the most promising methods to determine the properties of complex strongly correlated quantum many-body systems, especially from the perspective of devices available in the near term. In this context, the development of efficient quantum circuit ansatze to encode a many-body wavefunctio...
Quantum algorithms for solving the Quantum Linear System (QLS) problem are among the most investigated quantum algorithms of recent times, with potential applications including the solution of computationally intractable differential equations and speed-ups in machine learning. A fundamental parameter governing the efficiency of QLS solvers is κ ,...
With noisy intermediate-scale quantum computers showing great promise for near-term applications, a number of machine learning algorithms based on parametrized quantum circuits have been suggested as possible means to achieve learning advantages. Yet, our understanding of how these quantum machine learning models compare, both to existing classical...
Efficient methods for the representation of relevant quantum states and quantum operations are crucial for the simulation and optimization of quantum circuits. Decision diagrams (DDs), a well-studied data structure originally used to represent Boolean functions, have proven capable of capturing interesting aspects of quantum systems, but their limi...
Machine learning has recently emerged as a fruitful area for finding potential quantum computational advantage. Many of the quantum-enhanced machine learning algorithms critically hinge upon the ability to efficiently produce states proportional to high-dimensional data points stored in a quantum accessible memory. Even given query access to expone...
Quantum machine learning (QML) stands out as one of the typically highlighted candidates for quantum computing's near-term "killer application". In this context, QML models based on parameterized quantum circuits comprise a family of machine learning models that are well suited for implementations on near-term devices and that can potentially harne...
The study of Variational Quantum Eigensolvers (VQEs) has been in the spotlight in recent times as they may lead to real-world applications of near-term quantum devices. However, their performance depends on the structure of the used variational ansatz, which requires balancing the depth and expressivity of the corresponding circuit. In recent years...
Quantum machine learning (QML) has been identified as one of the key fields that could reap advantages from near-term quantum devices, next to optimization and quantum chemistry. Research in this area has focused primarily on variational quantum algorithms (VQAs), and several proposals to enhance supervised, unsupervised and reinforcement learning...
Combinatorial optimization is an important application targeted by quantum computing. However, near-term hardware constraints make quantum algorithms unlikely to be competitive when compared to high-performing classical heuristics on large practical problems. One option to achieve advantages with near-term devices is to use them in combination with...
Variational quantum algorithms (VQA) are considered as some of the most promising methods to determine the properties of complex strongly correlated quantum many-body systems, especially from the perspective of devices available in the near term. In this context, the development of efficient quantum circuit ansatze to encode a many-body wavefunctio...
As the field of artificial intelligence advances, the demand for algorithms that can learn quickly and efficiently increases. An important paradigm within artificial intelligence is reinforcement learning¹, where decision-making entities called agents interact with environments and learn by updating their behaviour on the basis of the obtained feed...
Increasing demand for algorithms that can learn quickly and efficiently has led to a surge of development within the field of artificial intelligence (AI). An important paradigm within AI is reinforcement learning (RL), where agents interact with environments by exchanging signals via a communication channel. Agents can learn by updating their beha...
Variational quantum circuits have recently gained popularity as quantum machine learning models. While considerable effort has been invested to train them in supervised and unsupervised learning settings, relatively little attention has been given to their potential use in reinforcement learning. In this work, we leverage the understanding of quant...
Computationally intractable tasks are often encountered in physics and optimization. Such tasks often comprise a cost function to be optimized over a so-called feasible set, which is specified by a set of constraints. This may yield, in general, to difficult and non-convex optimization tasks. A number of standard methods are used to tackle such pro...
Quantum algorithms have been successfully applied to provide computational speed ups to various machine-learning tasks and methods. A notable exception to this has been deep reinforcement learning (RL). Deep RL combines the power of deep neural networks with reinforcement learning, and has provided some of the most impressive recent artificial-inte...
In reinforcement learning, a key question for applications is how fast agents can learn. By introducing an agent capable of interacting classically as well as quantum-mechanically with its environment, we experimentally prove that a speed-up in the agent’s learning time is possible.
In recent years, the interest in leveraging quantum effects for enhancing machine learning tasks has significantly increased. Many algorithms speeding up supervised and unsupervised learning were established. The first framework in which ways to exploit quantum resources specifically for the broader context of reinforcement learning were found is p...
Combinatorial optimization is an important application targeted by quantum computing. However, near-term hardware constraints make quantum algorithms unlikely to be competitive when compared to high-performing classical heuristics on large practical problems. One option to achieve advantages with near-term devices is to use them in combination with...
The Quantum approximate optimization algorithm (QAOA) constitutes one of the often mentioned candidates expected to yield a quantum boost in the era of near-term quantum computing. In practice, quantum optimization will have to compete with cheaper classical heuristic methods, which have the advantage of decades of empirical domain-specific enhance...
In recent years, quantum-enhanced machine learning has emerged as a particularly fruitful application of quantum algorithms, covering aspects of supervised, unsupervised and reinforcement learning. Reinforcement learning offers numerous options of how quantum theory can be applied, and is arguably the least explored, from a quantum perspective. Her...
As we are entering the era of real-world small quantum computers, finding applications for these limited devices is a key challenge. In this vein, it was recently shown that a hybrid classical-quantum method can help provide polynomial speed-ups to classical divide-and-conquer algorithms, even when only given access to a quantum computer much small...
A particularly promising line of quantum machine leaning (QML) algorithms with the potential to exhibit exponential speedups over their classical counterparts has recently been set back by a series of "dequantization" results, that is, quantum-inspired classical algorithms which perform equally well in essence. This raises the important question wh...
We consider the problem of autonomous acquisition of manipulation skills where problem-solving strategies are initially available only for a narrow range of situations. We propose to extend the range of solvable situations by autonomous play with the object. By applying previously-trained skills and behaviors, the robot learns how to prepare situat...
Recent works have shown that quantum computers can polynomially speed up certain SAT-solving algorithms even when the number of available qubits is significantly smaller than the number of variables. Here, we generalize this approach. We present a framework for hybrid quantum-classical algorithms which utilize quantum computers significantly smalle...
Quantum error correction is widely thought to be the key to fault-tolerant quantum computation. However, determining the most suited encoding for unknown error channels or specific laboratory setups is highly challenging. Here, we present a reinforcement learning framework for optimizing and fault-tolerantly adapting quantum error correction codes....
In the past decade, deep learning methods have seen tremendous success in various supervised and unsupervised learning tasks such as classification and generative modeling. More recently, deep neural networks have emerged in the domain of reinforcement learning as a tool to solve decision-making problems of unprecedented complexity, e.g., navigatio...
In recent years, the interest in leveraging quantum effects for enhancing machine learning tasks has significantly increased. Many algorithms speeding up supervised and unsupervised learning were established. The first framework in which ways to exploit quantum resources specifically for the broader context of reinforcement learning were found is p...
Complete security proofs for quantum communication protocols can be notoriously involved, which convolutes their verification, and obfuscates the key physical insights the security finally relies on. In such cases, for the majority of the community, the utility of such proofs may be restricted. Here we provide a simple proof of confidentiality for...
A programmable quantum computer based on trapped ions interacting via magnetic gradient induced coupling (MAGIC) is used for reinforcement learning. Quantum information encoded in hyperfine qubits is preserved with 99.9994(+6-7)% fidelity during ion transport.
A programmable quantum computer based on trapped ions interacting via magnetic gradient induced coupling (MAGIC) together with elements for scaling quantum computing – transport of ions and a novel trap for 2D ion arrays – are reported.
We report a proof-of-principle experimental demonstration of a quantum speed-up for learning agents utilizing a small-scale quantum information processor based on radiofrequency-driven trapped ions. The decision-making process of a quantum learning agent within the projective simulation paradigm for machine learning is modeled in a system of two qu...
Quantum error correction is widely thought to be the key to fault-tolerant quantum computation. However, determining the most suited encoding for unknown error channels or specific laboratory setups is highly challenging. Here, we present a reinforcement learning framework for optimizing and fault-tolerantly adapting quantum error correction codes....
Most of the schemes for "noiseless" amplification of coherent states, which have recently been attracting theoretical and experimental interest, share a common trait: the amplification is not truly noiseless, or perfect, for non-zero success probability. While this must hold true for all phase-independent amplification schemes, in this work we poin...
In recent times, there has been much interest in quantum enhancements of machine learning, specifically in the context of data mining and analysis. Reinforcement learning, an interactive form of learning, is, in turn, vital in artificial intelligence-type applications. Also in this case, quantum mechanics was shown to be useful, in certain instance...
Quantum information technologies, on the one side, and intelligent learning
systems, on the other, are both emergent technologies that will likely have a
transforming impact on our society in the future.
The respective underlying fields of basic research -- quantum information (QI) versus
machine learning and artificial intelligence (AI)
-- have th...