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Abstract

This paper presents a new univariate forecasting method. The method is based on the concept of modifying the local
curvature of the time-series through a coefficient ‘Theta’ (the Greek letter u ), that is applied directly to the second
differences of the data. The resulting series that are created maintain the mean and the slope of the original data but not their
curvatures. These new time series are named Theta-lines. Their primary qualitative characteristic is the improvement of the
approximation of the long-term behavior of the data or the augmentation of the short-term features, depending on the value
of the Theta coefficient. The proposed method decomposes the original time series into two or more different Theta-lines.
These are extrapolated separately and the subsequent forecasts are combined. The simple combination of two Theta-lines, the
Theta 5 0 (straight line) and Theta 5 2 (double local curves) was adopted in order to produce forecasts for the 3003 series of
the M3 competition. The method performed well, particularly for monthly series and for microeconomic data.  2000
International Institute of Forecasters. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction not frequently used. The main difficulties are in
isolating successfully the error component as

There have been many attempts to develop well as in producing adequate forecasts for the
forecasts based directly on decomposition trend-cycle. Perhaps the only technique that has
(Makridakis et al., 1984). The individual com- been found to work relatively well is to forecast
ponents that are usually identified are the trend- the seasonally adjusted data using Holt’s meth-
cycle, seasonality and the irregular component. od (Makridakis et al., 1984) or the dampen
These are projected separately into the future trend method (Gardner & McKenzie, 1985) and
and recombined to form a forecast of the then adjust the forecasts using the seasonal
underlying series. This approach in practice is components from the end of the data.

The Theta-model proposes a different ap-
proach to decomposition: a decomposition of
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to increase the degree of exploitation of the the time series, then there is also an accompany-
embedded useful information in the data, before ing degree of exploitation of this information
the application of a forecasting method. Viewed associated with each distinct forecasting meth-
intuitively, such information has long and short- od.
term components. These components are iden- In this sense Theta can be seen as an alter-
tified using the Theta-model and are then ex- native decomposition approach or /and as an
trapolated separately. The Theta-model opera- extension to the concept of combining.
tion is analogous to the operation of a magnify-
ing glass through which the time series fluctua-
tions are minimized or maximized accordingly. 2. The Theta-model
The combination of the components-forecasts

The model is based on the concept of modify-thus becomes more effective while retaining the
ing the local curvatures of the time series. Thisbenefits from combining.
change is obtained from a coefficient, calledCombining under certain circumstances im-
Theta-coefficient (as a symbol is used the Greekproves forecasting accuracy (Clemen, 1989).
letter Theta), which is applied directly to theThe reason lies in the averaging of errors that
second differences of the time series:are produced by each individual forecasting

method. These errors relate to the instability of 99 99 99X (u ) 5u ? X , where Xnew data datapatterns or relationships, to the minimization
5 X 2 2X 1 X at time t.t t21 t22procedures for the selection of the best model to

use, or even to measurement weaknesses (Mak-
ridakis, Wheelwright & Hyndman, 1998). If the local curvatures are gradually reduced
Above all, errors are associated with the nature then the time series is deflated as it is shown in
of the chosen model. Each model or functional Fig. 1. The smaller the value of the Theta-
form imposes its own logic on the data in a coefficient, the larger the degree of deflation. In
more or less flexible way, and this specific logic the extreme case where Q 50 the time series is
is subsequently extrapolated to the future. If transformed to a linear regression line. The
there is an amount of useful information within progressive decrease of the fluctuations di-

Fig. 1. M3-Comp. Series 200, the Theta-model deflation.
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minishes the absolute differences between suc- according to existing experience (Fildes, Hibon,
cessive terms in the derived series and is Makridakis & Meade, 1998). A different combi-
related, in qualitative terms, to the emergence of nation of Theta-lines can be employed for each
long-term trends in the data (Assimakopoulos, forecasting horizon.
1995). This is demonstrated by considering one of

The Q-coefficient can also take negative the simplest cases in which the initial time
values but they are of no interest in the present series is decomposed into two Theta-lines, i.e.
context and are not discussed further. Q 50 and Q 52:

Conversely if the local curvature is increased Data 5 1/2(L(Q 5 0) 1 L(Q 5 2))
(Q .1), then the time series is dilated as it is
shown in Fig. 2. The larger the degree of where L(Q 5 0) stands for the Theta Line for Q

dilation, the larger the magnification of the parameter equal to zero.
short-term behavior. The first Theta-line (Q 50) is the linear

Following this procedure, a set of new time regression line of the data (see Appendix B) and
series, the so-called Theta-lines, are constructed. the second one has second differences exactly
The placement of these lines in relation to the twice the initial time series. This is a case where
original data can be done in many different two, extreme and symmetrical to 1, Theta-lines
ways. If the fitting is an OLS estimation pro- are composed (see Appendix B). The first
cedure then the mean and the slope of the component L(Q 5 0) describes the time series
Theta-lines remain the same compared to those through a linear trend. The second one, L(Q 5

of the original data (see Appendix A). 2), has doubled the local curvatures magnifying
The general formulation of the method be- the short-term behavior. The first Theta-line is

comes as follows: extrapolated in the usual way for a linear trend.
The initial time series is decomposed into two The second is extrapolated via simple exponen-

or more Theta-lines. Each of the Theta-lines is tial smoothing. The simple combination of the
extrapolated separately and the forecasts are two forecasts gives the final forecast of the
simply combined. Any forecasting method can Theta-model for the specific time series as it is
be used for the extrapolation of a Theta-line shown in Fig. 3.

Fig. 2. M3-Comp. Series 200, the Theta-model dilation.
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Fig. 3. M3-Comp. Series 30, the Theta-model forecasts.

This combination of Theta-lines Q 50 and Step 3. (Extrapolation) The linear regression
Q 52 was employed to produce forecasts for line is extrapolated in the usual way while the
the 3003 time-series of the M3 competition. second line is extrapolated via simple exponen-

The steps followed are: tial smoothing.

Step 0. (Seasonality testing) Firstly each time Step 4. (Combination) The forecasts produced
series was tested for statistical significant from the extrapolation of the two lines were
seasonal behavior. The criterion was the t-test combined with equal weights.
value for the auto-correlation function value

Step 5. (Reseasonalisation) The forecasts werewith lag one year (that is for monthly time
reseasonalised.series 12 observations and for quarterly time-

series 4 observations) compared to 1.645 which
1is the t-statistic value for 0.1 probability.

3. Evaluation
Step 1. (Deseasonalisation) The time-series
were deseasonalised via the classical decompo- The strong point of the method lies in the
sition method (multiplicative). decomposition of the initial data. The two

components include information, which is use-
Step 2. (Decomposition) Each time-series was ful for the forecasting procedure but is lost or
decomposed into two Theta-lines, the linear cannot completely be taken into account by the
regression line (Q 50) and the Theta line for existing methods when they are directly applied
Q 52. to the initial data. Especially in the case of

L(Q 5 0) this phenomenon is more comprehen-
sible. The straight line includes information for1The set of seasonal indices given by M. Hibbon and S.
the long-term trend of the time series which isMakridakis after ISF98 for the 3003 time series of the
‘‘neglected’’ when a method tries to adapt toM3-competition were not used in the seasonal adjustment

procedure. more recent trends. On the other hand, when the
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linear trend is used exclusively all valuable ric to one (see Appendix B). In this case the
information on short-term fluctuations is ig- data are not decomposed and each Theta line is
nored. used only to produce a set of forecasts which

The Theta-model performance in the monthly will be combined accordingly. This is expected
time series of the M3 competition constitutes a to add to the robustness of the method, under
characteristic example. The monthly data of the the condition that a relatively efficient method
competition were characterised, in general, by a for each Theta-line will be selected. On the
relatively large amount of volatility. This fact other hand, it is not certain that the use of
does not allow most methods to keep in mem- several Theta-lines will contribute to more
ory the long-term trend and thus to take it into accurate forecasts since the separation of the
serious consideration in their forecasting func- incorporated information in the initial time-
tion. In the case of Theta-model the long-term series may not be sufficiently well defined.
trend is incorporated into the method as a major Another option is to use different Theta-lines
component through the L(Q 5 0) and extrapola- combinations for each forecasting horizon.
tion is straightforward. At the same time, the There is empirical evidence (Collopy & Arm-
existence of L(Q 5 2) operates as a counterbal- strong, 1992) that for longer horizons forecasts
ance to the simplification of using a plain linear should be biased more to long-term behavior
trend model. L(Q 5 2) increases the roughness while for shorter-term forecasts we should
of the monthly time series and augments the mostly take into account the recent trends. This
most recent trends. The effect of this augmenta- can be accomplished easily by using different
tion is that the combined starting point reaches pairs of Theta-lines for each forecasting
the ‘‘correct’’ level and since the extrapolation horizon. For example if the couple Q 50 and
of L(Q 5 2) is horizontal the simple combina- Q 51.5 is used then greater emphasis is placed
tion of both preserves a conservative but con- on the long-term trend of the time-series while
stant continuation of the long-term trend. in the case of the Theta-lines Q 50 and Q 52.5,

the short-term behavior gains more importance.
The last and most promising characteristic of

the model is the utilisation of different Theta-4. Perspectives for future research
lines for each time series. A pair of Theta-lines

The two-line variant (Q 5 0 and Q 52) is will correspond to each time series according to
only one of the several possibilities that result its qualitative and/or quantitative characteristics
from the general formulation of the method. The (Armstrong & Collopy, 1993). This is the
first extension is to use more than two Theta- objective of the further research regarding the
lines with Q-coefficients which are not symmet- Theta-model.

Appendix A

The data X can be written as:i

i21

99X 5 X 1 (i 2 1)(X 2 X ) 1 O (i 2 t)XS Di 1 2 1 t11
t52

The points Y of a Theta2Line by definition are:i
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i21

99Y 5 Y 1 (i 2 1)(Y 2 Y ) 1u O (i 2 t)XS Di 1 2 1 t11
t52

The minimization problem becomes:

2 2min O e 5 min O (Y 2 X )i i iS D S D
i i

i21

995 min O Y 1 (i 2 1)(Y 2 Y ) 1u O (i 2 t)X 2 X 2 (i 2 1)(X 2 X )S S S D1 2 1 t11 1 2 1
i t52

i21 2

992 O (i 2 t)XS DD Dt11
t52

Applying calculus,

2
≠ O ei ≠(Y 2 X )i i i ]]] ]]]5 2 O (Y 2 X ) 5 0i i≠Y ≠Y1 1i ⇔

2 ≠ O ei ≠(Y 2 X )i i i
]]]] ]]]]5 2 O (Y 2 X ) 5 0i i≠(Y 2 Y ) ≠(Y 2 Y ) 2 1 i 2 1

i21 i21

9 992 O Y 1 (i 2 1)(Y 2 Y ) 1u O(i 2 t)X 2 X 2 (i 2 1)(X 2 X ) 2 O (i 2 t)X 5 0S S D S DD1 2 1 t11 1 2 1 t11
i t52 t52 ⇔i21 i215 62 O (i 2 1) Y 1 (i 2 1)(Y 2 Y ) 1u O (i 2 t)X 2 X 2 (i 2 1)(X 2 X ) 2 O (i 2 t)X 5 0S S D S DD1 2 1 t11 1 2 1 t11
i t52 t52

i21n(n 2 1) n(n 2 1)
]]] ]]] 99nY 1 (Y 2 Y ) 5 nX 1 (X 2 X ) 1 (1 2u ) O O (i 2 t)XS D1 2 1 1 2 1 t112 2 i t52

n(n 2 1) n(n 2 1)(2n 2 1) n(n 2 1) n(n 2 1)(2n 2 1) ⇔]]] ]]]]]] ]]] ]]]]]]Y 1 (Y 2 Y ) 5 X 1 (X 2 X )1 2 1 1 2 12 6 2 6 
i21

991 (1 2u ) O(i 2 1) O (i 2 t)XS Dt11 i t52

i21(n21) (n21) (12u )
]] ]] ]] 99Y 1 (Y 2Y )5X 1 (X 2X )1 O O (i2t)X , (A.1)S D1 2 1 1 2 1 t112 2 n i t52

i21(2n21) (2n21) 2(12u ) (A.2)5 ]] ]] ]] 99Y 1 (Y 2Y )5X 1 (X 2X )1 O (i21) O (i2t)X ,S D1 2 1 1 2 1 t113 3 n(n21) i t52
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The mean value of a Theta-Line is:

n n i211 1¯ ] ] 99Y 5 O Y 5 O Y 1 (i 2 1)(Y 2 Y ) 1u O (i 2 t)X ⇒S Di i 1 2 1 t11n ni51 i51 t52
n n n i211¯ ] 99Y 5 Y O 1 (Y 2 Y ) O (i 2 1) 1u O O (i 2 t)X ⇒S Di 1 2 1 t11n i51 i51 i51 t52

n i21n(n 2 1)1¯ ] ]]] 99Y 5 nY 1 (Y 2 Y ) 1u O O (i 2 t)X ⇒S Di 1 2 1 t11n 2 i51 t52
n i21

(1)(n 2 1) u¯ ]]] ]Y 5 Y 1 (Y 2 Y ) 1 O O (i 2 t)X ⇒i 1 2 1 t112 n i51 t52
n i21(n 2 1) 1¯ ]]] ] 99Y 5 X 1 (X 2 X ) 1 O O (i 2 t)X ⇒i 1 2 1 t112 n i51 t52

¯ ¯Y 5 Xi i

The formula for the slope of a Theta-Line is:

12
]]]]]c 51 n(n 1 1)(n 2 1)

b 5 c O iY 2 c O Y , ,u 1 i 2 i 6i i 3 4]]]c 5 22 n(n 2 1)

or

i21

99 99 99b 5 Y 2 Y 1uc(i,X ), c(i, X ) 5O (ic 1 c ) O (i 2 t)XF Gu 2 1 t t 1 2 t11
i t52

Subtracting Eq. (A.1) from (A.2) gives,

2n 2 1 n 2 1 2n 2 1 n 2 1S]] ]]D S]] ]]D2 (Y 2 Y ) 5 2 (X 2 X )2 1 2 13 2 3 2
i212 1

]]] ] 991 (1 2u ) O (i 2 1) 2 O (i 2 t)X ⇔S DF G t11nn(n 2 1)i t52

99 99 99Y 2 Y 5 X 2 X 1 (1 2u )c9(i, X ), where c9(i, X ) 5 c(i, X )2 1 2 1 t t t

Thus,

99 99b 5 X 2 X 1 (1 2u )c9(i, X ) 1uc(i, X ) ⇒u 2 1 t t

99b 5 X 2 X 1 c(i, X ) ⇒u 2 1 t

b 5 bu time-series

where b 5b is the slope of the raw data, since if Q 51 the time series remains untouched.time-series 1
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Appendix B

From Appendix A:
i21

99X 5 X 1 (i 2 1)(X 2 X ) 1O (i 2 t)Xi 1 2 1 t11
t52

i21

99⇒O (i 2 t)X 5 X 2 X 2 (i 2 1)(X 2 X )t11 i 1 2 1
t52

Substituting this summation in Eqs. (A.1), (A.2) yields to:

(n 2 1) (n 2 1)
]]] ]]]Y 1 (Y 2 Y ) 5 X 1 (X 2 X ) (B.1a)1 2 1 1 2 12 2 (1 2u )
]]]1 O (X 2 X 2 (i 2 1)(X 2 X )) ,i 1 2 1S Dn i

(2n 2 1) (2n 2 1) ]]] ]]]Y 1 (Y 2 Y ) 5 X 1 (X 2 X )1 2 1 1 2 13 3
2(1 2u )
]]]1 O (i 2 1)(X 2 X 2 (i 2 1)(X 2 X )) , (B.2a)i 1 2 1S Dn(n 2 1) i

Evaluating the summations leads to:

(n 2 1) u(n 2 1) ]
]]] ]]]Y 1 (Y 2 Y ) 5uX 1 (X 2 X ) 1 (1 2u )X ,1 2 1 1 2 1 n (B.1b)2 2
(2n 2 1) u(2n 2 1) 2(1 2u )
]]] ]]] ]]]Y 1 (Y 2 Y ) 5uX 1 (X 2 X ) 11 2 1 1 2 1 3 3 n(n 2 1)

(B.2b)O (i 2 1)X ,iS i

By setting

(n 2 1)1 ]
] ]]]O (i 2 1)X 2 X 5 cov (i 2 1, X ) 5 Ci n n i nn 2

the previous equations become:

12(1 2u )
]]]]]Y 2 Y 5u(X 2 X ) 1 C2 1 2 1 n(n 2 1)(n 1 1)
6(1 2u )]5 ]]]Y 5uX 1 (1 2u )X 2 C1 1 n n(n 1 1)

By setting
2 (n 2 1)(n 1 1)1 n 2 12

] F S]]D G ]]]]]V 5Var(i 2 1) 5 O (i 2 1) 2 5n n 2 12

the equations become:
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(B.3a)Y 2Y 5u(X 2X )1(12u )b ,2 1 2 1 n

(n21)] (B.3b)5 ]]Y 5uX 1(12u )X 2(12u )b ,1 1 n n 2

From this set of equations the following results are obvious:

1. For Q-coefficients50 the linear regression line is produced,

Y 2 Y 5 b2 1 n

u 5 0 ⇒ (n 2 1)]5 ]]]Y 5X 2 b1 n n 2

which are the standard LS equations.
2.

1
] [Y (u ) 1 Y (2u )] 5 Y (0)1 1 12Y (u ), Y (2u ) ⇒i i 15] [Y (u ) 1 Y (2u )] 5 b 1 Y (0)2 2 n 12

3.

1
] [Y (1 1 a) 1 Y (1 2 a)] 5 X1 1 12

u 5 1 1 a ⇒ 15] [Y (1 1 a) 1 Y (1 2 a)] 5 X2 2 22

From the above result becomes obvious that if two lines are produced from symmetric to 1
Q-coefficients, for example Q 511a and Q 512a, the average of these two lines reproduces the1 2

original time series. That is:

1
]u 5 16a ⇒ [Y (1 1 a) 1 Y (1 2 a)] 5 Xi i i2

The points of a new Theta line are calculated via the formula
i21

99Y 5 Y 1 (i 2 1)(Y 2 Y ) 1u O (i 2 t)XS Di 1 2 1 t
t52

So for Q and Q it is derived that:1 2

i21

99Y (1 1 a) 5 Y (1 1 a) 1 (i 2 1)(Y (1 1 a) 2 Y (1 1 a)) 1 (1 1 a) O (i 2 t)XS Di 1 2 1 t11
t52
i215 99Y (1 2 a) 5 Y (1 2 a) 1 (i 2 1)(Y (1 2 a) 2 Y (1 2 a)) 1 (1 2 a) O (i 2 t)XS Di 1 2 1 t11
t52

Thus:
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Y (1 1 a) 1 Y (1 2 a) Y (1 1 a) 1 Y (1 2 a)i i i iS D]]]]]]] ]]]]]]]52 2
Y (1 1 a) 1 Y (1 2 a) Y (1 1 a) 1 Y (1 2 a)2 2 1 1S D]]]]]]] ]]]]]]]1 (i 2 1) 22 2

i211 1 a 1 1 2 aS]]]]]D 991 O (i 2 t)X t112 t52

i21

995 X 1 (i 2 1)(X 2 X ) 1 O (i 2 t)xS D1 2 1 t11
t52

5 Xi
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