• Home
  • Vasileios Vasilopoulos
Vasileios Vasilopoulos

Vasileios Vasilopoulos

Doctor of Philosophy

About

33
Publications
7,791
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
298
Citations
Additional affiliations
September 2021 - present
Massachusetts Institute of Technology
Position
  • PostDoc Position
March 2021 - September 2021
University of Pennsylvania
Position
  • PostDoc Position
August 2015 - March 2021
University of Pennsylvania
Position
  • Research Assistant
Education
August 2015 - May 2021
University of Pennsylvania
Field of study
  • Mechanical Engineering
August 2015 - December 2018
University of Pennsylvania
Field of study
  • Mechanical Engineering
September 2009 - October 2014
National Technical University of Athens
Field of study
  • Mechanical Engineering

Publications

Publications (33)
Preprint
We introduce Reactive Action and Motion Planner (RAMP), which combines the strengths of search-based and reactive approaches for motion planning. In essence, RAMP is a hierarchical approach where a novel variant of a Model Predictive Path Integral (MPPI) controller is used to generate trajectories which are then followed asynchronously by a local v...
Preprint
Full-text available
In this paper we address mobile manipulation planning problems in the presence of sensing and environmental uncertainty. In particular, we consider mobile sensing manipulators operating in environments with unknown geometry and uncertain movable objects, while being responsible for accomplishing tasks requiring grasping and releasing objects in a l...
Preprint
We describe a task and motion planning architecture for highly dynamic systems that combines a domain-independent sampling-based deliberative planning algorithm with a global reactive planner. We leverage the recent development of a reactive, vector field planner that provides guarantees of reachability to large regions of the environment even in t...
Chapter
We document the reliably repeatable dynamical mounting and dismounting of wheeled stools and carts, and of fixed ledges, by the Minitaur robot. Because these tasks span a range of length scales that preclude quasi-static execution, we use a hybrid dynamical systems framework to variously compose and thereby systematically reuse a small lexicon of t...
Article
This article solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in simultaneous localization and mapping (SLAM) and visual object recognition to recast prior geometric knowledge in terms of an offline catalog of familiar objects. The resulting vector field planner guarantees convergence to an...
Article
Full-text available
Complex manipulation tasks, such as rearrangement planning of numerous objects, are combinatorially hard problems. Existing algorithms either do not scale well or assume a great deal of prior knowledge about the environment, and few offer any rigorous guarantees. In this paper, we propose a novel hybrid control architecture for achieving such tasks...
Article
In this article, we physically demonstrate a reactive sensorimotor architecture for mobile robots whose behaviors are generated by motivation dynamics. Motivation dynamics uses a continuous dynamical system to reactively compose low-level control vector fields using valuation functions that capture the potentially competing influences of external s...
Article
Unlike the problem of safe task and motion planning in a completely known environment, the setting where the obstacles in a robot's workspace are not initially known and are incrementally revealed online has so far received little theoretical interest, with existing algorithms usually demanding constant deliberative replanning in the presence of un...
Preprint
Full-text available
Complex manipulation tasks, such as rearrangement planning of numerous objects, are combinatorially hard problems. Existing algorithms either do not scale well or assume a great deal of prior knowledge about the environment, and few offer any rigorous guarantees. In this paper, we propose a novel hybrid control architecture for achieving such tasks...
Article
Full-text available
This paper presents a reactive planning system that enriches the topological representation of an environment with a tightly integrated semantic representation, achieved by incorporating and exploiting advances in deep perceptual learning and probabilistic semantic reasoning. Our architecture combines object detection with semantic SLAM, affording...
Chapter
This paper presents a provably correct method for robot navigation in 2D environments cluttered with familiar but unexpected non-convex, star-shaped obstacles as well as completely unknown, convex obstacles. We presuppose a limited range onboard sensor, capable of recognizing, localizing and (leveraging ideas from constructive solid geometry) gener...
Preprint
Full-text available
This paper presents a reactive planning system that enriches the topological representation of an environment with a tightly integrated semantic representation, achieved by incorporating and exploiting advances in deep perceptual learning and probabilistic semantic reasoning. Our architecture combines object detection with semantic SLAM, affording...
Preprint
Full-text available
This paper solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in SLAM and visual object recognition to recast prior geometric knowledge in terms of an offline catalogue of familiar objects. The resulting vector field planner guarantees convergence to an arbitrarily specified goal, avoiding co...
Article
Full-text available
We document the reliably repeatable dynamical mounting and dismounting of wheeled stools and carts, and of fixed ledges, by the Minitaur robot. Because these tasks span a range of length scales that preclude quasi-static execution, we use a hybrid dynamical systems framework to variously compose and thereby systematically reuse a small lexicon of te...
Article
Full-text available
This paper presents a provably correct method for robot navigation in 2D environments cluttered with familiar but unexpected non-convex, star-shaped obstacles as well as completely unknown, convex obstacles. We presuppose a limited range onboard sensor, capable of recognizing, localizing and (leveraging ideas from constructive solid geometry) gener...
Conference Paper
Full-text available
We demonstrate the physical rearrangement of wheeled stools in a moderately cluttered indoor environment by a quadrupedal robot that autonomously achieves a user's desired configuration. The robot's behaviors are planned and executed by a three layer hierarchical architecture consisting of: an offline symbolic task and motion planner; a reactive la...
Article
We demonstrate the physical rearrangement of wheeled stools in a moderately cluttered indoor environment by a quadrupedal robot that autonomously achieves a user's desired configuration. The robot's behaviors are planned and executed by a three layer hierarchical architecture consisting of: an offline symbolic task and motion planner; a reactive la...
Preprint
Full-text available
This paper presents a provably correct method for robot navigation in 2D environments cluttered with familiar but unexpected non-convex, star-shaped obstacles as well as completely unknown, convex obstacles. We presuppose a limited range onboard sensor, capable of recognizing, localizing and (leveraging ideas from constructive solid geometry) gener...
Conference Paper
Full-text available
This paper considers the problem of completing assemblies of passive objects in nonconvex environments, cluttered with convex obstacles of unknown position, shape and size that satisfy a specific separation assumption. A differential drive robot equipped with a gripper and a LIDAR sensor, capable of perceiving its environment only locally, is used...
Article
Full-text available
One of the most intriguing research challenges in legged locomotion is robot performance on compliant terrains. The foot-terrain interaction is usually tackled by disregarding some of the effects of ground deformation, like permanent deformation and compaction; however this approach restricts their application to stiff environments. In this work, t...
Article
This paper considers the problem of completing assemblies of passive objects in nonconvex environments, cluttered with convex obstacles of unknown position, shape and size that satisfy a specific separation assumption. A differential drive robot equipped with a gripper and a LIDAR sensor, capable of perceiving its environment only locally, is used...
Conference Paper
Full-text available
This paper demonstrates a fully sensor-based reactive homing behavior on a physical quadrupedal robot, using onboard sensors, in simple (convex obstacle-cluttered) unknown, GPS-denied environments. Its implementation is enabled by our empirical success in controlling the legged machine to approximate the (abstract) unicycle mechanics assumed by the...
Technical Report
Full-text available
This paper considers the problem of completing assemblies of passive objects in nonconvex environments, cluttered with convex obstacles of unknown position, shape and size that satisfy a specific separation assumption. A differential drive robot equipped with a gripper and a LIDAR sensor, capable of perceiving its environment only locally, is used...
Conference Paper
Full-text available
This paper explores the applicability of a Linear Quadratic Regulator (LQR) controller design to the problem of bipedal stance on the Minitaur [1] quadrupedal robot. Restricted to the sagittal plane, this behavior exposes a three degree of freedom (DOF) double inverted pendulum with extensible length that can be projected onto the familiar underact...
Conference Paper
Full-text available
Recent successes of missions such as the MSL and the Rosetta have increased the interest in the robotic exploration of other planets and asteroids. Although most of these missions envisage the use of rovers, legged robots have shown the potential to outperform wheeled vehicles on rough terrains in terms of speed and energy efficiency. In this paper...
Conference Paper
Full-text available
Terrain compliance is a critical parameter for the performance of legged locomotion. In this work, a single actuator monopod robot hopping on a rough compliant terrain is considered. Based on our controller for flat compliant terrains, this paper introduces the necessary modifications, which allow the robot to tackle the disturbance of small inclin...
Conference Paper
Full-text available
Legged locomotion is a rapidly advancing area in robotics, yet still a large number of open questions exist. This work focuses on the foot-terrain interaction and its effect on the motion of a one-legged system. This interaction is usually tackled by disregarding some of the effects of ground deformation like permanent deformation and compaction. I...

Network

Cited By