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Abstract

Pattern mining over data streams is critical to a variety of applica-
tions such as understanding and predicting weather phenomena or out-
door surveillance. Most of the current techniques attempt to discover
relationships between time-point events but are not practical for discov-
ering dependencies over interval-based events. In this work, we present
a new approach to mine dependencies between streams of interval-based
events that links two events if they occur in a similar manner, one be-
ing often followed by the other one after a certain time interval in the
data. The proposed method is robust to temporal variability of events
and determines the most appropriate time intervals whose validity is as-
sessed by a χ2 test. As several intervals may redundantly describe the
same dependency, the approach retrieves only the most specific intervals
with respect to a dominance relationship over temporal dependencies, and
thus avoids the classical problem of pattern flooding in data mining. The
TEDDY algorithm, TEmporal Dependency DiscoverY, prunes the search
space while guaranteeing the discovery of all valid and significant tempo-
ral dependencies. We present empirical results on simulated and real-life
data to show the scalability and the robustness of our approach. The
dependency relationships define a graph that supports intelligent analysis
as illustrated by two case studies: Outdoor surveillance of a building via
video camera and motion sensors, and assistance for road deicing opera-
tions based on the humidity and temperature measurements at the urban
scale. These applications demonstrate the efficiency and the effectiveness
of our approach.

1 Introduction

Recent breakthroughs in sensor technology have given users the ability to mon-
itor many events in real time producing multiple heterogeneous data streams.
This novel context has been a source of motivation for the development of many
data stream management and analysis techniques [1], and the extension of clas-
sical pattern mining techniques (e.g., frequent itemsets [10, 19, 26], multidi-
mensional data [23], sequences [11, 12, 34], multidimensional sequences [42] and
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graphs [2, 17]) to tackle the new challenges faced in this context [27]: Handling
infinite sequences of events occurring at a steady pace to provide actionable
insights to end-users. Since the mining step has to be faster than the data ac-
quisition process, it is not possible to store data streams in their entirety and
then perform various scans over them. For this reason, data stream mining has
been widely recognized as an important research area with many applications,
such as the comprehension and prediction of weather phenomena, anomaly de-
tection in outdoor surveillance, or mining health monitoring streams, to mention
just a few.

The constant evolution in hardware and software technology has made it pos-
sible for companies to generate very large volumes of information from various
data sources. As an example, smart environments equipped with different kinds
of sensors (e.g., cameras, badge readers, motion sensors, automatic doors), that
act as data sources generating several data streams at high speed. In this paper
we address the original problem of identifying temporal dependencies between
streams of interval-based events (i.e., events having a duration and described as
a collection of disjoint intervals). Two events are linked if the intervals of one
is repeatedly followed by the appearance of the intervals of the other one, in
a certain time delay. Such dependencies constitute key actionable insights for
timely challenges such as smart environment monitoring, partial failure detec-
tion, or object tracking between various cameras. The discovered dependencies
can be used to construct a graph that supports intelligent data analysis.

Considering events described by time intervals makes it possible to improve
existing time-point based approaches by (1) better handling events that are
rare but occur for a long period of time; (2) being more robust to the temporal
variability of events; (3) allowing the discovery of sophisticated relations based
on Allen’s algebra [5].

Our approach to detect interval-based event dependencies is illustrated in
Figure 1. First, data streams are generated from the monitoring of a smart
environment. The data streams produced by each sensor are transformed into
sequences of intervals that correspond to a sensor state. Our method aims to
identify pairs of sensor states that are in temporal dependence. Such a depen-
dence occurs when the sequences of intervals can be translated so that their
interval set intersection is sufficiently large not to be due to chance. Inter-
val sequences are translated using a time-delay interval that is automatically
determined to maximize the proportion of time where the two event intervals
intersect. Several possible time-delay intervals are generated and a Pearson’s χ2

test of independence is used to determine whether or not the time-delay gives
rise to statistically dependent sequences. As several intervals may redundantly
describe the same dependency, the approach retrieves only the most specific
ones with respect to a dominance test. Thus, it avoids the classical problem
of pattern flooding in data mining. Discovering all valid and significant tem-
poral dependencies is challenging since, for every couple of events, all possible
time-delay intervals have to be considered. Therefore, we propose an efficient al-
gorithm TEDDY, TEmporal Dependency DiscoverY, that benefits from several
properties in order to prune the search space while guaranteeing the complete-
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Figure 1: Overview TEDDY approach.

ness of the extraction. The extracted dependencies can be directly exploited
by the end-users, or be used to construct a dependency graph. Such a graph
can then be analyzed to understand the temporal relationships between sen-
sors. We illustrate this intelligent data management on two case-studies based
on real-world sensor networks:

Outdoor surveillance: Video camera and motion sensors can be used to mon-
itor events that occur around buildings. The camera are often equipped
with infrared LEDs, used to illuminate the scene at night. This technol-
ogy produces heat which attracts all sorts of insects, especially spiders.
This often leads to the appearance of spider’s webs that partially obstruct
the view of the camera and blur the captured images. This phenomenon,
which may happen very quickly, is even more important when it rains,
when water droplets hanging from the web cause serious obstruction of
the camera view. We show, in Section 5.1, how temporal dependencies
can be used to automatically detect cameras that are prone to this phe-
nomenon.

Road deicing operation assistance: Every winter, deicing or snow-clearing
of roads is an important issue that impacts on the local economy, the public
finances and the environment. Deicing of roads must therefore be well-
organized in order to limit its negative environmental, technical and health
impacts. Road operators rely on weather forecasting. However, weather
alerts are on the scale of an entire urban area whereas topographic (e.g.,
hill) and urban (e.g. parks, buildings) disparities can cause differences
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in temperature and freezing. Hence, many roads are processed without
this being necessary and some slick roads are not deiced. To enhance
deicing operation management, the Lyon urban area (Grand Lyon, France)
has equipped the roads with sensors that measure the humidity and the
temperature in real-time. These sensors are embedded in the bitumen
and monitor short-lived atmospheric phenomena. In Section 5.2, we use
our approach to identify the temporal dependencies among freezing events
and show how they can be used to implement road deicing operations.

Contributions and Roadmap

To summarize, the main contributions of this paper are:

• The introduction of the problem of temporal dependency discovery be-
tween sequences of interval-based events (see Section 2). We formally de-
fine the notion of confidence and assess its validity based on a χ2 test. We
present a dominance relationship on temporal dependencies that makes it
possible to control the redundancy among the patterns.

• The design of an efficient algorithm, presented in Section 3, that benefits
from various properties to prune the search space while guaranteeing the
completeness of the extraction.

• An evaluation of the efficiency of the algorithm on synthetic data (Section
4).

• The investigation of two case-studies in Sections 5.1 and 5.2 that illustrate
the applicability of the mined temporal dependencies to generate a graph
that support intelligent data analysis on real data streams from two smart
real-world environments equipped with sensors.

2 Temporal dependencies

Data streams are sequences of time-point events, S =< (a, t) >, that is to
say sequences of couples made of a nominal symbol a ∈ A, and a time stamp
t ∈ Ts, with Ts the discrete time of observation. For example in Figure 2, A =
{open, close} and the time-point events are< (open, 1), (close, 2), · · · , (close, 9) >.
But, in many application domains, it is the time interval between time-point
events that conveys the most valuable information. For example, the time in-
tervals during which a door is open may be in temporal dependency with the
detection of a moving object by a camera. Therefore, it can be interesting to
examine the intervals associated to these events. A point-based event sequence
S is turned into as many interval-based event sequences as there are symbols
a ∈ A. The resulting interval-based sequences are denoted by capital letter, e.g.
the event a is associated to the interval-based sequence A, and is defined by:

A =< [ti, ti+1) | ti, ti+1 ∈ Ts > where ∀t ∈ ([ti, ti+1) ∩ Ts) , (a, t) ∈ S
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Figure 2: open and close events generated by a door sensor and their related
set of intervals.

Following the example in Figure 2, the interval set associated to the event
open is Open door =< [1, 2), [4, 5), [8, 9) > and the one associated to close is
Closed door =< [2, 4), [5, 8) >. The significance of an interval-based event,
called event hereafter, is evaluated by the sum of the lengths of its intervals:

len(A) =
∑

[ti,ti+1)∈A

(ti+1 − ti)

In Figure 2, len(Open door) = 3. The dependency of two events A and B is
evaluated on the basis of the intersection of their intervals: len(A∩B) = len(<
[ti, ti+1) ∩ [tj , tj+1) >) with [ti, ti+1) ∈ A and [tj , tj+1) ∈ B).

A

B

A
⋂

B

Figure 3: Example of intersection of interval sets.

Figure 3 provides an example of the intersection of two events. However,
two events A and B can be in temporal dependency A → B while not being
synchronous. It happens when B is time-delayed with respect to A. To capture
such dependencies the intervals of B may undergo some transformations so as
to better coincide with the intervals of A. Two types of transformations can
be applied: (1) B can be shifted so as to maximize its intersection with A, and
(2) B can be slightly extended so as to make the temporal dependency measure
more robust to the inherent variability of the data. Shifting B by β consists
of translating each interval of B by β time units: B[β,β] = {[tj − β, tj+1 − β) |
[tj , tj+1) ∈ B}. To slightly extend the intervals of B, the second bound of each
interval of B is translated by only β time units, with α ≥ β ≥ 0. It results in the
following new interval set: B[α,β] = {[tj − α, tj+1 − β) | [tj , tj+1) ∈ B}. Notice
that the intervals of B[α,β] may intersect. In that case, intersecting intervals are
merged. Figure 4 illustrates some interval set shifts.
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Figure 4: Example of interval set shifts.

2.1 Temporal dependency assessment

The temporal dependency of A over B is evaluated by the proportion of time
where the two events simultaneously occur over the length of A. This confidence
measure is formally defined below.

Definition 1 (Confidence of event dependency) Considering two events A
and B as well as a shifted interval [α, β], the strength of a [α, β]-temporal de-

pendency between A and B, denoted A
[α,β]−−−→ B, is evaluated by:

conf(A
[α,β]−−−→ B) =

len(A ∩B[α,β])

len(A)

We can observe that conf(A
[α,β]−−−→ B) is equal to 1 iff each interval of A is

included in an interval of B[α,β]. Some values of [α, β] convey some specific

semantics of the confidence measure. For instance, A
[0,0]−−−→ B highlights a si-

multaneous dependency between A and B. A
[β,β]−−−→ B means that events A

and B are in a relation after exactly β time stamps, and A
[β,0]−−−→ B means that

A is in the relation after at most β time stamps with event B. In Figure 5,

conf(A
[0,0]−−−→ B) = 2+3+5+3

2+4+5+3 = 13
14 and conf(A

[1,2]−−−→ B) = 2+2+4+2
2+4+5+3 = 10

14 .

A

B

Figure 5: Example of confidence measure evaluation.

To statistically assess the value of conf(A
[α,β]−−−→ B), we propose to perform

a Pearson’s chi-squared test of independence [41]. The test determines whether
or not the occurrences of A and B[α,β] are statistically independent over the
period of observation T defined by T = [tbegin, tend) with

tbegin = min{ min
[ti,ti+1)∈A

ti, min
[tj ,tj+1)∈B

tj} and

tend = max{ max
[ti,ti+1)∈A

ti+1, max
[tj ,tj+1)∈B

tj+1}
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A given time point of T might belong or not to an interval of A. These two
possible outcomes are denoted A and A. Table 1 is the contingency table O
that crosses the observed outcomes of A and B[α,β]. The null hypothesis states

B[α,β] B[α,β]

A len(A ∩B[α,β]) len(A)− len(A ∩B[α,β])

A
len(B[α,β]) − len(A ∩
B[α,β])

len(T ) − len(A) − len(B[α,β]) + len(A ∩
B[α,β])

Table 1: Matrix O partitions the interval T into the four possible outcomes of
A and B.

that the occurrences of the outcomes A and B[α,β] are statistically indepen-

dent. If we suppose that A occurs uniformly over T , there are len(A)
len(T ) chances

that event B[α,β] occurs at the same time. As B[α,β] occurs during len(B[α,β])
time stamps, the expected number that B[α,β] occurs simultaneously with A

under the null hypothesis is len(B[α,β])×len(A)
len(T ) . The three others outcomes under

the null hypothesis are constructed according to the same principle. All these
expected outcomes E are given in table 2.

B[α,β] B[α,β]

A len(B[α,β])×len(A)
len(T )

(len(T )−len(B[α,β]))×len(A)

len(T )

A len(B[α,β])×(len(T )−len(A))
len(T )

(len(T )−len(B[α,β]))×(T−len(A))

len(T )

Table 2: Matrix E partitions the interval T into the four possible outcomes of
A and B[α,β] under the null hypothesis.

The value of the statistical test is

X2 =

2∑
i=1

2∑
j=1

(Oij − Eij)2

Eij

=
len(T )

(
len(T ) len

(
A ∩B[α,β]

)
− len(A)len(B[α,β])

)2
len(A)len(B[α,β])(len(T )− len(A))(len(T )− len(B[α,β]))

(1)

The null distribution of the statistic is approximated by the χ2 distribution with
1 degree of freedom, and for a significance level of 5%, the critical value is equal
to χ2

0.05 = 3.84. Consequently, X2 has to be greater than 3.84 to establish that
the interval set intersection is sufficiently large not to be due to chance. From
equation (1) we derive the following quadratic equation in len

(
A ∩B[α,β]

)
:(

len(T ) len
(
A ∩B[α,β]

)
− len(A)len(B[α,β])

)2
≥

3.84

len(T )
len(A)len(B[α,β])(len(T )− len(A))(len(T )− len(B[α,β]))
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which is satisfied iff 0 ≤ len
(
A ∩B[α,β]

)
≤ ∩1 or len(T ) ≥ len

(
A ∩B[α,β]

)
≥

∩2, ∩1 and ∩2 being the roots1 of this equation.
Intersection values that range between 0 and ∩1 are much smaller than the

one expected under the null hypothesis. Such values can be used to detect
anomalies, but, in the following we focus on the intersection values that are

unexpectedly high. Therefore, we conclude that a temporal dependency A
[α,β]−−−→

B is valid iff

conf(A
[α,β]−−−→ B) ≥ ∩2

len(A)
(2)

As the χ2 test only works well when the dataset is large enough, we use the
conventional rule of thumb [41] that enforces all the expected numbers (cells in
Table 2) to be greater than 5. Otherwise, the dependency is not considered.

2.2 Significant temporal dependencies selection

For two events in temporal dependency, a huge number of shifting intervals
[α, β] may exist that result in valid temporal dependencies. These intervals may
describe distinct temporal dependencies (e.g., different paths may exist between
two motion captors producing as many temporal dependencies), but they can
also be redundant, depicting the same phenomenon several times. Redundancy
between shifting intervals is mainly caused by the following property:

Property 1 (Confidence monotonicity) Let A and B be two events and

[α1, β1], [α2, β2] be two shifting intervals. If [α1, β1] ⊆ [α2, β2], then conf(A
[α1,β1]−−−−→

B) ≤ conf(A
[α2,β2]−−−−→ B).

Proof 1 [α1, β1] ⊆ [α2, β2] implies that for each interval [ti, ti+1) in B, [ti −
α1, ti+1−β1) ⊆ [ti−α2, ti+1−β2) and len(B[α1,β1]) ≤ len(B[α2,β2]). As a result

len(B[α1,β1] ∩A) ≤ len(B[α2,β2] ∩A) and conf(A
[α1,β1]−−−−→ B) ≤ conf(A

[α2,β2]−−−−→
B).

�

To be useful in real data streams, we wish our mining process to automati-
cally discover the shifted intervals that best describe the temporal dependencies
of two given events while avoiding the pattern flooding that may result from

1

∩1 =
len(A)len(B[α,β])−

√
3.84

len(T )
len(A)len(B[α,β]) (len(T )− len(A))

(
len(T )− len(B[α,β])

)
len(T )

∩2 =
len(A)len(B[α,β]) +

√
3.84

len(T )
len(A)len(B[α,β]) (len(T )− len(A))

(
len(T )− len(B[α,β])

)
len(T )
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the computation of all valid temporal dependencies. Among all the shifting in-
tervals included in [tmin, tmax] that lead to valid temporal dependencies, those
that are of interest should have (1) a high confidence value and (2) be as specific
as possible with respect to the inclusion relation. This leads to the following
definition of the dominance relationship on the set of temporal dependencies.

Definition 2 (Dominance relationship) Let d[α1,β1] = A
[α1,β1]−−−−→ B and

d[α2,β2] = A
[α2,β2]−−−−→ B be two temporal dependencies between A and B. We

say that d[α1,β1] dominates d[α2,β2], d[α1,β1] � d[α2,β2], iff [α1, β1] ⊆ [α2, β2] and

1− conf(A
[α1,β1]−−−−→ B)

conf(A
[α2,β2]−−−−→ B)

< 1− len(B[α1,β1])

len(B[α2,β2])
(3)

The rationale behind this definition is that when [α1, β1] dominates [α2, β2], the
loss of the confidence measure of [α1, β1] is less than the reduction of its interval
set length and thus B[α2,β2]\[α1,β1] ∩A is almost empty. Indeed, if the reduction
of the interval length of B[α,β] is uniformly distributed over [tbegin, tend], then
the length of its intersection with A will be reduced by the same proportion:

len(A ∩B[α1,β1])

len(A ∩B[α2,β2])
≈ len(B[α1,β1])

len(B[α2,β2])

However, if the reduction of the interval set length of B[α,β] mainly occurs when
A is not active, then the length of its intersection with A decreases less than its
active interval set length:

1− len(A ∩B[α1,β1])

len(A ∩B[α2,β2])
< 1− len(B[α1,β1])

len(B[α2,β2])

This dominance relationship makes it possible to refine an interval while
controlling the loss of the confidence measure. If an interval reduction leads to a
significant loss, then the refinement process has to be stopped, since the portion
of A not covered by the interval will not be subsequently either. Therefore,
significant temporal dependencies are the most specific temporal dependencies
that dominate all their supersets:

Definition 3 (Significant temporal dependencies) For two events A and

B, let Σ be the set of temporal dependencies d[α,β] = A
[α,β]−−−→ B such that (i)

d[α,β] dominates all of its supersets, and (ii) every superset of d[α,β] dominates
its supersets as well:

Σ = {d[α1,β1] | ∀ [α2, β2] such that [α1, β1] ⊆ [α2, β2], d[α1,β1] � d[α2,β2]

and ∀ [α3, β3] such that [α2, β2] ⊆ [α3, β3], d[α2,β2] � d[α3,β3]}

Temporal dependencies that belong to the positive border of (Σ,�) are said to
be significant.
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Property 2 (Σ-belonging monotonicity) Let [α1, β1] ⊆ [α2, β2]. If d[α1,β1]

belongs to Σ then d[α2,β2] ∈ Σ.

Proof 2 As d[α1,β1] ∈ Σ, from Definition 3 we have ∀[α3, β3] such that [α2, β2] ⊆
[α3, β3], d[α2,β2] � d[α3,β3]. Furthermore, as ∀[α4, β4] such that [α3, β3] ⊆ [α4, β4],
we have [α1, β1] ⊆ [α3, β3] with d[α1,β1] � d[α3,β3] and d[α3,β3] � d[α4,β4]. There-
fore, as

1. ∀[α3, β3] such that [α2, β2] ⊆ [α3, β3], d[α2,β2] � d[α3,β3]

2. ∀[α4, β4] such that [α3, β3] ⊆ [α4, β4] d[α3,β3] � d[α4,β4]

and we can conclude that d[α2,β2] ∈ Σ.

�

Property 3 (Dominance transitivity) Let d[ti,tj ] designate the temporal de-

pendency A
[ti,tj ]−−−→ B. For all intervals [α, β] such that [α1, β1] ⊆ [α, β] ⊆

[α2, β2], if d[α1,β1] � d[α,β] and d[α,β] � d[α2,β2] then d[α1,β1] � d[α2,β2].

Proof 3 As d[α1,β1] � d[α,β], from Definition 2 we have conf(A
[α1,β1]−−−−→B)

conf(A
[α,β]−−−→B)

>

len(B[α1,β1])
len(B[α,β])

. By multiplying this equation by conf(A
[α,β]−−−→B)

conf(A
[α2,β2]−−−−→B)

, we get

conf(A
[α1,β1]−−−−→ B)

conf(A
[α,β]−−−→ B)

>
len(B[α1,β1])

len(B[α,β])

 conf(A
[α,β]−−−→ B)

conf(A
[α2,β2]−−−−→ B)

≡ conf(A
[α1,β1]−−−−→ B)

conf(A
[α2,β2]−−−−→ B)

>
len(B[α1,β1])

len(B[α,β])

conf(A
[α,β]−−−→ B)

conf(A
[α2,β2]−−−−→ B)

Similarly, considering d[α,β] � d[α2,β2] and multiplying it by len(B[α1,β1])
len(B[α,β])

, we get conf(A
[α,β]−−−→ B)

conf(A
[α2,β2]−−−−→ B)

>
len(B[α,β])

len(B[α2,β2])

 len(B[α1,β1])

len(B[α,β])

≡ len(B[α1,β1])

len(B[α,β])

conf(A
[α,β]−−−→ B)

conf(A
[α2,β2]−−−−→ B)

>
len(B[α1,β1])

len(B[α2,β2])

Therefore, we have conf(A
[α1,β1]−−−−→B)

conf(A
[α2,β2]−−−−→B)

> len(B[α1,β1])

len(B[α2,β2])
and we can conclude that

d[α1,β1] � d[α2,β2].

�
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3 Efficient Temporal Dependencies Discovery

Discovering temporal dependencies is time-consuming for large volumes of data.
Positing that it is not useful to look for temporal dependencies with large time
lag, we restrict the search of shifting intervals to the intervals [α, β] included
in [tmin, tmax], where tmin and tmax are parameters set by the end-user. They
specify the time range in which the shifting intervals are taken. Indeed, a naive
algorithm, that looks for dependencies between two events A and B, will ex-
plore all possible time shift intervals included in [tmin, tmax] (the number of
such intervals is in Θ((tmax − tmin)2)). For each interval, it will compute its
confidence value, which can be done in Θ(#I), where #I is the number of in-
tervals of A or B. Such an algorithm has to be executed with a relatively high
frequency over data stream batches. Therefore, it is a key issue to improve its
efficiency to make it suitable for the context of multiple data streams. To do
that we propose TEDDY, TEmporal Dependency DiscoverY, an algorithm that
(1) takes advantage of the monotonic characteristic of the confidence measure,
as stated in property 1, to avoid considering time shift intervals that are guar-
anteed not to be valid; (2) exploits an upper bound on the confidence measure,
whose complexity is O(1), to reduce the computation required for the confidence
evaluation; (3) explores the search space using a level-wise approach in order
to discover significant temporal dependencies while computing the confidence
value of each interval at the most once.

TEDDY is sketched in Algorithm 1. For every pair of events, it explores the
temporal dependencies in a breadth-first approach. The inclusion operation over
time shift intervals defines a semi-lattice, illustrated in Figure 6, where intervals
at given depth d have the same length: tmax − tmin − d. This semi-lattice is
traveled level by level. At each iteration of the while loop, Candd contains the
d-depth shift interval candidates. Line 7, Promd is computed as the restriction
of Candd to the dependencies whose confidence value is greater than a lower
bound. If a temporal dependency from Promd dominates its two ancestors,
then it is a promising dominant candidate and thus belongs to Σd (line 8). As
such, it is added to the Border set whereas its ancestors are removed, as they are
no longer the most specific intervals of Border. Line 9, d+ 1-depth candidates
are generated if their d-depth ancestors belongs to Σd. Line 12 processes Border
only to extract valid and significant temporal dependencies.

The four most important steps of this algorithm, the candidate generation,
the pruning based on confidence and dominance, and the identification of valid
and significant dependencies, are detailed in the following subsections.

3.1 Candidate time shifts generation

As stated in property 1, the confidence measure increases monotonically with
time shift interval inclusion. In addition, property 2 stipulates that Σ-belonging
is also a monotonic property. So, to prune the search space made of temporal
dependencies that are not valid or not significant, the interval semilattice is tra-
versed from the largest interval down to the singletons. If a time shift interval is
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[tmin, tmax]

[tmin, tmax-1] [tmin+1, tmax]

[tmin, tmax-2] [tmin+1, tmax-1] [tmin+2, tmax]

[tmin, tmax-3] [tmin+1, tmax-2] [tmin+2, tmax-1] [tmin+3, tmax]

[tmin, tmin] [tmax, tmax][tmin+1, tmin+1] [tmax-1, tmax-1]….

…. …. …. ….

Figure 6: Interval shift join semi-lattice with respect to ⊆.

not valid or does not dominate one of its direct ancestors, then none of the in-
tervals included in it can correspond to a valid significant temporal dependency.
As each interval at depth d+ 1 is included in at most two intervals at depth d,
we generate an d + 1-depth candidate by intersecting d-depth promising time
shifts. Algorithm 2 presents the candidate generation procedure. The first test
(line 2) checks that the bottom of the semilattice has not been reached. It pro-
cesses L, the list of promising d-depth intervals ordered by their first endpoint.
If the first (resp. last) interval, lines 3-5 (resp. lines 15-17), is [tmin, tmax − d]
(resp. [tmin + d, tmax]), then [tmin, tmax − (d+ 1)] (resp. [tmin + (d+ 1), tmax])
is a d+ 1-depth candidate as its only one ancestor belongs to L. The loop (lines
7-14) generates all other temporal dependencies whose two direct ancestors are
in L by intersecting their time shift intervals.

3.2 Pruning-based on confidence measure

In order to avoid the computation of the confidence values of unpromising de-
pendencies, we consider the following property that bounds the difference of
confidence between two time shift intervals:

Property 4 (Bounds on confidence) Let A and B be two events, and [α1, β1]
and [α2, β2] be two shifted intervals. We have:

|conf(A
[α1,β1]−−−−→ B)− conf(A

[α2,β2]−−−−→ B)| ≤ (|α1 − α2|+ |β1 − β2|)×#B

len(A)

where #B represents the number of intervals in B.

Proof 4 By shifting an interval [tj−α1, tj+1−β1] ∈ B[α1,β1] with [α2−α1, β2−
β1], the length of the resulting interval may gain or lose a maximum of (|α1 −
α2|+|β1−β2|) time units. By multiplying this quantity by the number of intervals
in B, the result follows.

�
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Algorithm 1 TEDDY

Require: IS a set of interval-based events, [tbegin, tend), and [tmin, tmax].
Ensure: All significant temporal dependencies over IS.
1: for all si ∈ IS do
2: for all sj ∈ IS do
3: Border ← ∅
4: Cand0 ← [tmin, tmax]
5: d← 0
6: while Candd 6= ∅ do
7: Promd ←Pruning based on confidence(Candd)
8: [Σd, Border]←Pruning based on dominance(Promd, Border)
9: Candd+1 ←Candidate generation(Σd)

10: d← d+ 1
11: end while
12: Significantsi,sj ←Compute valid and significant TD(Border)
13: end for
14: end for
15: return

⋃
si,sj

Significantsi,sj

Furthermore, as stated by equation (2) page 8, valid temporal dependencies
have a confidence value greater than

MinConfidence (L(α, β)) ≡
λL(α, β) +

√
3.84
T λ(T − λ)L(α, β)(T − L(α, β))

λT

where L(α, β) = len(B[α,β]) and λ = len(A). Property 5 provides a lower
bound on MinConfidence (L(α, β)):

Property 5 (Lower bound on MinConfidence (L(α, β)))

MinConfidence (L(α, β)) ≥ min (1,MinConfidence (L(0, 0)))

Proof 5 L(α, β) (T − L(α, β)) is a quadratic function which vanishes at L(α, β) =
0 and L(α, β) = T . Therefore, MinConfidence (L(α, β)) first increases and then
decreases over [0, T ] with MinConfidence (0) = 0 and MinConfidence (T ) =
1. Let x1 < T be such that MinConfidence (x1) = 1. We can observe that
MinConfidence (x) increases over [0, x1] (see Figure 7). As L(α, β) ≥ L(α, α) =
L(0, 0), we can lower bound MinConfidence (L(α, β)) by MinConfidence (L(0, 0)),
when it is below 1 – the maximum confidence value– or by 1 otherwise:

MinConfidence (L(α, β)) ≥ min (1,MinConfidence (L(0, 0)))

�

conf(A
[α,β]−−−→ B) is upper bounded by 1, therefore if MinConfidence > 1,

there is no valid temporal dependency. Algorithm 3 details the evaluation of

13



Algorithm 2 Candidate generation

Require: L, the list of promising d-depth intervals, ordered by their first end-
point.

Ensure: Cand, the list of d+ 1-depth candidate intervals.
1: Cand← ∅
2: if tmax − tmin > d then
3: if (L[0] = [tmin, tmax − d]) then
4: Cand← Cand ∪ [tmin, tmax − (d+ 1)]
5: end if
6: i← 0
7: while i < #L− 1 do
8: [α, β]← L[i]
9: [γ, δ]← L[i+ 1]

10: if (α = γ − 1) and (β = δ − 1) then
11: Cand← Cand ∪ [γ, β]
12: end if
13: i← i+ 1
14: end while
15: if (L[#L− 1] = [tmin + d, tmax]) then
16: Cand← Cand ∪ [tmin + d+ 1, tmax]
17: end if
18: end if
19: return Cand

the confidence measure. The confidence value of the first candidate is com-
puted (line 4). Then, the confidence value of the following candidates is esti-
mated based on Property 4 (line 7). If the upper-bound (lastConf + maxGain)
of the confidence value of a candidate is lower than MinConfidence (L(0, 0))
(boundMinConfidence, estimated thanks to property 5), then the candidate
cannot be valid. Otherwise, its exact confidence is evaluated (line 10) and, if it
is greater than boundMinConfidence (line 11), the candidate is considered as
a promising valid temporal dependency. Notice that the confidence measure is
stored for future needs (line 12). This confidence value is used as a new ref-
erence for further maxGain evaluations, since maxGain tends to decrease when
evaluated on distant intervals in Cand.

3.3 Pruning-based on dominance relationships

The Pruning based on dominance function consists simply of evaluating whether
each promising candidate satisfies equation (3) for its direct ancestors. In fact,
property 3 states that if a temporal dependency dominates its direct ancestors,
then it also dominates all its ancestors, and thus belongs to Σ. It is also added
to the Border set whereas its ancestors are removed, as they are not the most
specific temporal dependencies of Σ anymore.

14
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Figure 7: Illustration of MinConfidence function.

3.4 Identification of valid and significant dependencies

The last step of TEDDY is to consider the temporal dependencies of Border to
ensure they are valid, that is, they truly satisfy equation (2). Algorithm 4 states
that if a temporal dependency is valid (line 7) and more specific than any other
dependencies of R (line 8), then it is added to R (line 9) and temporal depen-
dencies that are more general are removed from R (line 10). If the dependency
is not valid (line 12), its direct ancestors are recursively considered in lines 14
and 17.

If R is implemented as an interval tree, evaluating that a temporal depen-
dency is the most specific among the n elements of R can be done in O(log(n)).
Finding all the dependencies of R that are more general than d[α,β] can be done
in O(min(n, k log(n))) where k is the number of dependencies in the output list
[14].

4 Performance Study

In this section, we report experimental results to illustrate the performance of
our approach. We provide some experiments using a multi-camera test bed
that makes it possible to specify the number of generated events and their
frequencies. We also evaluate the efficiency of TEDDY algorithm on real-world
data generated by smart environments and sensor networks. All experiments
were performed on a 8 GB RAM computer with a octo-core processor clocked at
3 GHz, running Windows 7. The TEDDY algorithm is implemented in standard
C++.

We analyze the experimental results with regard to the following questions:

• What is the efficiency of TEDDY with regard to dataset characteristics
that may affect its execution time? At the beginning of section 3, we
mention that a baseline algorithm, which explores all possible time inter-
vals included in [tmin, tmax], would have a time complexity function that

15



Algorithm 3 Pruning based on confidence

Require: Cand, an ordered list of candidate intervals, #B, the number of
intervals in B and len(A).

Ensure: Prom, the set of promising valid temporal dependencies and their
confidence value.

1: Prom← ∅
2: k ← 0
3: [α, β]←Cand[k]

4: lastConf← conf(A
[α,β]−−−→ B)

5: while k < #Cand do
6: [αk, βk]←Cand[k]
7: maxGain← (|α− αk|+ |β − βk|)× #B

len(A)

8: if (lastConf + maxGain ≥ boundMinConfidence then
9: [α, β]←Cand[k]

10: lastConf← conf(A
[α,β]−−−→ B)

11: if (lastConf ≥ boundMinConfidence then
12: Cand[k].confidence← lastConf
13: Prom← Prom ∪ Cand[k]
14: end if
15: end if
16: k ← k + 1
17: end while
18: return Prom

is quadratic with regard to tmax − tmin and linear with the number of
intervals in the active interval sets. Therefore, it is interesting to know
whether TEDDY outperforms the baseline algorithm and to compare their
empirical complexities. Notice that both algorithms have the same com-
plexity in the worst case, but that TEDDY uses pruning techniques that
should increase its efficiency in practice. As the number of intervals in
active interval sets increases with batch size, in the following, we study
the behavior of TEDDY with regard to tmax and batch size.

• How effective are TEDDY’s pruning properties? We carry out a detailed
study of the impact of each pruning technique on TEDDY’s performance.

• Does TEDDY scale? We want to investigate the scalability property of
TEDDY’s execution time.

• Is TEDDY robust when data are noisy? We analyze TEDDY’s ability to
discover temporal dependencies in noisy data.

• How does TEDDY compare to state-of-the-art approach? We compare the
temporal dependencies found by TEDDYto the Dynamic Time Warping
measure.

16



Algorithm 4 Compute valid and significant TD

Require: Border
Ensure: R the set of valid and significant TD.
1: R← ∅
2: for all [α, β] ∈ Border do
3: Confident and most specific([α, β], R)
4: end for
5: return R

Function Confident and most specific([α, β], R)

6: if depth([α, β]) ≥ 0 then
7: if ([α, β].confidence ≥ MinConfidence(α, β) then
8: if is most specific([α, β], R) then
9: insert([α, β], R)

10: R← R\ set of most general([α, β],R)
11: end if
12: else
13: if α− 1 ≥ tmin then
14: Confident and most specific([α− 1, β], R)
15: end if
16: if β + 1 ≤ tmax then
17: Confident and most specific([α, β + 1], R)
18: end if
19: end if
20: end if

4.1 Dataset description

Three types of datasets are used in the experiments: A multi-camera testbed
that provides synthetic data used for efficiency and robustness to noise evalua-
tion, and two real datasets that are also qualitatively studied in the case-studies
(see Section 5).

4.1.1 Multi-camera testbed datasets

To generate the synthetic datasets, we built a simulator of a sensor surveillance
network. It consists of the simulation of 8 video cameras that record what is go-
ing on in a rectangular space. Each camera captures the images of an elliptical
area of this space as described in Figure 8. The simulation consists of moving
objects along eight predefined rectilinear paths. To control the number of events
occurring per unit of time, objects are generated according to a Poisson distribu-
tion. The area covered by each camera is divided into subareas that correspond
to as many sequences. In total, there are 216 sequences that produce events in
our experiments. A sequence contains an interval-based event “object detected”
during every time interval an object is located in the associated subarea.
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Figure 8: Synthetic testbed: A rectangular space is equipped with 8 video
cameras. Objects are moving along 8 rectilinear trajectories.

We generate four different datasets, which differ according to the average
number of events produced per minute and sequence. Quantitative characteris-
tics of these datasets are given in Table 3.

Dataset # Data sources # Events Duration Avg events

SYNT02 216 85,806 3 hours 2
SYNT04 216 173,645 3 hours 4
SYNT08 216 352,553 3 hours 8
SYNT16 216 696,677 3 hours 18

Foxstream 1604 33,278,036 one week 2.1
Grizzly 8 136,603 3 months 8 every 5min

Table 3: Dataset characteristics. The last column shows the average number of
events per minute and per sequence.

4.1.2 Real-world smart environment Foxstream

Foxstream2 is a real-world dataset that depicts one week of activity of a smart
environment composed by two video-cameras, two thermographic cameras and
four motion sensors. These devices are used for outdoor surveillance of a build-
ing. The area captured by each camera is partitioned into 400 rectangular
subareas that correspond to as many data streams. The detection of movement
in each of these subareas is carried out as follows. For each subarea, we compute
a background image by averaging the last 50 frames. Every second, the new
image is compared with the background. A pixel is considered to have changed
if its difference from the background corresponding pixel is greater than a given
threshold (15 in our case). If the subarea has at least 75% of its pixels that have
changed, an event “motion detected” is produced. We emphasize that motion

2Provided by the company http://www.foxstream.com/
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detection in video is still a challenging problem. Therefore, this pre-processing
may produce erroneous data: For instance, spurious motions can be detected
due to changes in weather or lighting (rain, shadow). During the one-week pe-
riod, the cameras generated about 33 million events, whereas the motion sensors
produce around 38 000 events. Data streams are split into batches of one hour
length (T = 3600s). Figure 9 (left) reports the distribution of these events
through out a week of measurement. We can observe that the number of events
is greater the weekdays, especially in the morning, around the lunch break and
late afternoon.
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Figure 9: Number of events: Foxstream (T = 1 hour) and Grizzly (T = 2 days).

4.1.3 Real-world sensor network Grizzly

The GrizzLY (a.k.a. Grand LYon) project aims at implementing a strategy of
weather forecasting at a small spatial scale for the Lyon urban area. It consists
of the deployment of HiKoB3 wireless sensors to monitor roads to improve snow
removal and salting in the city. Eight sensors are spread over the urban area and
located in neighborhoods known to be deicing sensitive. Each sensor provides
real time information on in-pavement temperature combined with outdoor air
temperature and relative humidity. The way we combine these measures into
freezing and not freezing events is described in Section 5.2. Figure 9 (right)
shows the number of events along time. In February and late April, the sensor
network has encountered some partial failures and we decided to not consider
these time periods in our experiments.

4.2 Experiment setup

We study the behavior of TEDDY with respect to various parameters: The
frequency of events (for synthetic data), the period of observation T and tmax.
In all the experiments, tmin is set to 0. Additionally, we examine the impact
of the constraints that define valid and significant temporal dependencies (the
χ2 assessment of the confidence measure and the non-dominated constraint) on

3http://www.hikob.com/
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the search space size as well as on the execution time of TEDDY. To this end,
the four following configurations of Algorithm 1 are studied:

1. WP (without pruning): Lines 7 and 8 are removed and all possible tem-
poral dependencies are considered.

2. Chi2 (χ2-based pruning): Line 8 is removed and only the constraint on
the confidence measure is used to reduce the search space.

3. Gradient (dominance-based pruning): Line 7 is removed and only the
dominance constraint makes it possible to discard unpromising dependen-
cies.

4. TEDDY: Both pruning constraints are fully exploited as presented in
Algorithm 1.

4.3 Evaluation of the pruning efficiency

There is no other algorithm that computes temporal dependencies using the
same constraints as in our proposal. Therefore, we first study the performance
of TEDDY in comparison with the baseline algorithm. This algorithm considers
all possible temporal dependencies and removes, in post-processing, the non
valid or non significant dependencies. For these experiments, we do not take
the execution time required by this post-processing step into account.
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Figure 10: Comparison of TEDDY and WP w.r.t. T (tmax = 10s): Execution
time ratio (a); Search space size ratio (b).

Figures 10 and 11 depict the behavior of TEDDY on synthetic data when
T and tmax vary. In each figure, the running time and search space size ratios
of WP to TEDDY are given. Each value is averaged over all the sequences of
the same size. In most cases, TEDDY is at least twice as fast as WP (see line
f(x) = 2). The ratio of the execution time increases with tmax since the number
of possible intervals is quadratic in tmax − tmin and TEDDY is able to prune
a large part of them early on. On the contrary, when T increases, the ratio
tends to decrease since the number of intervals #A of each event A tends to
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Figure 11: Comparison of TEDDY and WP w.r.t. tmax (T = 900s): Execution
time ratio (a); Search space size ratio (b).

increase and TEDDY is not able to prune the search space as much. Indeed,
maxGain increases linearly with #A and the condition at line 8 of Algorithm 3
tends to be always true which implies that the time interval [tmin, tmax] cannot
be pruned. Furthermore, from Figures 10 and 11, we can also notice that the
denser the datasets, the lower the ratios are.
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Figure 12: Search space size ratio of WP and TEDDY w.r.t. T (a) and tmax
(b) (default values for Grizzly: T = 7 days and tmax = 1 hours; For Foxstream:
T = 1800s and tmax = 5s). Foxstream axis on top; Grizzly axis on bottom.

Figure 12 evaluates the search space size ratio of WP to TEDDY on real
datasets. We notice that TEDDY’s behavior on Foxstream is similar to that
observed on SYNT16, the two datatsets having a large number of events. On
the Grizzly dataset, the behavior is different: When T increases, the ratio tends
to increase too because the MaxGain property is more effective. This is due
to the fact that weather phenomena are lasting much longer than the events
observed with video cameras. Furthermore, the variations are smoother.
Figures 13 and 14 show the proportion of the search space explored by TEDDY.
Among the pruned candidates, we make a distinction between those removed
thanks to the chi2-based constraint and those discarded by the gradient-based
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Figure 13: Impact of each constraint on search space size with regard to T :
Number of candidates pruned by Chi2 and Gradient, and number of candidates
considered by TEDDY.

constraint. These quantities are evaluated with respect to T (Figure 13) and
tmax (Figure 14). A first observation is that the number of candidates avoided
thanks to the two constraints is much higher than the number of dependencies
considered by TEDDY, except when the dataset is very dense and tmax very
small. The gradient constraint is even more effective when the dataset density
increases or the values of T and tmax grow. Indeed, while T increases, the
number of candidates avoided due to the gradient-based constraint increases or
remains stable whatever the dataset density. This pruning criterion becomes
even more effective when tmax increases. The larger the length of a pruned
interval, the greater the size of the pruned search space. Indeed, if an interval
[α, β] does not dominate one of its direct ancestors, it is pruned by the gradient-

based constraint as are (β−α)×(β−α+1)
2 − 1 other candidates, that is to say all
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Figure 14: Impact of each constraint on search space size with regard to tmax:
Number of candidates pruned by Chi2 and Gradient, and number of candidates
considered by TEDDY.

the dependencies that are below [α, β] in the semi-lattice. Beside, chi2-based
pruning tends to be less efficient when tmax and/or T increase. As explained
above, this is due to maxGain that increases with the time interval length and
the number of intervals associated to an event. On the real datasets, TEDDY is
as efficient as on the synthetic ones. The search space size explored by TEDDY
is very small, and this pruning can be due to one or the other constraint.

4.4 Execution time and number of extracted dependencies
when parameters vary

Figure 15 reports the execution time of TEDDY and the average number of de-
pendencies discovered per sequence pair when T varies. Figure 16 also studies
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the performance of TEDDY but according to the value of tmax. In a manner
consistent with what has been observed from Figures 13 and 14, TEDDY bene-
fits from the two pruning techniques in obtaining very good time performance.
Notice that, for each dataset the execution time is always much lower than T
length (at least 200 times). Therefore the temporal dependencies computation is
faster than the data acquisition process, which is a prerequisite for data stream
mining techniques. For dense datasets (SYNT08 and SYNT16), the number of
extracted dependencies increases with T and tmax. For SYNT02 and SYNT04,
the number of dependencies decreases with T : Some values may become sta-
tistically insignificant on a large sequence of data, when the density of events
is low. The number of dependencies also decreases slightly with tmax. This
is due to the gradient-based constraint: A dependency satisfies this constraint
if it dominates all its ancestors. Thus, as the number of ancestors increases
with tmax, the constraint may become unsatisfied, especially when the dataset
density is small.
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Figure 15: Total running time (left) and average number of discovered depen-
dencies (right) per sequence pair with respect to T (tmax = 10).
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Figure 16: Running time (left) and number of discovered dependencies (right)
with respect to tmax (T = 900s).

Figures 17 and 18 reports the running time of TEDDY and the average
number of dependencies per sequence pair with respect to T (a) and tmax (b)
for the Foxstream and Grizzly datasets, respectively. These results confirm the
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observations made above: TEDDY’s execution time increases according to tmax
and T but remains negligible compared to the real batch duration. Therefore,
temporal dependency detection can be carried out without risk of batch overflow.
Furthermore, it is so fast that there is still time for more sophisticated analysis
in addition to temporal dependency discovery. The same observations can be
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Figure 17: Total running time and average number of discovered dependencies
per sequence pair on Foxstream with respect to T (in seconds) (a) and tmax (in
seconds) (b) (default values T = 7200 s and tmax = 5 s).

made on the Grizzly data (see Figure 18).
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Figure 18: Total running time and average number of discovered dependencies
per sequence pair on Grizzly with respect to T (in days) (a) and tmax (in hours)
(b) (default values T = 21 days and tmax = 2 hours).

These first series of experiments are very conclusive and we can argue that
our approach scales up well with regard to the tmax and T parameters.

4.5 Robustness to noise

This empirical study also aims to investigate TEDDY’s robustness against noise.
We assume that synthetic datasets described in Table 3 are noiseless, hav-
ing been generated following a specific scenario in a testbed. We introduce
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a uniform random noise in each dataset by adding x% of spurious events,
x ∈ {1, 3, 5, 10, 20, 30}. We suppose that the set of valid and significant depen-
dencies of the original dataset are those expected and constitute the relevant
dependencies. TEDDY’s robustness is thus evaluated by computing the recall
and the precision of this set of dependencies. To assess whether two temporal

dependencies A
[α1,β1]−−−−→ B and C

[α2,β2]−−−−→ D depict the same phenomenon, we
consider the two following cases:

• exact matching: All the temporal dependency parameters are equal (A =
C, B = D, α1 = α2, β1 = β2);

• relaxed matching: The two temporal dependencies are between the same
events (A = C, B = D).

Finally, we report the F1 score, a trade-off between precision and recall which
reaches its best value at 1 and worst score at 0:

F1 = 2 · precision · recall

precision + recall
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Figure 19: Robustness of TEDDY on synthetic dataset with respect to percent-
age of noise (T = 900, tmax = 5).

Figure 19 shows the F1 score computed for exact matching (left) and re-
laxed matching (right) for the different datasets. It demonstrates that TEDDY
is rather robust to noise as the harmonic mean of precision and recall remains
satisfactory even when the percentage of noise is high. Two things are worth
noticing. Firstly, exact matching gives worse results. In fact, the shifted inter-
vals are less well identified by TEDDY when the percentage of noise increases.
Secondly, the higher the number of events per minute, the less robust against
noise TEDDY becomes. If the proportion of events is small, then the added spu-
rious events are too sparse to produce additional temporal dependencies and the
F1 score remains high.

4.6 Comparison to DTW

It is unrealistic to compare our approach with other classical pattern mining
based approaches that aim to discover regularities among a collection of se-
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quences. Indeed, these approaches rely on the assumption that the sequences of
events are described with the same alphabet which is not true in our case. We
discuss these approaches in more detail in the related work section. TEDDY is
more related to methods that make pairwise comparisons, especially the meth-
ods that aim to compute a distance between two time-series. Actually, temporal
dependencies can be seen as a kind of distance/similarity measure between two
sequences of interval-based events. Therefore, in this section we compare the
temporal dependencies discovered by TEDDY with the Dynamic Time Warp-
ing (DTW) method that is commonly known as the most effective time series
distance measure [49, 29].

To explore the differences between TEDDY and DTW, we apply the DTW
algorithm on the two real-world datasets. Each stream is transformed into a
numerical time series, where every state is associated to a natural number. We
compute the DTW similarities between every pair of streams, and we select
the K most similar pairs. Using TEDDY, we also select the K most confident
temporal dependencies. TEDDY is used with Tmin = 0, Tmax = 10, and the
DTW algorithm uses a global constraint (Sakoe-Chiba band = 10) in order to
have a comparable settings.

Dataset K Jaccard index
Foxstream (1 hour) 10 0.18
Foxstream (1 hour) 25 0.064
Foxstream (1 hour) 50 0.031

Grizzly (1 week) 10 0.11
Grizzly (1 week) 25 0.32

Table 4: Jaccard index on the K most similar pairs identified by TEDDY and
DTW.

Table 4 reports the Jaccard index between theK pairs of streams using DTW
and the K most confident temporal dependencies discovered by TEDDY for
different value of K. On Foxstream, the Jaccard indexes are very low (between
3×10−2 and 2×10−1), but are slightly higher on Grizzly(between 1×10−1 and
3× 10−1). These results show that these two approaches do not aim to capture
the same patterns.

Dataset Kendall’s τ
Foxstream (1 hour) 0.02

Grizzly (1 week) 0.22

Table 5: Kendall’s τ measure on the rankings given by TEDDY and DTW.

Let us now consider the rankings of the pairs of streams provided by the
confidence measure of TEDDY and the similarity measure of DTW. The Kendall
rank correlation coefficient (Kendall’s τ) between these two rankings is given in
Table 5. The low Kendall’s τ measures indicates for a lack of correlation between

27



TEDDY and DTW. Figure 20 gives examples of temporal relationships that are
detected by DTW but not by TEDDY, and vice versa.

(1) Relation found by both methods.

(2) Relation found by TEDDY, but not found by DTW.

(3) Relation found by DTW, but not found by TEDDY.

Figure 20: Examples of relations detected by TEDDY and/or DTW.

We can conclude that TEDDY is a novel approach to automatically detect
dependencies that are not identified by other existing methods, such as DTW.

5 Case-studies

In this section, we present two case studies. The first one is based on the analysis
of the streams generated by video and thermographic cameras as well as motion
sensors to monitor the movements around an office building. In the second case
study, we seek to identify dependency relationships between frozen geographic
areas from data produced by a sensor network deployed in the city of Lyon.

5.1 Outdoor monitoring using heterogeneous sensors

The first case-study is based on the data generated by the real-world smart
environment Foxstream presented in Section 4. The data comprise one week
of monitoring of an office building with a smart environment composed by two
video-cameras, two thermographic cameras and four motion sensors. These data
are pre-treated in a way that generates 1604 streams as explained above.
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5.1.1 TEDDY’s ability to detect a spatial phenomenon

Dependency graphs extracted from the Foxstream data contain up to ten thou-
sand temporal dependencies. This high number is mainly due to the large num-
ber of data streams mined. In fact, a moving object generates events in many
different areas, leading to as many reliable temporal dependencies. Figure 21

Figure 21: Temporal dependencies between data sources corresponding to sub-
areas of two cameras. Images on top represent the subareas involved in de-
pendencies; Bottom images display the temporal dependencies between them
(T = 3600 and tmax = 10).

shows the extracted dependencies between subareas of two overlapping cameras.
These dependencies have been extracted on Tuesday between 10am and 11am.
The corresponding dependency graph is represented in Figure 22. This graph
contains two connected components. If we study the evolution of this graph
through time, it appears that the changes are small during the office hours of
working days. However, at night, the graph is reduced to the connected com-
ponent of the top. Therefore, our approach makes it possible to automatically
discover two distinct type of behaviour: One component captures the activ-
ity around the building (cars and persons) and the other depicts the activity
(car traffic, pedestrians) within the street located in the neighbourhood of the
building, but not in the private parking lot.
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Figure 22: Dependency graph corresponding to data sources of Figure 21. The
two connected components corresponds to two different type of behavior: Mo-
tion around the building (bottom/right component) and the background street
activity (up/left component).

5.1.2 TEDDY’s ability to identify anomalies in a temporal phe-
nomenon

To investigate whether the temporal dependencies are well suited to describe a
temporal phenomenon, we try to find anomalies in the weekly activity observed
around the monitored building. More precisely, we compare dependency graphs
obtained from one-hour batch lengths taken every 24 hours. The idea is to
find significant changes while the recorded activity is similar. Such changes can
correspond to a sensor dysfunction or to a new pattern in the observed activity.

The video surveillance cameras used in this dataset are equipped with in-
frared LEDs, used to illuminate the scene in the infrared spectrum. This technol-
ogy produces heat which attracts all sorts of insects, especially spiders. Spider’s
webs partially obstruct the view of the camera and blur the captured images.
This phenomenon is even more important when it rains, water droplets hanging
from the web causing serious obstruction of the camera view. Our goal is to
automatically detect cameras that are subject to interference by spiders, using
the evolution of the dependency graph in time. To this end, we apply a spi-
der’s web mask on the camera images captured during Wednesday and study
the impact of the spider’s web on the dependency graphs as follows. For each
one-hour batch of Wednesday, we build the dependency graph from TEDDY’s
output and select the dependencies that involve a subarea of the camera. This
so-called camera egocentric dependency graph is compared to the similar graph
built from the batch of events produced 24 hours before, that is on Tuesday.
The Jaccard index is used to evaluate the similarity of the set of arcs of these
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Figure 23: Temporal dependencies between two cameras for a batch correspond-
ing to a period of no activity around the building (night-time). The correspond-
ing dependency graph is the up/left component of the graph from Figure 22.

two graphs. Furthermore, it enables us to overcome the fluctuations related to
night/day phenomena. We assume that if the similarity measure varies by more
than two times the standard deviation σ of the preceding similarities, the cor-
responding camera is suspected of undergoing an unusual phenomenon, which
may be due to the presence of spider’s web on the camera lens.
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Figure 24: An image with a spider’s web (left). Jaccard index evolution over
Tuesday and Wednesday (right) (T = 3600 and tmax = 5).

Figure 24 (right) reports the Jaccard index values between the camera ego-
centric dependency graphs obtained at time M and M − 24. The spider mask
is introduced at M = 21. We can observe a drop in the Jaccard index that
coincides with the appearance of the spider’s web. Afterwards, the value of the
Jaccard index varies by more than 2 ∗ σ. This experiment demonstrates that it
is possible to capture unusual phenomena / anomalies with TEDDY’s output.
It is a proof of concept and more sophisticated treatments can be defined.

5.2 Road deicing operation assistance

Every winter, deicing or snow-clearing of roads is an important issue that im-
pacts on the local economy, public finances and the environment. On the one
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hand, city authorities are encouraged to deploy significant means for road de-
icing as the road network is a key infrastructure for a highly connected and
just-in-time economy. On the other hand, deicing expenses constitute an impor-
tant part of the public works budget that covers the deployment of substantial
means. Moreover, road salting may have an important negative environmental
impact [8, 35]: Deicing salts leach into the soils where the ions may accumu-
late and eventually become toxic to the organisms and plants growing on them.
The contamination of the ground water may also result in health impact on the
urban population. In addition, deicing operations plays havoc with technical
equipment: Salt tends to cause corrosion, rusting the steel used in most vehicles
as well as the threaded rods used in bridge concrete.

Deicing of roads must therefore be well-organized in order to limit its nega-
tive environmental, technical and health impacts. To this end, road operators
rely on weather forecasting. However, weather alerts are on the scale of an entire
urban area whereas topographic (e.g., hill) and urban (e.g. parks, buildings)
disparities can cause differences in temperature and freezing phenomena. As a
result, many roads are processed without this being necessary and some slick
roads are not deiced because no freezing alert was triggered at the urban scale.
To enhance deicing operation management, and process only slick roads, the
weather forecasting must be done at a smaller scale. It consists of considering
short-lived atmospheric phenomena that are smaller than mesoscale, about 1
km or less [6].

5.2.1 Freezing Alert Model Construction

To construct the freezing alert model, we use the data provided by HiKoB sensor
sites between November 2012 and April 2014 (Summer 2013 is excluded). A first
analysis of these data show a strong spatial variability among the temperature
measured over the sites. The difference between the air temperature of the sites
and the one of the weather station of the city varies from 0.18◦C to 1.5◦C in
average.

We used these data to built a weather dependency model over the sites
based on the temporal relationships between the weather events. The weather
conditions at a site are defined by the five following attributes:

1. The site location name (ID),

2. The period of the day (POD) – One of the four following periods: 12
a.m.-6 a.m., 6 a.m.-12 p.m., 12 p.m.-6 p.m. or 6 p.m.-12 a.m,

3. The road temperature (RT ): The greatest integer less than or equal to
the road temperature,

4. The sign of the road temperature gradient (∇RT ): +1 if RT is increasing,
-1 if RT is decreasing, 0 otherwise. The road temperature gradient at time

t (in seconds), ∇RT (t), is evaluated by ∇RT (t) =
RT(t−600)−RT(t−0)

600 with

RTt−x = AV G({RT (t) | 600 + x ≤ t < x}). It evaluates the evolution of
the temperature over last two 10 minutes periods,
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5. Freezing condition (FZ): 1 if the weather conditions are right for freezing
to happen, that is air temperature is less than 0 and RT is less than or
equal to the frost point value; 0 otherwise.

These weather events mainly rely on the road temperature. But as this value
is strongly influenced by day / night phenomena, we also take into account this
information as well as its trend. As we want to predict glaze ice on the road,
the freezing condition is also considered. Notice that during the considered
period, the freezing condition occurred during 4 479 hours out of 55 499 hours
of measurement.

Furthermore, to take into account the road operators logistical and techni-
cal constraints, and make the model effective in the deicing decision process,
the freezing alert must be triggered at least two hours before a freezing event.
Therefore, we set parameters α, β to be as follows: 2 hours ≤ α ≤ β ≤ 4 hours.
Notice that the construction of the model takes 45 seconds. We obtain 22, 972
valid and significant temporal dependencies out of which 2, 315 correspond to a
weather event with freezing condition. As an example, we obtain the following
rule [45]: When the site Lacassagne has a road temperature equals to 1◦C, with a
decreasing gradient and no freezing conditions during the night, then SainteFoy
has a road temperature equals to 0◦C, with a decreasing gradient and freezing
conditions during the morning and this appears between 2 and 4 hours later.

Figure 25: Road freezing prediction in Grand Lyon.

5.2.2 Freezing dependencies identified by TEDDY

Once the temporal dependency-based model has been constructed, we used it
to trigger freezing alerts on new data. A graphical user interface makes it
possible to visualize the current sensor values as well as the triggered alerts
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(see Figure 25)4. The sensor locations are displayed on the Grand Lyon city
map5. The current temperature is represented by a bargraph. When a freezing
alert is triggered, the site is surrounded by a square box. A bold blue circle
signals that a road freezing episode is currently happening. By clicking on the
sensor location on the map, the end-user can obtain the details of the temporal
dependencies that are triggered during the current freezing alert.

Our aim is to use the temporal dependency-based model to predict freezing
weather conditions. To evaluate the accuracy of this approach, we use a cross-
validation procedure to assess how this analysis will generalize to an independent
data set. To this end, the data are divided into ten time periods so that each
period contains the same number of freezing events. Then, one round of cross-
validation consists in building the temporal dependency-based model using 9
time periods and testing the model on the last time period.

Our system is set up to predict freezing event occurrences at least two hours
ahead. The average time interval size of computed temporal dependencies is
of 17 minutes. A freezing alert is considered valid if a freezing event appears
during the prediction interval or within the four following hours. Indeed, the
salt spread on the road remains active at least four hours. Figure 26 reports the
location of each sensor site on Lyon’s map. The precision and recall for each
site are displayed in Figure 27 and Table 6 reports the influence of each site to
trigger freezing events of other sites.

La

Ca

Wi

SP

Me

SF

Li

Cr

Figure 26: The sensor locations over the Lyon urban area.

Most of the sites have high precision and recall values. Indeed 70.14% of
the freezing events are correctly predicted. The sites that have the smallest
values are located on the periphery of the urban area. The Caluire (Ca) and
Craponne (Cr) sites have the worst precision or recall values. Caluire has the

4A video of TEDDY system is available here: http://liris.cnrs.fr/~mplantev/doku/

doku.php?id=teddy
5We use a map provided by www.openstreetmap.org.

34

http://liris.cnrs.fr/~mplantev/doku/doku.php?id=teddy
http://liris.cnrs.fr/~mplantev/doku/doku.php?id=teddy
www.openstreetmap.org


best precision value but the worst recall one. This is due to the prevalent cold
winter wind that is north-easterly in this area. As it is the most north-eastern
site, it encounters freezing conditions before the other sites. The Craponne site
is rather different from the other ones: It is one of the highest sites and the
most western one. Furthermore, this is a residential area with detached houses
and little road traffic. Freezing alerts detected on Craponne site are mainly
triggered thanks to the Meyzieu site that is also a residential area but located
in the East and down in the plain. It is noteworthy that both sites are not
able to predict freezing conditions by their own: No freezing alert was triggered
thanks to these two sites. Both sites also have minor influence (3% in average)
on the other sites (see Table 6).
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Figure 27: Confidence and recall of each sensor location.

Besides providing good performance for triggering freezing episodes, our sys-
tem produces new actionable insights that are very hard to obtain using sim-
ulation models based on whole urban area. Indeed, considering at the same
time locale weather measurements and short time intervals (prediction every
ten minutes) makes it possible to highlight trajectories of freezing alerts. Such
insight is very useful to well-organize and optimize the deicing operations.

Lastly, this temporal dependency model can be used to locate new deploy-
ment sites. For instance, to enhance the freezing alert triggered on Caluire
location, new sites should be deployed in the North East area.

6 Related work

This paper makes a significant contribution to data stream management. The
novelty of our approach is represented by the knowledge nuggets discovered over
multiple heterogeneous data streams. Due to the type of processed data and
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Station location Ca Cr La Li Me SF SP W Avg. influence
Ca 0 0 0.06 0 0.02 0.08 0.04 0.06 0.03
Cr 0 0 0 0 0.14 0 0 0.11 0.03
La 0 0 0.21 0.18 0.17 0.13 0.10 0.14 0.12
Li 0.23 0.11 0.09 0.24 0 0.10 0.17 0.12 0.13
Me 0 0.41 0.27 0 0.32 0.22 0.16 0.16 0.19
SF 0 0 0.17 0 0.16 0.25 0.08 0.21 0.11
SP 0.70 0.21 0.13 0.51 0.13 0.15 0.40 0.13 0.30
Wi 0.07 0.28 0.07 0.07 0.06 0.07 0.05 0.06 0.09

Table 6: Influence of each sensor location to trigger freezing alerts (e.g., SP site
is responsible of 70% of freezing alerts on Ca site).

the confidence measure used, our proposal could be considered to be related to
the contributions from time series area. In this area of research, algorithms are
devised for measuring the similarity between two time series [49]. Most of them
extend the Dynamic Time Warping (DTW) algorithm [46, 28, 49, 29] that makes
it possible to find an optimal time alignment between two time series. How-
ever, even if DTW is commonly known as the most effective time series distance
measure, this measure is not suited for capturing temporal dependencies and
for characterizing the time-delay between event occurrences. An empirical com-
parison is reported in Section 4.6. Indeed, time-series are warped non-linearly
in the time dimension so as to determine a measure of their similarity inde-
pendent of certain non-linear time variations. In our work, we aim to consider
linear transformation of the interval-based events in order to find out temporal
dependencies and their most specific time-delay intervals.

The contribution presented in this paper can also be compared with the
work on attribute dependency analysis. Using the rough set theory [40] as well
as the equivalence class structure [52], the dependency of attributes makes it
possible to discover which variables are strongly related. A dependency can be
interpreted as the proportion of objects for which it suffices to know the values of
some attributes to determine the values of some other attributes. The attribute
dependency problem has also been investigated in the data base community
with (conditional) functional dependencies [18]. The temporal dependencies we
introduce in this paper are different on two points. First, they involve two
streams (objects) while the classical attribute dependencies are ”intra object”
(i.e., involve a single object). Second, we take into account the time relation
which is neglected in other forms of dependencies.

More generally, our work is related to various research areas: (i) temporal
pattern mining on event intervals, (ii) trajectory and workflow mining, and (iii)
mining smart environments.

Taking temporal information into account, most of the existing approaches
aim at discovering frequent patterns among a set of sequences (i.e., temporal
information is used to order the events within the sequences). Such approaches
include mining of sequential patterns [3] or episodes [33] on sequences of “point
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events” (i.e., events with no duration), with applications in data stream process-
ing [12, 34, 11]. In addition, some approaches show a particular interest in the
time transition between events, either pushing some specific time constraints
inside the search, like the well-known mingap, maxgap and window-size, or try-
ing to characterize the lag intervals between two event types [22, 48] or between
items within a sequence [20]. Furthermore, based on the fact that sequential pat-
tern mining on point event sequences is inadequate in discovering more sophis-
ticated relations than the “before” / “after” relation, some works consider “in-
terval events”, i.e., events that have a duration. This introduces more complex
relations between events extending Allen’s algebra [13, 36, 47, 24, 9, 39, 51, 50].
Some approaches define events based on the interval model, but only the “be-
fore” / “after” temporal relation is supported [15, 4, 16]. We emphasize the
fact that these approaches, except [32, 30, 31], are not dedicated to data stream
mining tasks. Moreover, they aim at discovering regularities in a collection of
sequences, whereas we wish to highlight some temporized dependencies between
streams based on their interval-based events. Furthermore, incorporating statis-
tical metric like the χ2 test within the pattern mining process is a well-studied
issue [37, 25]. But these measures are often considered in addition to others such
as confidence and support measures. In this paper, this statistical assessment
is also used to automatically set some thresholds. Indeed, threshold setting is
a difficult issue for end-users who are often not data miners and not familiar
with these techniques. Thus, the χ2 test used in our proposal enables us to ob-
tain more valuable results while limiting the number of parameters the end-user
has to set. Finally, we are convinced that the two tasks are different and com-
plementary. Indeed, two data sources may support several frequent sequences
without having a dependency relation between them and vice versa.

Temporally annotated sequences [20] have been successfully applied to work-
flow mining [7] and trajectory pattern mining [21]. Once again, our approach
differs in the nuggets that are discovered. For process or trajectory mining, a
collection of logs is examined to highlight the regularities. In our approach, we
search for dependencies between data sources.

From an application point of view, our work is close to the research con-
ducted in the smart environment community, where one of the main challenges
is activity discovery. In [43], Rashidi and Cook proposed mining sequential pat-
terns over time from streaming non-transactional data using tilted-time win-
dows [23]. They extended their previous work [44], thereby introducing the
first stream mining method for discovering human activity patterns in sensor
data. Based on these proposals, association rule mining was applied to discover
temporal relations of daily activities in [38]. Nevertheless, the motivations are
different and these approaches are supervised while ours is unsupervised.

7 Conclusion

Designing new methods to discover relations over multiple heterogeneous data
streams is a challenge. To the best of our knowledge, recently proposed methods
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focus on the discovery of regularities among events within streams. No proposal
that we are aware of takes on the challenge of discovering particular relations
between data sources that produce multiple heterogeneous data streams. Our
work investigates a new direction in data stream mining. It identifies temporal
dependencies between data streams. First, we define the novel problem of min-
ing temporal dependencies over multiple heterogeneous data streams. Then, we
design and implement a complete, though scalable, algorithm that efficiently
computes such temporal dependencies. Our approach is robust to the temporal
variability of events and characterizes the time intervals during which the events
are dependent. It links two events if the occurrence of one is often followed by
the appearance of the other in a certain time interval. The proposed interval-
based approach determines the most appropriate time intervals of a temporal
dependency whose validity is assessed by a χ2 test. As several intervals may
redundantly describe the same dependency, the approach retrieves only the few
most specific intervals with respect to a dominance relationship over temporal
dependencies, and thus avoids the classical problem of pattern flooding in data
mining. The TEDDY algorithm takes advantage of various properties to prune
the search space while guaranteeing the discovery of all valid and significant
temporal dependencies. We conducted an extensive experimental study of both
synthetic and real-world data streams from smart environments equipped with
various kinds of sensors (cameras, motion sensors, etc.). From these experi-
ments, we conclude that the pruning techniques are very efficient and speed up
TEDDY running time by a factor that varies between 2 and 60. A qualitative
analysis of the output shows that TEDDY produces a small set of non-redundant
dependencies that accurately describe the phenomenon captured by the data.

There are several ways of extending the main results of this paper. First
of all, we plan to investigate the dynamics of dependency graphs through time.
The set of temporal dependencies can be viewed as an attributed graph whose
nodes describe events. Mining such dynamic attributed graphs would enable
us to discover periodic phenomenon and other evolving behaviors that cannot
be easily discovered without such a graph abstraction. We also plan to make
temporal dependencies more actionable from a database perspective. We are
convinced that such dependencies can be integrated into continuous query en-
gines. Indeed, some temporal dependencies could be the basis of a semantic
indexation of data sources to better support human monitoring or object track-
ing in a set of cameras.
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