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Rationale and Objectives: To explain predictions of a deep residual convolutional network for characterization of lung nodule by analyz-
ing heat maps.

Materials and Methods: A 20-layer deep residual CNN was trained on 1245 Chest CTs from National Lung Screening Trial (NLST) trial to
predict the malignancy risk of a nodule. We used occlusion to systematically block regions of a nodule and map drops in malignancy risk
score to generate clinical attribution heatmaps on 103 nodules from Lung Image Database Consortium image collection and Image Database
Resource Initiative (LIDC-IDRI) dataset, which were analyzed by a thoracic radiologist. The features were described as heat inside nodule
-bright areas inside nodule, peripheral heat continuous/interrupted bright areas along nodule contours, heat in adjacent plane -brightness in
scan planes juxtaposed with the nodule, satellite heat - a smaller bright spot in proximity to nodule in the same scan plane, heat map larger
than nodule bright areas corresponding to the shape of the nodule seen outside the nodule margins and heat in calcification.

Results: These six features were assigned binary values. This feature vector was fedinto a standard J48 decision tree with 10-fold cross-val-
idation, which gave an 85 % weighted classification accuracy with a 77.8% True Positive (TP) rate, 8% False Positive (FP) rate for benign
cases and 91.8% TP and 22.2% FP rates for malignant cases. Heat Inside nodule was more frequently observed in nodules classified as
malignant whereas peripheral heat, heat in adjacent plane, and satellite heat were more commonly seen in nodules classified as benign.

Conclusion:We discuss the potential ability of a radiologist to visually parse the deep learning algorithm generated “heat map” to identify
features aiding classification.
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INTRODUCTION
T he recent surge in applications built on artificial intel-
ligence (AI) has resulted in the need for greater train-
ing, understanding and studying the ethical

implications of AI in the field of medical imaging (1,2). The
excellent image classification capabilities of deep learning
(DL) are often approached with caution due to perceived
lack of explainability of their functioning (3). This perceived
opacity in the functioning of DL algorithms has led to such
networks being referenced as a ‘black box’. Democratization
in the understanding of the network architecture with the
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help of activation maps, has led to greater emphasis on
explainable AI (exAI or xAI). This development has found
favor as a method which can lead skeptical clinicians and radi-
ologists towards informed adoption of the DL techniques in
their practice (4). Such works can help the transition from in-
silico testing of AI solutions to prospective clinical evaluation.
In this paper, we attempt to explain predictions of a deep
residual convolutional network developed for characteriza-
tion of lung nodules by analyzing the class attribution maps �
more generally known “heat maps”.
MATERIALS ANDMETHODS

All required ethics approval was obtained from the institu-
tional ethics committee.

The class attribution map analysis featured a 20-layer deep
residual convolutional neural network trained to identify and
characterize the pulmonary nodules. This network was
trained on 1245 Chest CT scans from the National Lung
1
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Screening Trial (NLST) (5) trial to predict the malignancy
risk of a given CT.

The training consisted of two stages where the network
was trained to detect pulmonary nodules in the first stage and
pool the nodules through a leaky noisy-OR gate in the sec-
ond stage to predict overall malignancy risk for the CT scan.
Training

A deep learning system based on convolutional neural net-
works was trained to predict the malignancy status from CT
scans of the chest. The deep learning system comprises of a
nodule detector and a malignancy estimator. The nodule
detection system was trained and validated to pick up pulmo-
nary nodules >= 3 mm on 554 CT scans from NLST and
888 CT scans from Lung Image Database Consortium image
collection and Image Database Resource Initiative (LIDC-
IDRI) (6,7). The malignancy estimator was trained on the
1245 CT scans and validated on 350 CT scans from NLST.
CADe (Nodule Detector)

The CADe system is an ensemble of 3 single-shot 3D feature
pyramid networks (8,9) which is trained to detect lung nodules
from the CT scans. The 3D feature pyramid network is built
with a U-Net encoder-decoder architecture, composed of 3D
convolutions, to maximize the effective receptive field and fuse
multiscale information. Multiscale information is essential for dif-
ferentiating pulmonary nodules from vasculature present in the
organs. The network takes in a 3D patch of size 128 £ 128 £
128 as input and gives out 32 £ 32 £ 32 £ 3 £ 5 as output,
with 3 anchor boxes of varying size limits for each network in
the ensemble. During inference, the ensemble is rolled over the
CT scan with 128 £ 128 £ 128 overlapping patches and the
predicted bounding boxes are fused with nonmaximum suppres-
sion to provide the final candidates for lung nodules.
Figure 1. The deep learnin
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The CADe system is trained on 711 CTs from LIDC-
IDRI and 554 CTs from NLST with Adam optimizer and a
learning rate of 0.0001, a weight decay of 0.0005 and a drop-
out of 0.5. Validation was done on 177 CTs from LIDC-
IDRI. The data was augmented with nodules of different
sizes to ensure training was not biased towards detecting small
nodules. The network architecture is depicted in Figure 1.
CADx (Malignancy Estimator)

The CADx system is a leaky Noisy-OR gate (10) based on
deep convolutional neural networks. The noisy-OR model
operates on 96 £ 96 £ 96 patches from each detected nod-
ule, fuses the information from each nodule and gives the
probability of the patient being affected by lung cancer. Dur-
ing training, top 5 nodule candidates, based on their nodule
probabilities, are taken from the CADe system and fed to the
noisy-OR model. A leakage probability is assigned to the
CADx model during training to account for missed primary
nodules/masses by the CADe system. The CADx model
shares the same backbone as the CADe model with the con-
volutional layers sharing their weights to avoid over-fitting.

The CADx system was trained on 1245 CT scans and vali-
dated on 350 CT scans from NLST. During inference, all the
detected nodules are considered to compute the overall
malignancy risk at a scan-level.
OCCLUSION

The CADx network was taken to understand the decision-
making process of predicting malignancy for a given pulmo-
nary nodule. The analysis of the functioning was initiated by
a technique called “occlusion” (10), wherein, systematic
blocking of various regions of the nodule were done and
drops in the malignancy risk score by the CADx network
were recorded. The changes in malignancy scores are mapped
g network architecture.



TABLE 1. Confusion Matrix Comparing the Network Labels
with the Ground Truth

Positive
(Biopsy)

Negative
(Biopsy)

Total Biopsy
Proven Results

Malignant (AI) 38 16 54
Benign (AI) 12 37 49
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back to form a clinical attribution heat map for the said nod-
ule. A patch size of 4 £ 4 £ 4 was taken to block the image
of the nodule with a stride of 4 steps per block. For an input
patch of 96 £ 96 £ 96, an output heatmap of size 24 £ 24 £
24 was obtained. The 24 £ 24 £ 24 patch was then zoomed
back to 96 £ 96 £ 96 with trilinear interpolation to map it
back to the original nodule patch.
Total network labels 50 53 103
SALIENCY MAPS

The saliency maps are generated by systematically blinding the
classifier to specific regions of the nodule. This can be visual-
ized as breaking down the nodule into multiple 3D tiles, and
individually single tiles are removed and replaced during pre-
diction through the neural network. The difference in classifi-
cation outputs of the neural network is monitored and used to
generate a final heatmap. The process is based on the intuition
that the probability of malignancy should drop when a relevant
region on the nodule is blinded to the neural network during
prediction. This technique is depicted in Figure 2.
Such heat maps were generated for randomly selected 103

unseen nodules from LIDC-IDRI dataset. It comprised of 49
benign and 54 malignant nodules. The network correctly
predicted malignancy in 38 nodules and absence of malig-
nancy in 37 nodules. There were 12 benign nodules
Figure 2. The occlusion technique used for creating the class acti-
vation maps.
incorrectly classified as malignant and 16 malignant nodules
incorrectly classified as benign. The sensitivity and specificity
values were 70.3% and 75% respectively. The distribution of
these nodules is summarized in Table 1.

These heat maps were analyzed by a radiologist with more
than 8 years’ experience in chest imaging. The radiologist ana-
lyzed the pattern and discernible features in the heat maps gen-
erated for network-benign and network-malignant nodules
separately. The common features observed in the heat maps
for both the set of nodules on axial planes were described using
the following terminology: ‘heat inside the nodule’, ‘peripheral
heat rim’, ‘heat in adjacent scan plane’, ‘satellite heat’, ‘heat
map larger than nodule’ and ‘heat in calcification’.
Heat Inside the Nodule

Any activation or bright areas observed inside the nodule
contours is considered as positive for heat inside the nodule
activation. It included both homogenous and heterogenous
activations (Fig 3a).
Peripheral Heat Rim

This is defined as peripheral activation or bright area along the
boundaries of the nodule. It includes both continuous as well
as interrupted areas of activation along the margins (Fig 3b).
Heat in Calcification

This feature is defined as presence of activation within the cal-
cified regions of the nodule. When confounded by presence of
other defined features like ‘heat inside the nodule’ or ‘periph-
eral heat rim’, this feature is distinguished by positive activation
more prominent than the other forms of activation (Fig 3c).
Satellite Heat

This includes areas of activation, near but distinct from the nod-
ule. It is also typically smaller than the size of the nodule and is
seen in the same scan plane of the parent nodule (Fig 3d).
Heat Map Larger Than the Nodule

This is described as areas of activation larger than the size of
the nodule extending outside its margins (Fig 3e).
3



Figure 3. Heat Map features overlaid on the CT scan. Figure 3a. Heat inside nodule. Figure 3b. peripheral rim heat. Figure 3c. Heat inside cal-
cification. Figure 3d. Satellite heat. Figure 3e. Heat map larger than nodule. Figure 3f. Parenchymal heat in adjacent scan plane.
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Heat in Adjacent Scan Planes

This is described as areas of activation seen in immediately
adjoining scan planes both above or below the plane in which
the nodule is seen (Fig 3f).

The radiologist analyzed all the class activation maps gener-
ated for all these 103 nodules. Some of these heat map fea-
tures are depicted without the CT overlay in Figure 4. The
presence or absence of the six described features in the heat
maps generated for each of these nodules was binarized - 1
for the presence of the feature and 0 for absence of it. This
feature vector was then fed into a standard J48 decision tree
with 10-fold cross-validation.
RESULTS

The presence or absence of each of these features was ana-
lyzed in the clinical attribution maps generated for these
Figure 4. a�b. Heat maps represented separately without overlay on co
cified benign nodule with activation seen in an area larger than the nodu
activation in the adjacent areas. Figure 4c. Peripheral rim and heat inside
the nodule in a calcified benign nodule.
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nodules. The distribution of these features and the correlation
with the network labels and the ground truth is summarized
in Table 2.
Heat Inside the Nodule

This was seen in 67 of the 103 nodules. 19 of these nodules
were classified as benign by the network with two of them
being false negative predictions on comparison with ground
truth. 48 of these nodules were classified as malignant with
11 false positive predictions.
Peripheral Heat Rim

Peripheral rim of activation is seen in 86 nodules. 45 of these nod-
ules were classified as benign by the network whereas 31 were
classified as malignant. Among these there were 16 false negative
rresponding CT images. Figure 4a. Peripheral rim in a subpleural cal-
le. Figure 4b. Heat map matching the size of a malignant nodule. No
the nodule seen in a benign nodule. Figure 4d. Heat map larger than



TABLE 2. Summary of Distribution of the Radiologist Described Features and Their Correlation with the Network Labels and the
Ground Truth

Features True Benign Benign False Positive True Malignant Malignant False Negative Total

Heat inside the nodule 17 (25%) 11 (16%) 37 (55%) 2 (3%) 67
Peripheral heat rim 29 (38%) 6 (8%) 25 (33%) 16 (21%) 76
Heat in calcification 17 (74%) 5 (21%) 1 (4 %) 0 (0%) 23
Satellite heat 12 (57%) 1 (5%) 4 (19%) 4 (19%) 21
Heat map larger than nodule 25 (33%) 12 (16%) 23 (30%) 16 (21%) 76
Lung parenchyma heat
in adjacent scan planes

18 (51%) 1 (3%) 5 (14%) 11 (31%) 35
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and six false positive predictions. This peripheral rim of activation
appeared interrupted in 23 of the true benign predictions and
eight of the false negative predictions. In all the remaining cases,
the peripheral rim of activation appeared continuous.
Heat in Calcification

51 of the 103 nodules revealed some degree of calcification.
34 of these nodules were classified as benign by the network
with false negatives predicted in four cases. 17 of those nod-
ules with calcification were classified as malignant with a false
positive in six nodules.
Heat in calcification was noted in 23 of these 51 nodules.

17 of them were classified as benign with all predictions cor-
responding to the ground truth. None of the four calcified
nodules which were falsely classified as benign by the net-
work showed any activation within the calcification whereas
five out of the six nodules which were incorrectly classified as
benign showed activation with their calcification. Also, out
of the 11 true positive calcified malignant nodules, only one
showed activation within the calcification.
Satellite Heat

Satellite nodule like activation was seen in 21 nodules, 16 of
them were classified as benign and five of them classified as
malignant by the network. There were four false negative pre-
dictions in the 16 network-benign nodules and one false posi-
tive prediction among the five network-malignant nodules.
Heat Map Larger Than the Nodule

This was noted in 76 nodules. 41 of these nodules were classi-
fied as benign by the network with 16 false negative predic-
tions. 35 nodules with heat map larger than their size were
classified as malignant with 12 false positive predictions.
TABLE 3. Results of the Decision Tree Prediction of the Net-
work Labels Analysing the Heat Maps

Malignant Network
Label

Benign Network
Label

TP rate 92% 78%
FP rate 22% 8%
Heat in Adjacent Scan Planes

Activation in adjacent scan planes were observed in 35 nod-
ules out of 103. Among these there were 29 nodules that
were classified as benign with 11 of them being false negative
classifications. Six nodules were classified as malignant by this
network with one false positive prediction.
The ability of using these described features to predict the
network classification was then assessed by feeding this feature
vector into a standard J48 decision tree with 10-fold cross val-
idation. The J48 decision tree gave 85% weighted classifica-
tion accuracy for predicting the output based on these
activation maps. The use of this decision tree independently
yielded a true positive prediction rate of 77.8%, false positive
prediction rate of 8% for the network-benign cases. It also
resulted in a true positive prediction rate of 91.8% and false
positive prediction rate of 22.2 % for network-malignant
cases. It is important to note that the decision tree was used
to predict the network classification, but not the true malig-
nancy probability of the nodules. Hence the ground truth for
the comparisons are the network predicted classes and not the
biopsy results. These results are summarized in Table 3.

The decision tree highlighting the potential ability of a
radiologist to visually parse the DL algorithm generated heat
map to identify features aiding diagnosis is shown in Figure 5

Among the individual features, the interior heat had the high-
est correlation with malignancy prediction (correlation coeffi-
cient = 0.19, p = 0.06) whereas peripheral heat rim correlates
with benignity (correlation coefficient = 0.34, p = 0.0007).

The morphological features of these nodules recorded by
three radiologists provided with the LIDC-IDRI dataset (7)
were compared to these heat maps to evaluate any correlation
and Pearson correlation co-efficient was calculated (Table 4).
The morphological features compared included diameter of
the nodule, lobulation, margins, sphericity, spiculation, texture
(solid, part-solid or ground glass) and perceived malignancy
risk (subjective assessment of the likelihood of malignancy,
assuming the scan originated from a 60-year-old male smoker).

None of the heat map features had strong positive correla-
tion with the morphological features defined by the radiolog-
ists. There was a moderate negative correlation between the
5



Figure 5. The decision tree highlighting the potential ability of a radiologist to visually parse the deep learning algorithm generated heat map
to identify features aiding diagnosis.
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perceived malignancy on morphology and the peripheral
interrupted heat as well as heat in calcification (r = 0.4).
DISCUSSION

There is a certain degree of overlap in usage of the terms like
explainable AI, interpretable machine learning, intelligible
DL. At a higher level, these terms imply the need for assisting
physicians and other downstream DL users make appropriate
decisions by providing a greater insight into the functioning
of the DL. In its true sense, explainable AI is not limited to
mere transparency of a model, but the need for every constit-
uent element of the system to be understandable (11,12). The
granularity of the explanations should be at the level of
human cognition with the assumption that the end user has
basic domain knowledge.
TABLE 4. Pearson Correlation Index for Heatmap Features vs Morp

Periphery Continuous
Rim

Periphery Heat
Interrupted

Satellite
Heat

Diameter 0.24112932 -0.16534159 -0.16636
Lobulation 0.030248106 -0.21193904 -0.04833
Malignancy 0.3318012 -0.411120725 -0.22925
Margin 0.018399385 0.107230571 0.02339
Sphericity 0.084191996 0.01062422 0.02164
Spiculation 0.051792968 -0.171801518 -0.12164
Texture 0.163299316 -0.280252341 -0.16344
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In this study, we attempt to explain the interpretations of a
specific radiology focused DL network by analyzing the
weighted outputs generated by systematic occlusion. The
outputs are categorized into features relevant to the classifica-
tion problem as well as the domain knowledge and under-
standing of the end-user.

Interior heat or heat inside the nodule was found to be sta-
tistically significant classifier for malignancy. This is consistent
with the current radiology practice of examining the presence
or absence of heterogeneity in a nodule while characterizing it
on CT scan (13,14). Peripheral heat rim was the statistically sig-
nificant classifier for benignity of the nodule. This again is
explainable by a radiologist, that smooth contours without spi-
culated margins is a feature characteristic of benign nodules.

Heat inside a calcification was found to be a very specific
indicator of benignity. There was calcification in 36 benign
hological Features of the Nodule

Heat in Adjacent
Scan Plane

Heat in
Calcification

Heat Map Larger
than Nodule

4188 -0.284376328 -0.298716381 0.013059719
5144 -0.346816471 -0.279608714 0.032982279
1406 -0.336958386 -0.418976478 -0.084846449
5494 0.210285525 0.322800471 0.061185738
0558 -0.029768654 -0.070725147 -0.128055609
727 -0.280054649 -0.357049494 -0.023466616
1332 -0.095849599 0.126491106 -0.046915743
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and 15 malignant nodules in the test set. The network
showed positive activation in 21 of the benign nodules, classi-
fying 17 of them as benign, all of them corresponding to the
biopsy ground truth. The remaining five were incorrectly
classified as malignant. There was activation in five of the
malignant nodules with one correct prediction and five false
negative classifications. It can be proposed from these results
that the presence of calcification and probably patterns of cal-
cification were weighted by the network in classifying a nod-
ule is benign. Further analysis by classifying the patterns of
calcification may provide further insights into the network.
Satellite heat was found to increase the likelihood of classifica-

tion of a nodule as benign. Even though this observation is con-
cordant with the clinical observations that the presence of a satellite
nodule is a feature seen in benign granulomatous nodules (15),
many of the cases with activations did not show a visible satellite
nodule. No simple hypothesis can be derived for this observation.
Heat in adjacent scan planes was again found to favor a

benign classification with nearly 83% of the nodules with
such activation being classified as benign. The nearest domain
correlate for this observation is the knowledge that presence
of ground glass densities surrounding the nodule is known to
be associated with malignancy in most cases (16,17).
Heat map larger than the nodule was the most frequent obser-

vation without significant classifying power. This observation is
an in-plane correlate of the activation in the adjacent scan planes.
The absence of significant correlation between the mor-

phological features and the features defined on the heat maps
as shown in Table 4 can be attributed to new nonclassical
associations learned by the deep learning algorithm. Further
studies are needed to evaluate this hypothesis.
This algorithm makes predictions based on features learned

by correlation with the ground truth established by biopsy.
The focus of our research work is not on the accuracy of these
predictions but rather on the ability of a human reader to pre-
dict the predictions of the algorithm from the saliency maps.
STRENGTHS AND LIMITATIONS

The strength of the study is that it is attempting to offer clini-
cal insights into the functioning of a DL network by analyz-
ing the clinical attribution maps. We also compare the
correlates between the imaging features of characterizing a
pulmonary nodule to the features on the activation maps.
The major limitation of the study is that the features were

described and observed by a single reader. The downside of
using multiple blinded readers would have been too many
nonoverlapping features to evaluate and build hypotheses
towards explainability. However future approaches can
include multireader consensus-based methods.
The other limitation of the study can be traced to the argu-

ment that truly explainable system should integrate reasoning
that explains the decision-making process of the model via
user understandable features of the input data. One school of
thought (12) argues that leaving explanation generation to
human analysts can be dangerous since, depending on their
background knowledge about the data and its domain, differ-
ent explanations may be deduced.

The handcrafting of the classification patterns of the activation
maps is another major limitation in this study. Until newer
methods that might enable explicit automated reasoning for DL
predictions by extraction of symbolic rules are developed, the
human reader identified features might help in comprehending
the model properties and functions. Research studies offering
supporting evidence for explainability of such algorithms can
assist in devising strategies to make AI based applications safe and
accountable (18,19).
CONCLUSION

In this study we describe a method of explain the func-
tioning of a DL network used in the characterization of
lung nodule by manual analysis of the class activation
maps and corroborating it with the domain knowledge of
radiologists. We derived a decision tree with reasonable
accuracy that can predict the model output by analyzing
the radiologist described features on the clinical attribu-
tion maps.
REFERENCES

1. Syed AB, Zoga AC. Artificial intelligence in radiology: current tech-
nology and future directions. Semin Musculoskelet Radiol 2018;
22:540–545.
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