Vasanth Chakravarthy Shunmugasamy

Vasanth Chakravarthy Shunmugasamy
Texas A&M University at Qatar | TAMU Qatar · Mechanical Engineering

PhD

About

56
Publications
14,039
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,206
Citations

Publications

Publications (56)
Article
In bobbin friction stir welding (BFSW), frictional heat input is simultaneously applied to the top and bottom surface of a workpiece by the rubbing action of the tool shoulders. Consequently, a relatively homogeneous microstructure is obtained in BFSW welds compared to the conventional FSW. In the current study, we performed BFSW bead-on-plate expe...
Article
Benefits of RE addition on Mg alloys strength and corrosion resistance are widely reported but their effects on biodegradability and biocompatibility are still of concern. This paper investigates the effect of RE additions on biodegradability of Mg-Zn alloys under simulated physiological conditions. In this context, two commercial Mg-Zn-Zr-RE alloy...
Article
This review article critically analyzes the selection and compatibility assessment framework of metallic alloys in pure oxygen (>99.5%) atmospheres using promoted combustion and particle impact ignition tests in combination with the Pressure-Velocity (PV) curves. The historical test data for four important metallic alloys frequently used in the oil...
Article
In this study, friction stir welding (FSW) process is utilized to join equiatomic nickel-titanium (NiTi) shape memory alloys as a solid-state welding alternative to fusion welding. In the studied range of process parameters (spindle speeds – 350 – 450 rpm and constant translation speed 75mm/min), combination of 400 rpm spindle speed and 75 mm/min t...
Article
Full-text available
Air-conditioning systems make the most significant part of energy consumption in the residential sector. There is no denying that it is essential to produce a comfortable indoor thermal environment for residents in a building. The actual goal is to achieve thermal comfort level without putting too much cost on the ecological system by trying to con...
Article
Full-text available
Magnesium alloys are increasingly being considered for structural systems across different industrial sectors, including precision components of biomedical devices owing to their high specific strength and stiffness, biodegradability. For example, tubular devices such as coronary stents manufacture require defect-free, high-quality tubes with thin...
Article
Motivated with sustainability and economic factors, there is a rapid increase in the use of recycled asphalt pavement (RAP) material in the construction of new asphalt pavements. This necessitates the development of better understanding of the interaction between recycled and virgin binders, as well as studying the influence of this interaction on...
Article
In this work we have prepared open-cell Al foam core sandwich composites (AFS) with stainless steel (SS) facesheets. In the existing literature, the foam core and facesheets are joined using an adhesive, which limits their application. In the present study, the open-cell Al foam is attached to the SS facesheets using an Al-Zn filler to create a sol...
Article
Full-text available
The effects of 0.5 wt% In as well as 0.5 wt% In and 1 wt% Zn double (In & Zn) additions to eutectic Sn58Bi alloy on the microstructure and mechanical properties were investigated. Newly designed In & Zn-added Sn58Bi alloy showed much finer microstructure than eutectic Sn58Bi and In-added Sn58Bi alloys. The elongation improvements of 36% and 41% bef...
Article
We created a density-graded, open-cell, aluminum foam core sandwich (AFS) by joining, alternately arranged Al sheets and three different relative density (ρ* = 7%, 29%, and, 42%) foams using a zinc filler. A defect free, lamellar, α + η microstructure was observed in the foam/facesheet joint interface. Vickers microhardness and nanoindentation of t...
Article
A comparative analysis of the microstructure and the mechanical properties of the eutectic Sn58Bi, 0.5 wt% and 1 wt% zinc (Zn)-functionalized Sn58Bi alloys was conducted before and after solid-state thermal aging. Cross-sectional microstructure observation and tensile tests were performed on bulk solder alloys. The fracture surfaces were observed a...
Article
Friction stir welding (FSW) is an ecologically benign solid-state joining process. In this work, FSW of low-carbon AISI 1006 steel was carried out to study the microstructure and mechanical properties of the resulting joints at both room temperature (RT) and 200 °C. In the parameter space investigated here, a rotational tool speed and translation f...
Article
In this paper, we investigate compressive behavior of an open-cell 6101 aluminum foam in as-cast and as-rolled conditions. The as-cast foam with a relative density of ρ* = 7% was rolled to create two distinct as-rolled conditions with relative densities of ρ* = 29% and ρ* = 42%, respectively. The quasi-static and high strain rate compressive behavi...
Article
Friction stir welding (FSW) is a solid state joining process in which metals are joined together using frictional heat and severe plastic deformation. The heating and the mixing of the metals is performed using a hardened tool with a shoulder and pin. FSW of lightweight metal alloy Al6061 has been carried out in the present study. For welding alumi...
Article
Rapid growth in applications of syntactic foams in transportation and oil industry has motivated research and development activities in polymer matrix syntactic foams. While a wide range of matrix and particle materials have been used in fabricating syntactic foams, this chapter specifically focuses on the properties of epoxy matrix glass hollow pa...
Article
Full-text available
The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural mem...
Article
Dry sliding wear behavior of epoxy matrix syntactic foams filled with 20, 40 and 60 wt% fly ash cenosphere is reported based on response surface methodology. Empirical models are constructed and validated based on analysis of variance. Results show that syntactic foams have higher wear resistance than the matrix resin. Among the parameters studied,...
Article
Full-text available
Clay/polymer nanocomposites have been extensively studied in recent years. The present state of the art for these materials is summarized in this chapter. The development of fabrication methods for these composites is very challenging because the platelets of nanoclay exist in the form of clusters, which need to be dispersed in the matrix resin in...
Article
Full-text available
Aluminum alloy A356 matrix syntactic foams filled with SiC hollow particles (SiCHP) are studied in the present work. Two compositions of syntactic foams are studied for quasi-static and high strain rate compression. In addition, dynamic mechanical analysis is conducted to study the temperature dependent energy dissipation and damping capabilities o...
Article
Full-text available
Polyurethane resins and foams are finding extensive applications. Seat cushions and covers in automobiles are examples of these materials. In the present work, hollow alumina particles are used as fillers in polyurethane resin to develop closed-cell syntactic foams. The fabricated syntactic foams are tested for compressive properties at quasistatic...
Article
Silicon carbide hollow particle (SiCHS) reinforced vinyl ester matrix syntactic foams are prepared and characterized for compressive properties and coefficient of thermal expansion (CTE). Two types of SiCHS were utilized in 60 vol % to prepare syntactic foams. These SiCHS had ratio of inner to outer radius of 0.91 and 0.84 for the thin and thick wa...
Article
Full-text available
The present work is focused on developing iron and FeNi36 Invar matrix syntactic foams and studying their properties under quasi-static and high strain rate compression. The quasi-static compression is conducted at a strain rate of 10-3 s-1. High strain rate testing is performed using a split-Hopkinson pressure bar (SHPB) at strain rates up to 2500...
Article
Silicon carbide hollow spheres are compression tested to understand their energy absorption characteristics. Two types of particles having tap densities of 440 kg/m(3) and 790 kg/m(3) (referred to as S1 and S2, respectively) were tested in the present study. The process used to fabricate the hollow spheres leads to porosity in the walls, which affe...
Article
Full-text available
Vinyl ester matrix syntactic foams filled with hollow fly ash cenospheres are evaluated for quasi-static and high strain rate compressive, flexural and thermal properties. The results are analyzed to understand the effect of cenosphere parameters such as density and wall thickness on the properties of syntactic foams. The elastic energy absorption...
Article
The present study focuses on developing functionally graded syntactic foams (FGSFs) based on a layered co-curing technique. The FGSFs were characterized for compressive and flexural properties and compared with plain syntactic foams. The results showed that the specific compressive modulus was 3–67% higher in FGSFs compared to plain syntactic foams...
Article
A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures....
Article
Magnesium alloys are attracting great interest from the automotive industry because of the potential for weight reduction. An AZ91D cast alloy was studied in the current work to understand the effect of heat treatment on the microstructure and dynamic compressive properties. The selected heat treatments include solution treatment (T4) and solution...
Article
Full-text available
Low dielectric constant materials play a key role in modern electronics. In this regard, hollow particle reinforced polymer matrix composites called syntactic foams may be useful due to their low and tailored dielectric constant. In the current study, vinyl ester matrix/glass hollow particle syntactic foams are analyzed to understand the effect of...
Article
Vinyl ester matrix syntactic foams filled with hollow glass microspheres are characterized for unnotched Izod impact properties. The study is aimed to analyze the effect of wall thickness and volume fraction of the hollow glass microsphere on the impact properties of syntactic foams. The impact strength of syntactic foams was observed to be lower i...
Chapter
Micro- or Nano-scale reinforcements are attractive for enhancing the tensile properties of syntactic foams. Glass and carbon fiber reinforcement was found to increase tensile strength and modulus of syntactic foams when compared to that of plain syntactic foam. The orientation of fibers with respect to the loading axis had a significant impact over...
Chapter
Studying the influence of temperature and loading frequency on the behavior of syntactic foams is important because of its diverse set of applications. Dynamic mechanical analysis (DMA) is a widely used technique for measuring viscoelastic properties of materials over a range of temperatures and loading frequencies. The storage modulus and loss mod...
Chapter
Studies on plain syntactic foams have revealed that the fracture toughness and specific fracture toughness are found to be maximum around 30 vol. % of hollow particles. At low hollow particle volume, fraction stiffening effect and crack bowing failure mechanism was observed whereas at high volume fraction, hollow filler particle-matrix debonding is...
Chapter
In the previous chapters, the existing literature on the mechanical properties of reinforced syntactic foams has been reviewed. This chapter summarizes the effects of the reinforcements on the mechanical properties of syntactic foams and identifies the critical areas where a lack of literature is observed relating to reinforced syntactic foams. The...
Chapter
This chapter discusses processing methods for reinforced syntactic foams and the effect of processing parameters on the structure and properties of syntactic foams. Enhancement of the mechanical properties of syntactic foams can be achieved by incorporation of micro- or nano-scale reinforcements into the matrix material. Dispersion of nanoparticles...
Chapter
Most existing applications of syntactic foams are based on their compressive properties. Hollow particles are load bearing elements in the syntactic foam microstructure under compression, which helps in obtaining a long stress plateau region in the stress–strain graphs that helps in obtaining high energy absorption. The available studies have exten...
Chapter
Development of theoretical models is very important for syntactic foams. Numerous parameters are involved in syntactic foam design, which include matrix and particle material, particle volume fraction and wall thickness, and reinforcement material and volume fraction. To identify the parameters that would result in syntactic foam with desired set o...
Chapter
The flexural behavior has been studied only for a few reinforced syntactic foams. The short glass fiber reinforced epoxy matrix syntactic foams showed fiber pull out and hollow particle/matrix debonding as the main failure mechanisms under flexural loading conditions. Transition in the failure pattern was observed with the increase in the fiber con...
Chapter
Syntactic foams are two component materials consisting of matrix resin and hollow particles. Reinforced syntactic foams contain an additional reinforcing material. The density of syntactic foams can be tailored based on the appropriate selection of hollow particle density and volume fraction. Glass hollow particles have been a widely used filler ma...
Article
Viscoelastic properties of hollow particle-reinforced composites called syntactic foams are studied using a dynamic mechanical analyzer. Glass hollow particles of three different wall thicknesses are incorporated in the volume fraction range of 0.3-0.6 in vinyl ester resin matrix to fabricate twelve compositions of syntactic foams. Storage modulus,...
Article
Advanced lightweight structural composites are finding applications in aerospace, marine and electronic industries. The operating environment of these applications requires the composites to be subjected not only to room temperature static loadings but also to various loading frequencies and temperatures. In this regard, one such structural composi...
Article
Full-text available
Ceramic particle-reinforced composites have better dimensional stability than the matrix polymer at high temperatures. In hollow-particle filled composites (syntactic foams), the coefficient of thermal expansion (CTE) can be controlled by two parameters simultaneously: wall thickness and volume fraction of particles, which are explored in this stud...
Article
Syntactic foams are composite materials comprising hollow particles dispersed in a matrix material. Available studies on high strain rate compressive response of polymer matrix syntactic foams are critically analyzed to identify the strain rate effects with respect to the material composition. Syntactic foams reinforced with micro- and nano-sized f...
Article
Full-text available
The objective of the present study was to assess the influence of various clinically relevant scenarios on the strain distribution in the biomechanical surrounding of five different dental implant macrogeometries. The biomechanical environment surrounding an implant, i.e., the cortical and trabecular bone, was modeled along with the implant. These...
Article
Strain rate dependence of the mechanical response of hard tissues has led to a keen interest in their dynamic properties. The current study attempts to understand the high strain rate characteristics of rabbit femur bones. The testing was conducted using a split-Hopkinson pressure bar equipped with a high speed imaging system to capture the fractur...
Article
Full-text available
The present study focused on determining the effect of high strain rate loading on the deformation and fracture characteristics of syntactic foams and relating them with the initial foam microstructure. The high strain rate testing was carried out using a split-Hopkinson pressure bar system and the damage evaluation was carried out using microCT-sc...

Network

Cited By