Varsha Ramachandran

Varsha Ramachandran
Universität Heidelberg · Centre for Astronomy (ZAH)

PhD

About

35
Publications
1,662
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
454
Citations
Citations since 2016
35 Research Items
454 Citations
2016201720182019202020212022020406080100120
2016201720182019202020212022020406080100120
2016201720182019202020212022020406080100120
2016201720182019202020212022020406080100120
Additional affiliations
September 2021 - present
Universität Heidelberg
Position
  • PostDoc Position
September 2019 - August 2021
Universität Potsdam
Position
  • PostDoc Position
September 2015 - August 2019
Universität Potsdam
Position
  • PhD Student

Publications

Publications (35)
Preprint
Full-text available
M33 X-7 is the only known eclipsing black hole high mass X-ray binary. The system is reported to contain a very massive O supergiant donor and a massive black hole in a short orbit. The high X-ray luminosity and its location in the metal-poor galaxy M33 make it a unique laboratory for studying the winds of metal-poor donor stars with black hole com...
Article
Full-text available
Context. Massive stars are among the main cosmic engines driving the evolution of star-forming galaxies. Their powerful ionising radiation and stellar winds inject a large amount of energy in the interstellar medium. Furthermore, mass-loss ( Ṁ ) through radiatively driven winds plays a key role in the evolution of massive stars. Even so, the wind m...
Preprint
Massive stars are among the main cosmic engines driving the evolution of star-forming galaxies. Their powerful ionising radiation and stellar winds inject a large amount of energy in the interstellar medium. Furthermore, mass-loss ($\dot{M}$) through radiatively driven winds plays a key role in the evolution of massive stars. Even so, the wind mass...
Article
The NGC 346 young stellar system and associated N66 giant H ii region in the Small Magellanic Cloud are the nearest example of a massive star-forming event in a low metallicity ( Z ≈ 0.2 Z ⊙ ) galaxy. With an age of ≲3 Myr this system provides a unique opportunity to study relationships between massive stars and their associated H ii region. Using...
Preprint
The NGC 346 young stellar system and associated N66 giant HII region in the Small Magellanic Cloud are the nearest example of a massive star forming event in a low metallicity ($Z\approx0.2Z_{\odot}$) galaxy. With an age of $\lesssim$3Myr this system provides a unique opportunity to study relationships between massive stars and their associated HII...
Article
Context. Massive stars at low metallicity are among the main feedback agents in the early Universe and in present-day star forming galaxies. When in binaries, these stars are potential progenitors of gravitational-wave events. Knowledge of stellar masses is a prerequisite to understanding evolution and feedback of low-metallicity massive stars. Aim...
Preprint
Full-text available
Massive stars at low metallicity are among the main feedback agents in the early Universe and in present-day star forming galaxies. When in binaries, these stars are potential progenitors of gravitational-wave events. Knowledge of stellar masses is a prerequisite to understanding evolution and feedback of low-metallicity massive stars. Using abunda...
Article
The Humphreys-Davidson (HD) limit empirically defines a region of high luminosities (log10(L/L⊙) ≳ 5.5) and low effective temperatures (Teff ≲ 20 kK) on the Hertzsprung-Russell Diagram in which hardly any supergiant stars are observed. Attempts to explain this limit through instabilities arising in near- or super-Eddington winds have been largely u...
Preprint
Full-text available
The Humphreys-Davidson (HD) limit empirically defines a region of high luminosities (log L > 5.5) and low effective temperatures (T < 20kK) on the Hertzsprung-Russell Diagram in which hardly any supergiant stars are observed. Attempts to explain this limit through instabilities arising in near- or super-Eddington winds have been largely unsuccessfu...
Article
The Magellanic Bridge, stretching between the Small and the Large Magellanic Cloud (SMC and LMC), is the nearest tidally stripped intergalactic environment. The Bridge has a significantly low average metallicity of Z ≲ 0.1 Z ⊙ . Here we report the first discovery of O-type stars in the Magellanic Bridge. Three massive O stars were identified thanks...
Preprint
Full-text available
The Magellanic Bridge stretching between the SMC and LMC is the nearest tidally stripped intergalactic environment and has a low average metallicity of $Z~0.1Z_{\odot}$. Here we report the first discovery of three O-type stars in the Bridge using archival spectra collected with FLAMES at ESO/VLT. We analyze the spectra using the PoWR models, which...
Preprint
The mass, origin and evolutionary stage of the binary system LB-1 has been the subject of intense debate, following the claim that it hosts an $\sim$70$M_{\odot}$ black hole, in stark contrast with the expectations for stellar remnants in the Milky Way. We conducted a high-resolution, phase-resolved spectroscopic study of the near-infrared Paschen...
Article
Context. The supergiant ionized shell SMC-SGS 1 (DEM 167), which is located in the outer Wing of the Small Magellanic Cloud (SMC), resembles structures that originate from an energetic star-formation event and later stimulate star formation as they expand into the ambient medium. However, stellar populations within and surrounding SMC-SGS 1 tell a...
Preprint
The supergiant ionized shell SMC-SGS 1 (DEM 167), located in the outer Wing of the Small Magellanic Cloud (SMC), resembles structures that originate from an energetic star-formation event and later stimulate star formation as they expand into the ambient medium. However, stellar populations within and surrounding SMC-SGS 1 tell a different story. W...
Article
Context . Massive Wolf–Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core collapse. It is not known whether core He-burning WR stars (classical WR; cWR) form predominantly through wind stripping (w-WR) or binary stripping (b-WR). Whereas spectro...
Preprint
Massive Wolf-Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core-collapse. It is not known whether core He-burning WR stars (classical WR, cWR) form predominantly through wind-stripping (w-WR) or binary stripping (b-WR). With spectroscopy of WR b...
Article
Comprehensive spectral analyses of the Galactic Wolf-Rayet stars of the nitrogen sequence (i.e. the WN subclass) have been performed in a previous paper. However, the distances of these objects were poorly known. Distances have a direct impact on the “absolute” parameters, such as luminosities and mass-loss rates. The recent Gaia Data Release (DR2)...
Article
Full-text available
Stars which start their lives with spectral types O and early-B are the progenitors of core-collapse supernovae, long gamma-ray bursts, neutron stars, and black holes. These massive stars are the primary sources of stellar feedback in star-forming galaxies. At low metallicities, the properties of massive stars and their evolution are not yet fully...
Preprint
Comprehensive spectral analyses of the Galactic Wolf-Rayet stars of the nitrogen sequence (i.e.\ the WN subclass) have been performed in a previous paper. However, the distances of these objects were poorly known. Distances have a direct impact on the "absolute" parameters, such as luminosities and mass-loss rates. The recent Gaia Data Release (DR2...
Preprint
Stars which start their lives with spectral types O and early-B are the progenitors of core-collapse supernovae, long gamma-ray bursts, neutron stars, and black holes. These massive stars are the primary sources of stellar feedback in star-forming galaxies. At low metallicities, the properties of massive stars and their evolution are not yet fully...
Article
Wolf-Rayet stars of the carbon sequence (WC stars) are an important cornerstone in the late evolution of massive stars before their core collapse. As core-helium burning, hydrogen-free objects with huge mass-loss, they are likely the last observable stage before collapse and thus promising progenitor candidates for type Ib/c supernovae. Their stron...
Preprint
Full-text available
HD93129A was classified as the earliest O-type star in the Galaxy (O2~If*) and is considered as the prototype of its spectral class. However, interferometry shows that this object is a binary system, while recent observations even suggest a triple configuration. None of the previous spectral analyses of this object accounted for its multiplicity. W...
Article
The study of massive stars in different metallicity environments is a central topic of current stellar research. The spectral analysis of massive stars requires adequate model atmospheres. The computation of such models is difficult and time-consuming. Therefore, spectral analyses are greatly facilitated if they can refer to existing grids of model...
Preprint
Full-text available
The study of massive stars in different metallicity environments is a central topic of current stellar research. The spectral analysis of massive stars requires adequate model atmospheres. The computation of such models is difficult and time-consuming. Therefore, spectral analyses are greatly facilitated if they can refer to existing grids of model...
Poster
Full-text available
Star forming complex LMC-N206 Super Giant Shell SMC-SGS1 Spectral analyses of the massive-star inventory • Based on FLAMES spectroscopy and PoWR atmosphere models • Estimate parameters and ages of all stars in the complex • Sum up the stellar feedback and compare with energy budget of the complex
Preprint
Wolf-Rayet stars of the carbon sequence (WC stars) are an important cornerstone in the late evolution of massive stars before their core collapse. As core-helium burning, hydrogen-free objects with huge mass-loss, they are likely the last observable stage before collapse and thus promising progenitor candidates for type Ib/c supernovae. Their stron...
Article
Context. SMC AB 6 is the shortest-period ( P = 6.5 d) Wolf-Rayet (WR) binary in the Small Magellanic Cloud. This binary is therefore a key system in the study of binary interaction and formation of WR stars at low metallicity. The WR component in AB 6 was previously found to be very luminous (log L = 6.3 [ L⊙ ]) compared to its reported orbital mas...
Preprint
SMC AB 6 is the shortest-period (6.5d) Wolf-Rayet (WR) binary in the Small Magellanic Cloud, and is therefore crucial for the study of binary interaction and formation of WR stars at low metallicity. The WR component in AB 6 was previously found to be very luminous (logL=6.3[Lsun]) compared to its reported orbital mass (8Msun), placing it significa...
Article
Full-text available
Context. Clusters or associations of early-type stars are often associated with a “superbubble” of hot gas. The formation of such superbubbles is caused by the feedback from massive stars. The complex N 206 in the Large Magellanic Cloud (LMC) exhibits a superbubble and a rich massive star population. Aims. Our goal is to perform quantitative spectr...
Article
Full-text available
Context. Massive stars severely influence their environment by their strong ionizing radiation and by the momentum and kinetic energy input provided by their stellar winds and supernovae. Quantitative analyses of massive stars are required to understand how their feedback creates and shapes large scale structures of the interstellar medium. The gia...
Poster
Full-text available
We present the quantitative analysis of massive stars in young clusters. This is required to understand how the feedback from these objects shapes the large scale structures of the ISM. The quantitative spectroscopic analysis, energy feedback, and chemical yields of young stellar populations in two low- metallicity environments are discussed here (...
Article
Full-text available
A multi-wavelength investigation of the star forming complex IRAS 20286+4105, located in the Cygnus-X region, is presented here. Near-infrared K-band data is used to revisit the cluster / stellar group identified in previous studies. The radio continuum observations, at 610 and 1280 MHz show the presence of a HII region possibly powered by a star o...
Article
The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these...

Network

Cited By