About
171
Publications
120,627
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
17,626
Citations
Current institution
Publications
Publications (171)
The forest–atmosphere exchange of carbon and water is regulated by meteorological conditions as well as canopy properties such as leaf area index (LAI, m2 m−2), photosynthetic capacity (PC μmol m−2 s−1), or surface conductance in optimal conditions (Gs, opt, mmol m−2 s−1), which can vary seasonally and inter-annually. This variability is well under...
Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold...
Gross primary productivity (GPP) is the key determinant of land carbon uptake, but its representation in terrestrial biosphere models (TBMs) does not reflect our latest physiological understanding. We implemented three empirically well supported but often omitted mechanisms into the TBM CABLE-POP: photosynthetic temperature acclimation, explicit me...
Climate change will impact gross primary productivity (GPP), net primary productivity (NPP), and carbon storage in wooded ecosystems. The extent of change will be influenced by thermal acclimation of photosynthesis—the ability of plants to adjust net photosynthetic rates in response to growth temperatures—yet regional differences in acclimation eff...
In this study, we employ a regional inverse modelling approach to estimate monthly carbon fluxes over the Australian continent for 2015–2019 using the assimilation of the total column-averaged mole fractions of carbon dioxide from the Orbiting Carbon Observatory-2 (OCO-2, version 9) satellite. Subsequently, we study the carbon cycle variations and...
Vegetation growth drives many of the interactions between the land surface and atmosphere including the uptake of carbon through photosynthesis and loss of water through transpiration. In arid and semi-arid regions water is the dominant driver of vegetation growth. However, few studies consider the fact that water can move laterally across the land...
In this study, we employ a regional inverse modelling approach to estimate monthly carbon fluxes over the Australian continent for 2015–2019 using the assimilation of the total column-averaged mole fractions of carbon dioxide from the Orbiting Carbon Observatory-2 (OCO-2, version 9). Subsequently, we study the carbon cycle variations and relate thei...
In this study, we present the assimilation of data from the Orbiting Carbon Observatory-2 (OCO-2) (land nadir and glint data, version 9) to estimate the Australian carbon surface fluxes for the year 2015. To perform this estimation, we used both a regional-scale atmospheric transport–dispersion model and a four-dimensional variational assimilation...
Fire activity in Australia is strongly affected by high inter-annual climate variability and extremes. Through changes in the climate, anthropogenic climate change has the potential to alter fire dynamics. Here we compile satellite (19 and 32 years) and ground-based (90 years) burned area datasets, climate and weather observations, and simulated fu...
Australia plays an important role in the global terrestrial carbon cycle on inter-annual timescales. While the Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations of n...
Light use efficiency (LUE) defines the vegetation efficiency of converting radiative energy into biochemical energy through photosynthesis. Estimating the maximum LUE (ε max) is critical yet challenging for quantifying gross primary production (GPP) using LUE-based models. This study describes an analytical method for estimating ε max based on wate...
The search for a long-term benchmark for land-surface models (LSMs) has brought tree-ring data to the attention of the land-surface modelling community, as tree-ring data have recorded growth well before human-induced environmental changes became important. We propose and evaluate an improved conceptual framework of when and how tree-ring data may,...
Satellite data reveal widespread changes in Earth's vegetation cover. Regions intensively attended to by humans are mostly greening due to land management. Natural vegetation, on the other hand, is exhibiting patterns of both greening and browning in all continents. Factors linked to anthropogenic carbon emissions, such as CO2 fertilization, climat...
Gross Primary Productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67‐75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt). We examined the relationship between GPP and air temperature (...
Observations from the Orbiting Carbon Observatory 2 (OCO-2) satellite have been used to estimate CO2 fluxes in many regions of the globe and provide new insight into the global carbon cycle. The objective of this study is to infer the relationships between patterns in OCO-2 observations and environmental drivers (e.g., temperature, precipitation) a...
Year-to-year variability in CO2 fluxes can yield insight into climate-carbon cycle relationships, a fundamental yet uncertain aspect of the terrestrial carbon cycle. In this study, we use global observations from NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite for years 2015 to 2019 and a geostatistical inverse model to evaluate five years o...
Australia plays an important role in the global terrestrial carbon cycle on inter-annual timescales. While the Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations of n...
Satellite data reveal widespread changes of Earth's vegetation cover. Regions intensively attended to by humans are mostly greening due to land management. Natural vegetation, on the other hand, is exhibiting patterns of both greening and browning in all continents. Factors linked to anthropogenic carbon emissions, such as CO2 fertilization, climat...
In this study, we present the assimilation of data from the Orbiting Carbon Observatory-2 (OCO-2) to estimate the Australian CO2 surface fluxes for the year 2015. We used a regional-scale atmospheric transport-dispersion model and a four-dimensional variational assimilation scheme. Our results suggest that Australia was a carbon sink of −0.3 ± 0.09...
The 30-year simulations of seasonal snow cover in 22 physically based models driven with bias-corrected meteorological reanalyses are examined at four sites with long records of snow observations. Annual snow cover durations differ widely between models, but interannual variations are strongly correlated because of the common driving data. No signi...
The enhanced vegetation productivity driven by increased concentrations of carbon dioxide (CO2)
[i.e., the CO2 fertilization effect (CFE)] sustains an important negative feedback on climate warming, but the temporal dynamics of CFE remain unclear. Using multiple long-term satellite- and ground-based datasets, we showed that global CFE has declined...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we de...
Variability in climate exerts a strong influence on vegetation productivity (gross primary productivity; GPP), and therefore has a large impact on the land carbon sink. However, no direct observations of global GPP exist, and estimates rely on models that are constrained by observations at various spatial and temporal scales. Here, we assess the co...
This paper reviews information about field observations of vegetation productivity in Australia’s rangeland systems and identifies the need to establish a national initiative to collect net primary productivity (NPP) and biomass data for rangeland pastures. Productivity data are needed for vegetation and carbon model parameterisation, calibration a...
Forest production efficiency (FPE) metric describes how efficiently the assimilated carbon is partitioned into plants organs (biomass production, BP) or-more generally-for the production of organic matter (net primary production, NPP). We present a global analysis of the relationship of FPE to stand-age and climate, based on a large compilation of...
The present dataset belongs the paper: Collalti A., Ibrom A., Stockmarr A., Cescatti A., Alkama R., Fernández-Martínez M., Matteucci G., Sitch S., Friedlingstein P., Ciais P., Goll D.S., Nabel J.E.M.S., Pongratz J., Arneth A., Haverd V., Prentice I.C.. “Forest production efficiency increases with growth temperature", Nature Communications, 11, 5322...
In Europe, three widespread extreme summer drought and heat (DH) events have occurred in 2003, 2010 and 2018. These events were comparable in magnitude but varied in their geographical distribution and biomes affected. In this study, we perform a comparative analysis of the impact of the DH events on ecosystem CO 2 fluxes over Europe based on an en...
Twenty-seven models participated in the Earth System Model - Snow Model Intercomparison Project (ESM-SnowMIP), the most data-rich MIP dedicated to snow modelling. Our findings do not support the hypothesis advanced by previous snow MIPs: evaluating models against more variables, and providing evaluation datasets extended temporally and spatially do...
The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models used for global assessments tend to fall back on...
Atmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substant...
Thirty-year simulations of seasonal snow cover in 22 physically based models driven with bias-corrected meteorological reanalyses are examined at four sites with long records of snow observations. Annual snow cover durations differ widely between models but interannual variations are strongly correlated because of the common driving data. No signif...
Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by...
In summer 2018, central and northern Europe were stricken by extreme drought and heat (DH2018). The DH2018 differed from previous events in being preceded by extreme spring warming and brightening, but moderate rainfall deficits, yet registering the fastest transition between wet winter conditions and extreme summer drought. Using 11 vegetation mod...
Changing amplitude of the seasonal cycle of atmospheric CO2 (SCA) in the northern hemisphere is an emerging carbon cycle property. Mauna Loa (MLO) station (20oN, 156oW), which has the longest continuous northern hemisphere CO2 record, shows an increasing SCA before the 1980s (P < 0.01), followed by no significant change thereafter. We analyzed the...
Introductory paragraph
We present a global analysis of the relationship of forest production efficiency (FPE) to stand age and climate, based on a large compilation of data on gross primary production and either biomass production or net primary production. FPE is important for both forest production and atmospheric carbon dioxide uptake. Earlier f...
Abstract. The search for a long-term benchmark for land-surface models (LSM) has brought tree-ring data to the attention of the land-surface community as they record growth well before human-induced environmental changes became important. The most comprehensive archive of publicly shared tree-ring data is the International Tree-ring Data Bank (ITRD...
Despite the scientific consensus on the extinction crisis and its anthropogenic origin, the quantification of historical trends and of future scenarios of biodiversity and ecosystem services has been limited, due to the lack of inter-model comparisons and harmonized scenarios. Here, we present a multi-model analysis to assess the impacts of land-us...
Evapotranspiration (ET) is critical in linking global water, carbon and energy cycles. However, direct measurement of global terrestrial ET is not feasible. Here, we first reviewed the basic theory and state-of-the-art approaches for estimating global terrestrial ET, including remote-sensing-based physical models, machine-learning algorithms and la...
FLUXNET comprises globally distributed eddy-covariance-based estimates of carbon fluxes between the biosphere and the atmosphere. Since eddy covariance flux towers have a relatively small footprint and are distributed unevenly across the world, upscaling the observations is necessary to obtain global-scale estimates of biosphere–atmosphere exchange...
Understanding changes in terrestrial carbon balance is important to improve our knowledge of the regional carbon cycle and climate change. However, evaluating regional changes in the terrestrial carbon balance is challenging due to the lack of surface flux measurements. This study reveals that the terrestrial carbon uptake over the Republic of Kore...
The Global Carbon Budget 2018 (GCB2018) estimated by the atmospheric CO growth rate, fossil fuel emissions, and modeled (bottom‐up) land and ocean fluxes cannot be fully closed, leading to a “budget imbalance,” highlighting uncertainties in GCB components. However, no systematic analysis has been performed on which regions or processes contribute t...
Abstract. The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent-historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models tend to fall back on simplified assumpt...
Several lines of evidence point to an increase in the activity of the terrestrial biosphere over recent decades, impacting the global net land carbon sink (NLS) and its control on the growth of atmospheric carbon dioxide (ca). Global terrestrial gross primary production (GPP)—the rate of carbon fixation by photosynthesis—is estimated to have risen...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and m...
Robust estimates of CO2 budget, CO2 exchanged between the atmosphere and terrestrial biosphere, are necessary to better understand the role of the terrestrial biosphere in mitigating anthropogenic CO2 emissions. Over the past decade, this field of research has advanced through understanding of the differences and similarities of two fundamentally d...
The CO2 transfer conductance within plant leaves (mesophyll conductance, gm) is currently not considered explicitly in most land surface models (LSMs), but instead treated implicitly as an intrinsic property of the photosynthetic machinery. Here, we review approaches to overcome this model deficiency by explicitly accounting for gm, which comprises...
Continuous atmospheric CO2 monitoring data indicate an increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) in northern high latitudes. The major drivers of enhanced SCANBP remain unclear and intensely debated, with land-use change, CO2 fertilization and warming being identified as likely contributors. We integrated CO2-flux data from...
FLUXNET assembles globally-distributed eddy covariance-based estimates of carbon fluxes between the biosphere and the atmosphere. Since eddy covariance flux towers have a relatively small footprint and are distributed unevenly across the world, upscaling the observations is necessary in order to obtain global-scale estimates of biosphere-atmosphere...
Global terrestrial models currently predict that the Amazon rainforest will continue to act as a carbon sink in the future, primarily owing to the rising atmospheric carbon dioxide (CO2) concentration. Soil phosphorus impoverishment in parts of the Amazon basin largely controls its functioning, but the role of phosphorus availability has not been c...
Evapotranspiration (ET) is a critical component in global water cycle and links terrestrial water, carbon and energy cycles. Accurate estimate of terrestrial ET is important for hydrological, meteorological, and agricultural research and applications, such as quantifying surface energy and water budgets, weather forecasting, and scheduling of irrig...
Land‐use and climate changes both affect terrestrial ecosystems. Here, we used three combinations of Shared Socioeconomic Pathways and Representative Concentration Pathways (SSP1xRCP26, SSP3xRCP60, SSP5xRCP85) as input to three dynamic global vegetation models to assess the impacts and associated uncertainty on several ecosystem functions: terrestr...
Human-caused CO2 emissions over the past century have caused the climate of
the Earth to warm and have directly impacted on the functioning of terrestrial
plants. We examine the global response of terrestrial gross primary production
(GPP) to the historic change in atmospheric CO2. The GPP of the terrestrial
biosphere has increased steadily, keepin...
South-east Australia, characterized by arid and semi-arid climate, has experienced large-scale rainfall reductions in recent decades. Larger temporal and spatial drought conditions are predicted in future. The temperate south east coastal zone is characterized by dense forests of Eucalyptus. Drought conditions have implications for the functioning...
Continuous atmospheric CO2 monitoring data indicate an increase in seasonal-cycle amplitude (SCA) of CO2 exchange in northern high latitudes. The major drivers of enhanced SCA remain unclear and intensely debated with land-use change, CO2 fertilization and warming identified as likely contributors. We integrated CO2-flux data from two atmospheric i...
Although the existence of a large carbon sink in terrestrial ecosystems is well-established, the drivers of this sink remain uncertain. It has been suggested that perturbations to forest demography caused by past land-use change, management, and natural disturbances may be causing a large component of current carbon uptake. Here we use a global com...
Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere-the "global carbon budget"-is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and meth...
This paper describes ESM-SnowMIP, an international coordinated modelling effort to evaluate current snow schemes, including snow schemes that are included in Earth system models, in a wide variety of settings against local and global observations. The project aims to identify crucial processes and characteristics that need to be improved in snow mo...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and m...
To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts o...
Evaluating the response of the land carbon sink to the anomalies in temperature and drought imposed by El Niño events provides insights into the present-day carbon cycle and its climate-driven variability. It is also a necessary step to build confidence in terrestrial ecosystems models' response to the warming and drying stresses expected in the fu...
Climate change is shifting the phenological cycles of plants1, thereby altering the functioning of ecosystems, which in turn induces feedbacks to the climate system2. In northern (north of 30° N) ecosystems, warmer springs lead generally to an earlier onset of the growing season3,4 and increased ecosystem productivity early in the season5. In situ6...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the ‘global carbon budget’ – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and m...
This paper describes ESM-SnowMIP, an international coordinated modelling effort to evaluate current snow schemes against local and global observations in a wide variety of settings, including snow schemes that are included in Earth System Models. The project aims at identifying crucial processes and snow characteristics that need to be improved in...
To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts o...
The increasing regional and global impact of wildfires on the environment, and particularly on the human population, is becoming a focus of the research community. Both fire behaviour and smoke dispersion models are now underpinning strategic and tactical fire management by many government agencies and therefore model accuracy at regional and local...
To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts o...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and m...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and m...
p>Accurate assessment of anthropogenic carbon dioxide (<span classCombining double low line"inline-formula">CO2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project...
The Community Atmosphere-Biosphere Land Exchange model (CABLE) is a land surface model (LSM) that can be applied stand-alone, as well as providing for land surface-atmosphere exchange within the Australian Community Climate and Earth System Simulator (ACCESS). We describe critical new developments that extend the applicability of CABLE for regional...
The model Soil-Litter-Iso (SLI) calculates coupled heat and water transport in soil. It was recently implemented into the Australian land surface model CABLE and which is the land component of the Australian Community Climate and Earth System Simulator (ACCESS). Here we extended SLI to include accurate freeze-thaw processes in the soil and snow. SL...
The Community Atmosphere–Biosphere Land Exchange model (CABLE) is a land surface model (LSM) that can be applied stand-alone and provides the land surface–atmosphere exchange within the Australian Community Climate and Earth System Simulator (ACCESS). We describe new developments that extend the applicability of CABLE for regional and global carbon...
The savanna complex is a highly diverse global biome that occurs within the seasonally dry tropical to sub-tropical equatorial latitudes and are structurally and functionally distinct from grasslands and forests. Savannas are open-canopy environments that encompass a broad demographic continuum, often characterised by a changing dominance between C...
We present an assessment of the impact of future climate change on two key drivers of fire risk in Australia, fire weather and fuel load. Fire weather conditions are represented by the McArthur Forest Fire Danger Index (FFDI), calculated from a 12-member regional climate model ensemble. Fuel load is predicted from net primary production, simulated...
Recent studies have shown that semi-arid ecosystems in Australia may be responsible for a significant part of the
interannual variability in the global concentration of atmospheric carbon dioxide.
Here we use a multiple constraints approach to calibrate a land surface model of Australian terrestrial carbon and
water cycles, with a focus on interann...
Accurate assessment of anthropogenic carbon dioxide (CO2)
emissions and their redistribution among the atmosphere, ocean, and
terrestrial biosphere – the “global carbon budget” – is important to
better understand the global carbon cycle, support the development of climate
policies, and project future climate change. Here we describe data sets and
m...
As a result of climate change warmer temperatures are projected through the 21st century and are already increasing above modelled predictions. Apart from increases in the mean, warm/hot temperature extremes are expected to become more prevalent in the future, along with an increase in the frequency of droughts. It is crucial to better understand t...
OzFlux is the regional Australian and New
Zealand flux tower network that aims to provide a
continental-scale national research facility to monitor and assess
trends, and improve predictions, of Australia’s terrestrial
biosphere and climate. This paper describes the evolution,
design, and current status of OzFlux as well as provides an
overview of...
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and m...
Land surface models (LSMs) must accurately simulate observed energy and water fluxes during droughts in order to provide reliable estimates of future water resources. We evaluated 8 different LSMs (14 model versions) for simulating evapotranspiration (ET) during periods of evaporative drought (Edrought) across six flux tower sites. Using an empiric...
CABLE is a global land surface model, which has been used
extensively in offline and coupled simulations. While CABLE performs well in
comparison with other land surface models, results are impacted by
decoupling of transpiration and photosynthesis fluxes under drying soil
conditions, often leading to implausibly high water use efficiencies. Here,...
Canopy structure is one of the most important vegetation characteristics for
land–atmosphere interactions, as it determines the energy and scalar
exchanges between the land surface and the overlying air mass. In this study
we evaluated the performance of a newly developed multi-layer energy budget
in the ORCHIDEE-CAN v1.0 land surface model (Organi...
This paper presents a methodology for examining land-atmosphere coupling in a regional climate model by examining how the resistances to moisture transfer from the land to the atmosphere control the surface turbulent energy fluxes. Perturbations were applied individually to the aerodynamic resistance from the soil surface to the displacement height...
Recent evidence shows that warm semi-arid ecosystems are playing a disproportionate role in the inter-annual variability and greening trend of the global carbon cycle given their mean lower productivity when compared with other biomes (Ahlström et al. (2015)). Using multiple observations (land-atmosphere fluxes, biomass, streamflow and remotely sen...
As a result of climate change warmer temperatures are projected through the 21st century and are already increasing above modelled predictions. Apart from increases in the mean, warm/hot temperature extremes are expected to become more prevalent in the future, along with an increase in the frequency of droughts. It is crucial to better understand t...