
Valerio SpinogattiSapienza University of Rome | la sapienza · Department of Information Engineering, Electronics and Telecommunications
Valerio Spinogatti
Master of Science
PhD student in Electronic Engineering
About
12
Publications
1,767
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
41
Citations
Publications
Publications (12)
Forward body biasing (FBB) has often been exploited in the literature for improving the performance of both analog and digital building blocks. Recent works have explored the application of FBB variants to mixed-signal electronics and in particular to dynamic comparators, where these techniques can help to relax the trade-off between speed and powe...
Nonlinear calibration allows enhancing the performance of analog and radiofrequency circuits by digitally correcting nonlinearities. Often, calibration is performed in the complex baseband domain, and Volterra models are used. These models have hundreds of coefficients, and easily become computationally unfeasible. This is worse in complex Volterra...
In this paper, an evolution of the Sallen-Key biquad architecture is presented, suitable for applications at very high frequency. The pole of the buffer amplifier is exploited as one of the poles of the biquad, therefore overcoming the constraints it poses on the maximum resonance frequency that can be achieved. This allows designing low-pass filte...
In this paper, a novel dynamic body-driven ultra-low voltage (ULV) comparator is presented. The proposed topology takes advantage of the back-gate configuration by driving the input transistors' gates with a clocked positive feedback loop made of two AND gates. This allows for the removal of the clocked tail generator, which decreases the number of...
This paper presents a novel Strong Arm comparator in which the input pair is reused as a static amplifier to preamplify the input signal during the precharge phase. The proposed approach relaxes the main trade-offs that characterize the Strong Arm latch: compared to the conventional topology, the enhanced comparator achieves better input-referred n...
In this paper a novel linear transconductor topology is proposed, where class-AB behavior based on adaptive biasing is exploited to improve the linear range. The adaptive biasing circuit is based on the Winner-Take-All topology already used for class-AB OTAs, and optimized to improve the linearity, and the proposed transconductor features a gain co...