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Abstract

In this paper we investigate the use of divergence-free wavelet bases for the Coherent Vortex

Extraction (CVE) of turbulent flows. We begin with a short presentation of the construction of

3D divergence-free biorthogonal wavelets. Then we apply the CVE decomposition to a homoge-

neous isotropic turbulent flow, computed by a direct numerical simulation at resolution 2403 and

upsampled to N = 2563. At first, the CVE is applied to the vorticity field. Using the divergence-

free wavelets for a vorticity field makes sense since the vorticity also verifies an incompressibility

condition when the velocity does. The coherent part of the vorticity field is reconstructed from

the largest wavelet coefficients, corresponding to 3 % N, while the complement constitutes the

incoherent part. We show that the coherent part corresponds to the vortex tubes of the flow and

retains most of the energy and enstrophy. These results are then compared to those obtained us-

ing non–divergent free wavelets, both orthogonal and biorthogonal. Then we also apply the CVE

method, using divergence-free wavelets, to decompose the velocity field and subsequently compute

the corresponding vorticity fields. The results show that the decomposition of velocity exhibit large

smooth vortex structures in contrast to what is obtained with the decomposition of the vorticity.

1 Introduction

The Coherent Vortex Extraction (CVE) method has been introduced in different papers [8, 9, 10, 15].

The principle of the method consists in separating the flow into a coherent part, and noise, which is

supposed to be Gaussian and decorrelated. The vortex extraction is based on a wavelet decomposition

of the field (originally the vorticity field). A nonlinear approximation of the field, provided by the

wavelet decomposition, and corresponding to the best-N term approximation i.e. we retain the Nc

largest wavelet coefficients in the wavelet expansion, Nc being chosen suitably) will constitute the

coherent part, whereas the remaining term represents the incoherent background flow.

In [14] the coherent vortex extraction has been studied to analyze a 3D homogeneous isotropic

turbulent flow computed by Direct Numerical Simulation (DNS). In this paper we compare the CVE

applied to the vorticity using, either divergent free biorthogonal wavelets, or orthogonal and biorthog-

onal non divergent free wavelets which have been presented in [14]. Both decompositions allow an

∗Laboratoire de Modélisation et Calcul de l’IMAG, BP 53, 38 041 Grenoble cedex 9, France

1



efficient extraction of the coherent vortices retaining only few wavelet modes, i.e. 3 % N of the

coefficients.

Divergence-free wavelets have been originally designed by Lemarié [12] and have been firstly used

by Urban in the context of Fluid Mechanics, to analyze two-dimensional turbulent flows [1, 18],

as well as to compute the 2D/3D Stokes solution for the driven cavity problem [16]. The recent

work [5] describes an efficient algorithm to compute the divergence-free wavelet decomposition of any

incompressible 2D/3D vector field, and a way to compute the Leray-projection, i.e. the divergence-free

part of any compressible field, directly in wavelet space.

We apply the coherent vortex extraction to the vorticity field and to velocity field. For both

analyses, we will compare the coherent and incoherent parts of the flow with the total flow, and the

corresponding statistics.

The paper is organized as follows: in section 2, we recall the basics of 2D/3D divergence-free

wavelets. In section 3 we present results of the CVE applied to DNS data (vorticity and velocity) of

3D homogeneous isotropic turbulence. Finally, conclusions are given in section 4, where we present

some perspectives for turbulence modelling.

2 Divergence-free vector wavelets

2.1 3D wavelets in the scalar case

Multivariate wavelet bases (orthogonal or biorthogonal) are obtained by tensor products of one-

dimensional wavelets or scaling functions. The construction of one-dimensional wavelets is linked

to Multiresolution Analyses (MRA), see e.g. [13, 7]. In the following we will note by (Vj) the mul-

tiresolution spaces, and φ, ψ the associated scaling functions and wavelets.

Isotropic wavelets versus anisotropic wavelets.

Isotropic wavelet bases are wavelet bases arising from the 3D MRA analyses Vj = V
(1)
j ⊗V (2)

j ⊗V (3)
j

constructed by space tensor products. Here V
(i)
j denotes a one-dimensional MRA, which can be

different in each direction (in practice the MRA are often identical in all directions, but it wouldn’t

be the case in the divergence-free context). In such MRA, 3D scaling functions are given by:

Φj,ix,iy,iz(~x) = φ
(1)
j,ix

(x) φ
(2)
j,iy

(y) φ
(3)
j,iz

(z)

where φ
(i)
j,k(x) = 2

j

2φ(i)(2jx− k) are the 1D scaling functions of the MRA V
(i)
j (when k varies in Z).

The corresponding 3D wavelets are
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Ψµ
j,ix,iy,iz

(~x) =























































ψ
(1)
j,ix

(x) φ
(2)
j,iy

(y) φ
(3)
j,iz

(z) if µ = 1

φ
(1)
j,ix

(x) ψ
(2)
j,iy

(y) φ
(3)
j,iz

(z) if µ = 2

φ
(1)
j,ix

(x) φ
(2)
j,iy

(y) ψ
(3)
j,iz

(z) if µ = 3

ψ
(1)
j,ix

(x) φ
(2)
j,iy

(y) ψ
(3)
j,iz

(z) if µ = 4

ψ
(1)
j,ix

(x) ψ
(2)
j,iy

(y) φ
(3)
j,iz

(z) if µ = 5

φ
(1)
j,ix

(x) ψ
(2)
j,iy

(y) ψ
(3)
j,iz

(z) if µ = 6

ψ
(1)
j,ix

(x) ψ
(2)
j,iy

(y) ψ
(3)
j,iz

(z) if µ = 7

Notice that the corresponding support of each basis function is a cube of size ∼ 2−j (but they are not

isotropic functions in the standard sense).

Anisotropic 3D wavelets are constructed by taking the tensor product of three 1D wavelet bases

(which can be different) ψ
(i)
j,k (they are often called tensor-product wavelets). In this case, the basis

functions are generated from “anisotropic” dilations of the following tensor product function:

Ψ(x, y, z) = ψ(1)(x) ψ(2)(y) ψ(3)(z)

and they are given by:

Ψjx,jy,jz,ix,iy,iz(~x) = ψ
(1)
jx,ix

(x) ψ
(2)
jy,iy

(y) ψ
(3)
jz ,iz

(z)

The support of the above functions are no more cubic, except when the indices jx, jy , jz are equal.

2.2 Construction of div-free vector wavelets

Let

Hdiv,0(R
3) = {u ∈ (L2(R3))3 ; div u ∈ L2(Rn), div u = 0}

be the space of divergence-free vector functions in R
3.

Compactly supported divergence-free wavelets bases of Hdiv,0(R
3) were originally designed by

P.G. Lemarié-Rieusset, in the context of biorthogonal Multiresolution Analyses (MRA) [12], in the

general case of R
n. We describe here the principles of their construction, for more details on the

related fast algorithms, we refer to [5].

3D divergence-free MRA

The construction of divergence-free wavelet MRA is based on the existence of two different one-

dimensional multiresolution analyses of L2(R) related by differentiation and integration, which means:

Let (V 1
j )j∈Z

be a one-dimensional MRA, with a derivable scaling function φ1, (i.e. V 1
0 = span{φ1(x−

k), k ∈ Z}), and a wavelet ψ1: one can build a second MRA (V 0
j )j∈Z with a scaling function φ0

(V 0
0 = span{φ0(x− k), k ∈ Z}) and a wavelet ψ0 verifying:

φ′1(x) = φ0(x) − φ0(x− 1) ψ′
1(x) = 4 ψ0(x) . (1)
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Example: An example of MRA satisfying equation (1) is given by splines of degree 1 (V 0
j MRA

spaces) and splines of degree 2 (V 1
j MRA spaces). In both cases we draw the scaling functions φ0, φ1

and their associated wavelets ψ0, ψ1 with shortest support figure 1).

φ0 ψ0 φ1 ψ1

Figure 1: Scaling functions and associated even and odd wavelets with shortest support, for splines of degree 1
(left) and 2 (right).

To construct divergence-free scaling functions, we consider the following vector multiresolution

analysis of
(

L2(R3)
)3

:

[

Vj = (V 1
j ⊗ V 0

j ⊗ V 0
j ) × (V 0

j ⊗ V 1
j ⊗ V 0

j ) × (V 0
j ⊗ V 0

j ⊗ V 1
j )

]

j∈Z

The associated 3D vector scaling functions are given by:

Φ1(x, y, z) =

∣

∣

∣

∣

∣

∣

φ1(x)φ0(y)φ0(z)
0
0

Φ2(x, y, z) =

∣

∣

∣

∣

∣

∣

0
φ0(x)φ1(y)φ0(z)
0

Φ3(x, y, z) =

∣

∣

∣

∣

∣

∣

0
0
φ0(x)φ0(y)φ1(z)

From these scaling functions we can derive divergence free scaling functions:

Φdiv,1(x, y, z) =

∣

∣

∣

∣

∣

∣

φ1(x)[φ1(y)]
′φ0(z)

−[φ1(x)]
′φ1(y)φ0(z)

0
Φdiv,2(x, y, z) =

∣

∣

∣

∣

∣

∣

0
φ0(x)φ1(y)[φ1(z)]

′

−φ0(x)[φ1(y)]
′φ1(z)

Φdiv,3(x, y, z) =

∣

∣

∣

∣

∣

∣

−φ1(x)φ0(y)[φ1(z)]
′

0
[φ1(x)]

′ φ0(y)φ1(z)

which are linear combinations of the ”standard” scaling functions, by using the relation φ′1(s) =

φ0(s) − φ0(s− 1):

Φdiv,1(x, y, z) = Φ1(x, y, z) − Φ1(x, y − 1, z) − Φ2(x, y, z) + Φ2(x− 1, y, z)

Φdiv,2(x, y, z) = Φ2(x, y, z) − Φ2(x, y, z − 1) − Φ3(x, y, z) + Φ3(x, y, z − 1)

Φdiv,3(x, y, z) = Φ3(x, y, z) − Φ3(x− 1, y, z) − Φ1(x, y, z) + Φ1(x, y, z − 1))
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To generate a divergence-free MRA, we have to choose 2 scaling functions among the three above,

for instance we can choose:

Vdiv,0 = span
{

Φdiv,1(~x− ~k) ; Φdiv,2(~x− ~k) ; ~k ∈ Z
3
}

and define

Vdiv,j = span
{

u(2j .) ; u ∈ Vdiv,0

}

In this new divergence-free MRA, we can construct isotropic as well as anisotropic divergence free

wavelet bases. In both cases the divergence-free wavelets are given by linear combinations of the

“canonical” (but vector!) wavelets of the MRA Vj.

In the isotropic case, from the 21 canonical generating 3D vector wavelets
{

~Ψi,µ | i = 1, 2, 3 , µ = 1, 7
}

:

~Ψ1,µ =

∣

∣

∣

∣

∣

∣

Ψµ

0
0

~Ψ2,µ =

∣

∣

∣

∣

∣

∣

0
Ψµ

0

~Ψ3,µ =

∣

∣

∣

∣

∣

∣

0
0
Ψµ

one constructs 14 generating divergence-free wavelets Ψi,µ
div, (i = 1, 2, µ = 1, 7), and 7 complement

functions Ψµ
n (µ = 1, 7). Their exact forms can be found in [5]. We plot on figure 2, an isosurface of

the modulus of the vorticity field, associated to each divergence-free basis function.

Figure 2: Isosurface of the modulus of the curl of the 14 div-free vector wavelets in R
3.

Unlike the isotropic case, anisotropic divergence-free wavelets are generated from two vector

functions:

Ψan,1
div (x, y, z) =

∣

∣

∣

∣

∣

∣

ψ1(x)ψ0(y)ψ0(z)
−ψ0(x)ψ1(y)ψ0(z)
0

Ψan,2
div (x, y, z) =

∣

∣

∣

∣

∣

∣

0
ψ0(x)ψ1(y)ψ0(z)
−ψ0(x)ψ0(y)ψ1(z)

by anisotropic dilations, and translations. Anisotropic three-dimensional divergence-free wavelets take

the form:

Ψan
div,1,j,k(x1, x2, x3) =

∣

∣

∣

∣

∣

∣

2j2ψ1(2
j1x1 − k1)ψ0(2

j2x2 − k2)ψ0(2
j3x3 − k3)

−2j1ψ0(2
j1x1 − k1)ψ1(2

j2x2 − k2)ψ0(2
j3x3 − k3)

0

Ψan
div,2,j,k(x1, x2, x3) =

∣

∣

∣

∣

∣

∣

0
2j3ψ0(2

j1x1 − k1)ψ1(2
j2x2 − k2)ψ0(2

j3x3 − k3)
−2j2ψ0(2

j1x1 − k1)ψ0(2
j2x2 − k2)ψ1(2

j3x3 − k3)

with j = (j1, j2, j3), k = (k1, k2, k3) ∈ Z
3.
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Decomposition of
(

L2(R3)
)3

:

Since divergence-free wavelets generate Hdiv,0(R
3) (and not

(

L2(R3)
)3

), we have to introduce

complement functions Ψn,j,k to form a basis of the vector space
(

L2(R3)
)3

. For instance in the

isotropic case, it writes:

(

L2(R3)
)3

= span
{

Ψi,µ
div,j,k

}

⊕ span
{

Ψµ
n,j,k

}

(2)

The choice of these complement functions is not unique, and for a given compressible field, it induces the

values of its divergence-free wavelet coefficients. As divergence-free wavelets are biorthogonal wavelet

bases (and not orthogonal), we can’t find an orthogonal complement. Then the decomposition is not

orthogonal and we have div Ψµ
n,j,k 6= 0.

Now we can write the wavelet decomposition of any vector field u:

u =
∑

µ,i,j,k

di,µ
div,j,k Ψi,µ

div,j,k +
∑

µ,j,k

dµ
n,j,k Ψµ

n,j,k

If u is incompressible, the second term in the above decomposition vanishes.

3 Numerical results

3.1 Principle of the CVE decomposition

We consider a 3D vector field, either velocity u, or vorticity ω. The principle of the coherent vortex

extraction, in the divergence-free wavelet context, is as follows:

First, the vector field u is developed into divergence-free vector wavelets and complement functions:

u =
∑

µ,i,j,k

di,µ
div,j,k Ψi,µ

div,j,k +
∑

µ,j,k

dµ
n,j,k Ψµ

n,j,k

Then a threshold is applied to the (L2-renormalized) wavelet coefficients, in absolute value. In order

to compare our results with those of [14], we choose a threshold T such that the total number of

coefficients retained in the coherent part corresponds to 3 % N with N = 2563 here. The coherent

part of the field is then:

uc =
∑

|di,µ

div,j,k
|>T

di,µ
div,j,k Ψi,µ

div,j,k +
∑

|dµ

n,j,k
|>T

dµ
n,j,k Ψµ

n,j,k

Remark that if u is divergence free, the second term of the right hand side vanishes. But in practice,

numerical fields u arising from a spectral code will verify a div-free condition in the Fourier domain;

after interpolation in the spline-wavelet domain, this divergence free condition is no more observed

and one has to take into account the complement part.

The incoherent velocity is computed by the difference with the total field:

ui = u− uc
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Since the divergence-free wavelets and their complement functions form a biorthogonal (and not or-

thogonal) basis of (L2(R3)3), the total energy verifies:

E =
1

2
‖uc + ui‖2 = Ec + Ei+ < uc|ui > (3)

In the same way, the CVE is applied to the vorticity field ω, leading to a coherent vorticity ωc and

an incoherent vorticity ωi = ω − ωc. Similarily, the total enstrophy verifies

Z =
1

2
‖ωc + ωi‖2 = Zc + Zi+ < ωc|ωi > (4)

3.2 DNS data

We apply the coherent vortex extraction, with divergence-free wavelets, to the vorticity and velocity

fields of a 3D homogeneous isotropic turbulent flow. The data are coming from a DNS (direct numerical

simulation), using a pseudo-spectral code at resolution 2403 [19], upsampled to 2563. The flow is forced

at the largest scale, and the turbulence level corresponds to a microscale Reynolds number Rλ = 150,

with

Rλ =
λVrms

ν

and where λ = (E/Z)1/2 denotes the Taylor microscale, Vrms the root-mean-square velocity, and ν

the kinematic viscosity. Figure 6 shows a 643 sub-cube of the modulus of vorticity.

The divergence free wavelets used in the numerical experiments are constructed from biorthogonal

splines of degree 1 (spaces V 0
j ) and 2 (spaces V 1

j ) (see section 2). We begin with a comparison of

the compression rates between isotropic and anisotropic wavelets, obtained through the nonlinear

compression of the vorticity field.

Comparison of compression rates between isotropic and anisotropic div-free wavelets:

Figure 3 represents the error provided by the nonlinear approximation, in terms of the number of

retained coefficients (in semi–logarithmic scale).

Figure 3: Comparison between isotropic (plain line) and anisotropic (dashed line) div-free wavelet
compression of the vorticity field in semi–log scale.
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As one can see on figure 3, that the compression curve (we represented the relative enstrophy of the

incoherent part ωi) associated to isotropic wavelets is already decreasing, whereas the one associated to

the anisotropic wavelets grows for a low number of retained coefficients (due to the non orthogonality),

before decreasing.

As one can notice, the curve doesn’t tend to 0 when we take all the wavelet coefficients. That is

due to the first step of projection of the data into the spline-wavelet space. This step is not inversible.

Nevertheless, it doesn’t play to much a role regarding the compression rate with 3 % of the wavelet

coefficients. This step can be assimilated to a smoothing of the data by the operation:

ω̃i(xn) =
1

4
ωi(xn − δxei) +

1

2
ωi(xn) +

1

4
ωi(xn + δxei)

where we noted ω = (ω1, ω2, ω3) the initial enstrophy, ω̃ the projected enstrophy on which we operate

the CVE, xn a data point, δx the space pace and ei the unit vector in the direction i.

Compression rates of the divergence-free projection of the discrete vorticity field, and

of its complement: Figure 4 represents the compression curves of the div-free part of the vorticity

and of its complement part, when using isotropic wavelets (divergence-free wavelets and complement

wavelets, as in decomposition (2)). As one can see, the complement part is not negligible, since the

field we analyze doesn’t verify a divergence free condition, after interpolation in the considered spline

space. Nevertheless, the complement functions will represent less than 0.4 % of the total coefficients

retained in the 3 %-best terms approximation.

Figure 4: Compression error in terms of the number of retained coefficients (log-log scale): div-free
part (plain line) and complement part (dashed line) of the vorticity field.

Compression rates of the divergence-free projection of the discrete velocity field, and

of its complement: Figure 4 represents the compression curves of the div-free part of the velocity,

and of its complement part, when using isotropic divergence-free wavelets and complement wavelets

(see (2)). The curves clearly show that the non div-free part (arising artificially from the spline

interpolation), in the velocity decomposition, is in practice negligible.

8



Figure 5: Compression error in terms of the number of retained coefficients (log-log scale): div-free
part (plain line) and complement part (dashed line) of the velocity field.

3.3 CVE in the 3D vorticity field

We first apply the CVE decomposition with divergence free wavelets to the vorticity field, and we

compare our results to those obtained in [14] with orthogonal and biorthogonal bases (respectively

Coifman 12 and Harten 3).

We use the following notations:

ω: vorticity field (2563)

ωc: vorticity for the coherent part (3 % of the coefficients)

ωi: vorticity for the incoherent part (97 % of the coefficients)

ω = ωc + ωi

Z = 1
2 < ω|ω >: Enstrophy of the whole field

Zc = 1
2 < ωc|ωc >: Enstrophy of the coherent part

Zi = 1
2 < ωi|ωi >: Enstrophy of the incoherent part

< ωc|ωi >: cross-term

Following (4), the cross-term is being computed by

< ωc|ωi > = Z − Zc − Zi

The initial vorticity field is plotted in figure 6. The coherent and incoherent vorticity parts, using

either the divergence-free, orthogonal and biorthogonal decomposition are shown on figure 7. The

coherent part, obtained by retaining only the 3 % largest wavelet modes, is close to the original field,

and retains the coherent vortex tubes present in the total vorticity, similarily to the orthogonal and

biorthogonal decompositions. The incoherent part in the div-free decomposition does not exhibit

vortex tubes, although some structures can still be observed. In comparison to the incoherent parts

obtained with non divergence-free wavelets, this effect is less pronounced for orthogonal wavelets

(Fig. 7, middle) and more pronounced for biorthogonal wavelets (Fig. 7, bottom). One should notice

that the values of the isosurfaces for the incoherent parts have been reduced by a factor 2.
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Figure 6: Modulus of the vorticity for the total field. Zoom of the top-left-front-cube of size 643. The surfaces,
from light to dark, correspond to ‖~ω‖ = 3σ, 4σ and 5σ, with σ =

√
2Z

Figure 7: Comparison between divergence-free biorthogonal wavelets (top) and non divergence free orthogonal
(middle) or biorthogonal (bottom) wavelets. Modulus of the vorticity for the coherent part (left) and incoherent
part (right) of the CVE method. Zoom of a cube of size 643 (from the second row, second line and second
column). The isosurfaces, from light to dark, correspond to ‖~ω‖ = 3σ, 4σ and 5σ on the left side, ‖~ω‖ = 3

2
σ, 2σ

and 5

2
σ on the right side.

The statistics of the resulting fields, provided by the divergence-free, orthogonal and biorthogonal

wavelet decompositions are reported in table 1. For the three decompositions, only 3 % of the wavelet

coefficients retain, for divergence-free biorthogonal wavelets 74.7 % of the enstrophy, for the orthogonal

non divergence-free wavelets 75.5 % and for the biorthogonal non divergence-free wavelets 69.0 % of

the total enstrophy, while the incoherent parts correspond to 18.1 %, 24.4 % and 27.3 %, respectively.

In contrast to the orthogonal decomposition, where the cross term vanishes, we observe for both

biorthogonal decompositions non vanishing cross terms, i.e. 7.1 % for the divergence free wavelets and

3.6 % for the non divergence-free wavelets.
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Decomp.field
V orticity Total Coherent Incoherent Cross− term

%coef 100% 3% 97%

Divergence− free
Enstrophy 151.6 113.3 27.5 10.8

%ofEnstrophy 100% 74.7% 18.1% 7.1%

Orthogonal
Enstrophy 151.6 114.5 37.1 0

Enstrophy(%) 100% 75.5% 24.5% 0%

Biorthogonal
Enstrophy 151.6 104.6 41.4 5.4

Enstrophy(%) 100% 69.0% 27.3% 3.6%

Table 1: Statistical properties of the vorticity field for the divergence-free (first lines), orthogonal -Coifman 12-
and biorthogonal -Harten 3- decompositions (last lines).
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Figure 3.3 shows the probability distribution function (PDF) of vorticity in semi-log scale, for the

divergence-free decomposition. It is to be compared to the ones obtained in [14], and plotted in figure

9 with orthogonal Coifman-12 (left) and biorthogonal Harten-3 (right) wavelet bases. The figures

show for the three cases that the PDF of the coherent vorticity is very close to the one of the total

vorticity, while the extreme values of the PDFs of the incoherent vorticity are reduced by about a

factor three (figure 3.3 and 9, left) and only by a factor two (figure 9, right) in the case of biorthogonal

non divergence-free wavelets.

Figure 8: PDF (probability distribution function) of vorticity associated to the divergence-free biorthogonal
wavelet decomposition.

Figure 9: PDF (probability distribution function) of vorticity associated to the orthogonal (left) and biorthogonal
(right) non divergence-free wavelet decomposition.

Figure 3.3 shows the isotropic enstrophy spectrum for the total, coherent and incoherent fields for

the divergence-free wavelet decomposition. One observes that the coherent spectrum follows the total

spectrum in the inertial range, whereas it is steeper in the dissipative range, i.e. for high wavenumbers

(k > 30). On the other side, the incoherent spectrum corresponds only to wavenumbers k ≥ 30,

namely in the dissipative range.

3.4 Experiment 2: velocity field

In this section, we apply the CVE using divergence-free wavelets to the velocity field instead of the

vorticity field. The CVE method provides a coherent part uc, and an incoherent part ui of the total

velocity u. We then compute and plot (Fig. 3.4) the curl of the coherent and incoherent velocities

that we compare to the coherent and incoherent vorticities (Fig. 7, top) previously computed.

Fig. 3.4 shows smoother vorticity tubes in the coherent part compared to Fig. 7, top.

Figure 10: Enstrophy spectra obtained by divergence-free wavelet decomposition.
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Figure 11: Divergence-free wavelet decomposition. Modulus of the vorticity field associated to the coherent
velocity (left) and the vorticity field associated the incoherent velocity (right) of the CVE method. Zoom of the
top-left-front-cube of size 643. The surfaces, from light to dark, correspond to ‖~ω‖ = 3σ, 4σ and 5σ on the left
side, ‖~ω‖ = 3

2
σ, 2σ and 5

2
σ on the right side.

The statistics of the resulting velocity fields are given in table 2. In all cases, we observe that

only 3 % divergence-free wavelet modes retain about 98.8 % of the total energy, while the remaining

97 % modes contain 0.4 % of the energy. For the non divergence-free decompositions we find in the

orthogonal and biorthogonal case that 99.0 % and 98.6 % of the energy are retained by the coherent

velocities, while 0.6 % and 0.7 % of the energy are retained by the incoherent velocities, respectively.

The cross terms contain 0.8 %, 0.4 % and 0.7 % of the energy, respectively. Note that the orthogonal

decomposition is only orthogonal for vorticity and not for velocity, as the Biot-Savart operator used

to compute the corresponding velocities from the decomposed vorticities is not an eigenfunction of the

wavelets.

Decomp.field Divergence − free
V elocity Total Coherent Incoherent Cross− term

%coef 100% 3% 97%

Energy 1.358 1.342 0.006 0.010
%of Energy 100% 98.8% 0.4% 0.8%

Decomp.field Total Coherent Incoherent Cross− term
V orticity Orthogonal

Energy 1.358 1.344 0.008 0.006
Energy(%) 100% 99.0% 0.6% 0.4%

Biorthogonal

Energy 1.358 1.338 0.010 0.010
Energy(%) 100% 98.6% 0.7% 0.7%

Table 2: Statistical properties of the velocity field for the divergence-free decomposition compared to statistical
properties of the energy issued from the CVE of the vorticity field with orthogonal and biorthogonal wavelet
thresholding.

Figure 12 shows the pdf of the velocity in semi-log scale, for the divergence-free decomposition,

whereas figure 13 shows the pdf of the velocity, reconstructed from the CVE of the velocity fields

(total, coherent and incoherent), in the orthogonal (left) and biorthogonal (right) decomposition.

LA ON A TRES CLAIREMENT UN PROBLEME D’ECHELLE !!!! IL FAUDRAIT REFAIRE LA

COURBE 12 avec les bonnes valeurs pour les axes.

The curves obtained in the divergence-free case for the CVE on the velocity are very closed to the

ones obtained in the orthogonal case with CVE on the vorticity. In the div-freee case, the coherent

velocity has the same Gaussian distribution as the total velocity, and the PDF of the incoherent velocity
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is also almost a Gaussian. This good behaviour can be explained by the fact that the coherent velocity

and incoherent vorticity are almost orthogonal in the divergence-free decomposition (the cross-term

represents only 0.8 % of the total energy), which is better than is the CVE on the vorticity (where

the cross-term represents about 7 % of the total enstrophy).

Figure 12: PDF (probability distribution function) of velocity associated to the divergence-free wavelet com-
pression with 3 % of the coefficients.

Figure 13: PDF (probability distribution function) of velocity associated to the orthogonal (left) and biorthogonal
(right) wavelet decomposition

Figure 14 shows the energy spectra associated to the CVE of the velocity field in the divergence-

free wavelet decomposition:

ICI LES COURBES COHERENTES ET INCOHERENTES SONT INVERSEES

as one can see, the energy spectrum of the coherent velocity is identical to that of the total velocity

along the inertial range, whereas it differs for high wavenumbers corresponding to the dissipative range.

For the incoherent flows, the slope of the spectrum is very closed to k2, meaning that the velocity is

decorrelated in physical space. By comparison, figure 15 represents the energy spectra associated to

the CVE of the vorticity field, with the orthogonal (left) and biorthogonal (right) decomposition. The

main difference lies near the Nyquist frequency where the coherent velocity in figure 14 staturates,

instead of decreasing.

Figure 14: Energy spectra associated to the CVE of the vorticity field: orthogonal (left) and biorthogonal (right)
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Figure 15: Energy spectra associated to the CVE of the vorticity field: orthogonal (left) and biorthogonal (right)
wavelet decomposition
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4 Conclusion

In the present paper we investigated the interest of divergence-free biorthogonal wavelets for extract-

ing coherent vortices out of turbulent flows. We applied the coherent vortex extraction algorithm

based on a nonlinear thresholding of the wavelet coefficients to DNS data of homogeneous isotropic

turbulence at Rλ = 150. In the first part we applied the algorithm to the vorticity field. We found

that the divergence-free biorthogonal wavelets yield similar results than non divergence-free orthogo-

nal wavelets, which are better than for biorthogonal non divergence-free wavelets. 3 % of the largest

wavelet coefficients represent the vortex tubes of the flow and retained most energy. For the biorthog-

onal decompositions we showed that the cross terms are nonlegigable, i.e. 7 % and 3.6 % of the

enstrophy for the divergence-free and non divergence-free case, respectively, are lost. In the second

part we applied the coherent vortex extraction algorithm to the velocity field using divergence-free

biorthogonal wavelets. The obtained results motivate the use of divergence-free wavelets for Coherent

Vortex Simulation [8, 15], where the time evolution of the coherent flow is deterministically computed

in an adaptive wavelet basis.
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