Valentina Castagnola

Valentina Castagnola
Istituto Italiano di Tecnologia | IIT · Department of Neuroscience and Smart Materials

PhD

About

52
Publications
28,896
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,245
Citations
Additional affiliations
March 2015 - present
University College Dublin
Position
  • PostDoc Position

Publications

Publications (52)
Preprint
The blood-brain barrier (BBB) is essential to maintain brain homeostasis and healthy conditions but it also prevents drugs from reaching brain cells. In the BBB, tight junctions (TJs) are multi-protein complexes located at the interface between adjacent brain endothelial cells that regulate paracellular diffusion and claudin-5 (CLDN5) is the major...
Article
Full-text available
The biological fate of nanomaterials (NMs) is driven by the specific interactions that biomolecules, naturally adhering onto their surface, engage with cell membrane receptors and intracellular organelles. The molecular composition...
Article
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environ...
Article
Full-text available
The unique properties of few-layered graphene (FLG) make it interesting for a variety of applications, including biomedical applications, such as tissue engineering and drug delivery. Although different studies focus on...
Article
Full-text available
Gold nanoparticles (GNPs) are largely employed in diagnostics/biosensors and are among the most investigated nanomaterials in biology/medicine. However, few GNP‐based nanoformulations have received FDA approval to date, and promising in vitro studies have failed to translate to in vivo efficacy. One key factor is that biological fluids contain high...
Article
Degeneration of photoreceptors in age-related macular degeneration (AMD) is associated with oxidative stress due to the intense aerobic metabolism of rods and cones that if not properly counterbalanced by endogenous antioxidant mechanisms can precipitate photoreceptor degeneration. In spite of being a priority eye disease for its high incidence in...
Article
Oxidative stress is known to be the cause of several neurovascular diseases, including neurodegenerative disorders, since the increase of reactive oxygen species (ROS) levels can lead to cellular damage, blood-brain barrier leaking, and inflammatory pathways. Herein, we demonstrate the therapeutic potential of 5 nm platinum nanoparticles (PtNPs) to...
Article
Thanks to their biocompatibility and high cargo capability, graphene-based materials (GRMs) might represent an ideal brain delivery system. The capability of GRMs to reach the brain has mainly been investigated in vivo and has highlighted some controversy. Herein, we employed two in vitro BBB models of increasing complexity to investigate the biona...
Article
This study is about multiple responsiveness in biomedical materials. This typically implies "orthogonality" (i.e., one response does not affect the other) or synergy (i.e., one increases efficacy or selectivity of the other), but an antagonist effect between responses may also occur. Here, we describe a family of very well-defined amphiphilic and m...
Article
Full-text available
Crosstalk mechanisms between pericytes, endothelial cells, and astrocytes preserve integrity and function of the blood-brain-barrier (BBB) under physiological conditions. Long intercellular channels allowing the transfer of small molecules and organelles between distant cells called tunneling nanotubes (TNT) represent a potential substrate for ener...
Article
Full-text available
Iron oxide nanoparticles (IONPs) have been largely investigated in a plethora of biological fields for their interesting physical-chemical properties, which make them suitable for application in cancer therapy, neuroscience, and imaging. Several encouraging results have been reported in these contexts. However, the possible toxic effects of some IO...
Preprint
Crosstalk mechanisms between pericytes, endothelial cells, and astrocytes preserve integrity and function of the blood-brain-barrier (BBB) under physiological conditions. Long intercellular channels allowing the transfer of small molecules and organelles between distant cells called tunneling nanotubes (TNT) represent a potential substrate for ener...
Article
Full-text available
Automatized approaches for nanoparticle synthesis and characterization represent a great asset to their applicability in the biomedical field by improving reproducibility and standardization, which help to meet the selection criteria of regulatory authorities. The scaled-up production of nanoparticles with carefully defined characteristics, includi...
Article
Full-text available
Since it is now possible to make, in a controlled fashion, an almost unlimited variety of nanostructure shapes, it is of increasing interest to understand the forms of biological control that nanoscale shape allows. However, a priori rational investigation of such a vast universe of shapes appears to present intractable fundamental and practical ch...
Preprint
Full-text available
Automatized approaches for nanoparticle synthesis and characterization represent a great asset to their applicability in the biomedical field by improving reproducibility and standardization, which help to meet the selection criteria of regulatory authorities. The scaled-up production of nanoparticles with carefully defined characteristics, includi...
Preprint
Full-text available
Automatized approaches for nanoparticle synthesis and characterization represent a great asset to their applicability in the biomedical field by improving reproducibility and standardization, which help to meet the selection criteria of regulatory authorities. The scaled-up production of nanoparticles with carefully defined characteristics, includi...
Article
Among all the biomolecules that form the corona of nanomaterials, lipids are somehow the less studied and characterized. In the present paper, we report on the first investigation of the lipid content of the biomolecular corona formed around few layers graphene (FLG) and graphene oxide (GO) nanomaterials. Our work revealed that significantly differ...
Article
Full-text available
Zymogen (prothrombin) activation is central to the process of haemostasis (blood clotting) in the body, preventing serious blood loss and death from haemorrhagic shock. Zeolites comprise a family of crystalline microporous aluminosilicates that show increasing promise for use in massive bleeding control. However, the mechanism of zeolite-initiated...
Article
The formation of the biomolecular corona represents a crucial factor in controlling the biological interactions and trafficking of nanomaterials. In this context, the availability of key epitopes exposed on the surface of the corona, and able to engage the biological machinery, is important to define the biological fate of the material. While the f...
Article
Full-text available
Assessment of risk in the field of nanotechnology requires an integrated multidisciplinary approach due to the complex and cross-disciplinary framework for materials and activities at the nanoscale. The present paper summarizes the workshop “Governance of emerging nano-risk in the semiconductor industry” held on April 26, 2018 in Brussels, Belgium....
Article
Full-text available
Everywhere in our surroundings we increasingly come in contact with nanostructures that have distinctive complex shape features on a scale comparable to the particle itself. Such shape ensembles can be made by modern nano-synthetic methods and many industrial processes. With the ever growing universe of nanoscale shapes, names such as "nano-flowers...
Article
Ultrasmall nanoparticles (USNPs) are attracting an increasing interest for a variety of biomedical applications, from therapeutic targeting to imaging, in virtue of the peculiar behavior shown in vivo (i.e. efficient renal clearance, low liver accumulation etc.). In evaluating their potential to overcome some of the challenges that larger particles...
Article
The biological interactions of graphene have been extensively investigated over the last 10 years. However, very little is known about graphene interactions with the cell surface and how the graphene internalization process is driven and mediated by specific recognition sites at the interface with the cell. In this work, we propose a methodology to...
Article
Full-text available
The systematic study of nanoparticle-biological interactions requires particles to be reproducibly dispersed in relevant fluids along with further development in the identification of biologically relevant structural details at the materials-biology interface. Here, we develop a biocompatible long-term colloidally stable water dispersion of few-lay...
Article
Full-text available
Despite the ground-breaking potential of nanomaterials, their safe and sustainable incorporation into an array of industrial markets prompts a deep and clear understanding of their potential toxicity for both humans and the environment. Among the many materials with great potential, graphene has shown promise in a variety of applications; however,...
Article
Here we present a method for the rapid screening of exposed protein recognition motifs on the surface of nanoparticles exploiting quartz crystal microbalance (QCM). We quantify accessible functional epitopes of transferrin-coated nanoparticles and correlate them to differences in nanoparticle size and functionalization. The target recognition occur...
Article
Full-text available
The range of possible nanostructures is so large and continuously growing, that collating and unifying the knowledge connected to them, including their biological activity, is a major challenge. Here we discuss a concept that is based on the connection of microscopic features of the nanomaterials to their biological impacts. We also consider what w...
Article
Full-text available
Ultrasmall nanoparticles (USNPs), usually defined as NPs with core in the size range 1-3 nm, are a class of nanomaterials which show unique physicochemical properties, often different from larger NPs of the same material. Moreover, there are also indications that USNPs might have distinct properties in their biological interactions. For example, re...
Article
Full-text available
Ultrasmall nanoparticles (USNPs), usually defined as NPs with core in the size range 1–3 nm, are a class of nanomaterials which show unique physicochemical properties, often different from larger NPs of the same material. Moreover, there are also indications that USNPs might have distinct properties in their biological interactions. For example, re...
Article
Full-text available
The shape and size of nanoparticles are important parameters affecting the biodistribution, bioactivity, and toxicity. The high-throughput characterisation of nanoparticle shape in the dispersion is a fundamental prerequisite for realistic in vitro and in vivo evaluation, however, with routinely available bench-top optical characterisation techniqu...
Chapter
The nanoscale is the “natural” scale of many key elements of biology and biological function. Cells barriers and organs function, signal, communicate, and transfer materials using active nanoscale processes fueled by the cellular energy and rarely involve diffusive motion. Nanoparticles, initially recognized will often be accumulated in the degrada...
Article
Full-text available
The use of soft materials as substrate for neural probes aims at achieving better compliance with the surrounding neurons while maintaining minimal rejection. Many strategies have emerged to enable such probes to penetrate the cortex, among which the use of resorbable polymers. We performed several tests involving two resorbable polymers considered...
Article
Integrated (Pt/PEDOT–Pt–Ag/AgCl) and (Au/PEDOT–Pt–Ag/AgCl) electrochemical microcells (ElecCell) were elaborated for the detection of ascorbic acid, dopamine and uric acid by differential pulse voltammetry. Specific attention was brought to the integration of poly(3,4-ethylenedioxythiophene) (PEDOT) film by electropolymerization. Gold and platinum...
Article
Full-text available
Implantable neural prosthetics devices offer, nowadays, a promising opportunity for the restoration of lost functions in patients affected by brain or spinal cord injury, by providing the brain with a non-muscular channel able to link machines to the nervous system. The long-term reliability of these devices constituted by implantable electrodes ha...
Article
Marine toxins appear to be increasing in many areas of the world. An emerging problem in the Mediterranean Sea is represented by palytoxin (PlTX), one of the most potent marine toxins, frequently detected in seafood. Due to the high potential for human toxicity of PlTX, there is a strong and urgent need for sensitive methods toward its detection an...

Network

Cited By