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Abstract

In this paper, we obtain some new oscillation criteria for certain class of fractional partial

differential equations with damping. Using the generalized Riccati technique and integral

averaging method, new oscillation criteria are established.
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1 Introduction

Fractional differential equations are generalizations of classical differential

equations of integer order and have gained considerable importance due to their

various field such as viscoelasticity, signal processing, rheology, control theory,

probability, statistics and economics, robotics etc[7,10,11,17,19,22]. Recently, the

theory of fractional differential equations and their applications have been attracting

more and more attention in the literature[1,8,12,15,16].

Nowadays the interest in the study of oscillation theory for various equations

like ordinary and partial differential equations, difference equations, dynamics

equations on time scales and fractional differential equations is an interesting area

of research and much effort has been made to establish oscillation criteria for these

equations[4,13,18,20,21] and very few publications paid the attention to the oscillation

of fractional differential equation, see for example[3,5,6,9,14].

In 2004, Abdullah[2], studied a note on the oscillation of second order differential
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equations with damping term of the form

y′′ + p(x)y′ + q(x)y = 0

where p(x) and q(x) are continuous functions on the interval [α,∞). where α is real

number.

Motivated by this paper, we proposed to study the Fractional partial analog.

In this paper, we study the oscillatory behavior of solutions of Fractional partial

differential equations with damping term of the form.

∂

∂t

(
r(t)Dα

+,tu(x, t)
)

+ p(t)Dα
+,tu(x, t)

+ q(t)f

(∫ t

0

(t− s)−αu(x, s)ds

)
= a(t)∆u(x, t) + F (x, t), (1)

(x, t) ∈ G = Ω×R+,

with the Neumann boundary condition

∂u(x, t)

∂N
= 0, (x, t) ∈ ∂Ω×R+. (2)

where Ω is a bounded domain of RN with piecewise smooth boundary ∂Ω; α ∈ (0, 1)

is a constant; G = Ω× R+, R+ = [0,∞), Dα
+,tu is the Riemann- Liouville fractional

derivative of order α of u with respect to t, ∆ is the Laplacian operator and N is the

unit exterior normal vector to ∂Ω.

A solution u(x,t) is said to be oscillatory in G if it is neither eventually positive

nor eventually negative, otherwise it is nonoscillatory. Equation (1) is said to be

oscillatory if all its solutions are oscillatory.

Throughout this paper, we assume that the following conditions hold:

(A1) r(t) ∈ Cα ((0,∞); (0,∞)) ,
∫∞ ds

r(s)
=∞.

p(t) ∈ C ((0,∞);R) and q(t) ∈ C ((0,∞);R)

(A2) a(t) ∈ C ([0,∞];R+)

(A3) f(u) ∈ C(R;R) is convex in R+ such that
f(u)

u
≥ µ for certain constant µ > 0

for all u6= 0.

(A4) F ∈ C
(
G,R

)
is a continuous function such that

∫
Ω
F (x, t)dx ≤ 0.

By solution of equation(1). We mean a function u(x, t) ∈ C(1+α)
(
Ω× (0,∞)

)
such
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that f
∫ t

0
(t− s)−αu(x, s)ds ∈ C

(
G,R

)
, Dα

+,tu(x, t) ∈ C1
(
G,R

)
.

2 Preliminaries

The following notations will be used for our convenience

U(t) =
1

|Ω|

∫
Ω

u(x, t)dx, where |Ω| =
∫

Ω

dx.

Definition 2.1 The Riemann-Liouville fractional partial derivative of order 0 < α <

1 with respect to t of a function u(x, t) is given by

(Dα
+,tu)(x, t) :=

∂

∂t

1

Γ(1− α)

∫ t

0

(t− s)−αu(x, s)ds (3)

provided the right hand side is pointwise defined on R+, where Γ is the gamma

function.

Definition 2.2 The Riemann-Liouville fractional integral of order α > 0 of a

function y : R+ → R on the half-axis R+ is given by

(Iα+y)(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds for t > 0 (4)

provided the right hand side is pointwise defined on R+.

Definition 2.3 The Riemann-Liouville fractional derivative of order α > 0 of a

function y : R+ → R on the half-axis R+ is given by

(Dα
+y)(t) :=

ddαe

dtdαe

(
I
dαe−α
+ y

)
(t) for t > 0 (5)

provided the right hand side is pointwise defined on R+, where dαe is the ceiling

function of α.

Lemma 2.4 Let y be the solution of (1) and

K(t) :=

∫ t

0

(t− s)−αy(s)ds for α ∈ (0, 1) and t > 0. (6)
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Then K ′(t) = Γ(1− α)(Dα
+y)(t).

3 Main Results

Finally, we give our main results. In this section, we establish some sufficient

conditions for oscillation behavior of (1) and (2).

Theorem 3.1 If the functional differential inequality

d

dt

(
r(t)Dα

+U(t)
)

+ p(t)Dα
+U(t) + q(t)f(K(t)) ≤ 0 (7)

has no eventually positive solution, then every solution of (1) and (2) is oscillatory

in G.

Proof: Assume to the contrary that there is a nonoscillatory solution u(x, t) to the

problem (1) and (2). Without loss of generality we may assume that u(x, t) > 0 ∈
G× [t0,∞); t0 ≥ 0.

Integrating (1) with respect to x over the domain Ω, we have

d

dt

(
r(t)

∫
Ω

Dα
+,tu(x, t)dx

)
+ p(t)

∫
Ω

Dα
+,tu(x, t)dx+

∫
Ω

q(t)f

(∫ t

0

(t− s)−αu(x, s)ds

)
dx = a(t)

∫
Ω

∆u(x, t)dx+

∫
Ω

F (x, t)dx (8)

Using Green’s formula, it is obvious that∫
Ω

∆u(x, t)dx =

∫
∂Ω

∂u(x, t)

∂N
dS = 0, t ≥ t1 (9)

where dS is surface element on ∂Ω.

Moreover, using Jensen’s inequality and from (A3), it follows that∫
Ω

q(t)f

(∫ t

0

(t− s)−αu(x, s)ds

)
dx = q(t)

∫
Ω

f

(∫ t

0

(t− s)−αu(x, s)ds

)
dx

≥ q(t)f

(∫ t

0

(t− s)−α
∫

Ω

u(x, s)dx

)
ds

≥ q(t)f

(∫ t

0

(t− s)−α | Ω | U(s)ds

)
Journal of Computational Mathematica Page 4 of 14
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=| Ω | q(t)f(K(t)) . (10)

Combining (8)− (10) and using (A4), we have

d

dt

(
r(t)Dα

+U(t)
)

+ p(t)Dα
+U(t) + q(t)f(K(t)) ≤ 0.

Therefore U(t) is an eventually positive solution of (7). This contradicts the

hypothesis and complete the proof.

Theorem 3.2 If p(t) < 0 ∈ [t0,∞) is such that

lim
t→∞

[
1

4

∫ t

t0

(
4µq(s)− (p(s))2

r(s)Γ(1− α)

)
ds

]
=∞ (11)

then any solution of the differential equation (7) is oscillatory on [t0,∞)

Proof:Suppose that the differential equation (7) is nonoscillatory then there exists a

nontrivial solution of (7) that has no zero on (T,∞) for T > t0 .

Let W(t) be the function defined by W (t) = −
r(t)Dα

+U(t)

K(t)
for t ∈ [T,∞).

Then W(t) is well defined function and satisfies the Riccati equation

W ′(t) =
p(t)r(t)Dα

+U(t)

r(t)K(t)
+
q(t)f(K(t))

K(t)
+

Γ(1− α)(r(t)Dα
+U(t))2

r(t)K2(t)

≤ p(t)(−W (t))

r(t)
+ µq(t) +

Γ(1− α)W 2(t)

r(t)

= µq(t)− p(t)W (t)

r(t)
+

Γ(1− α)W 2(t)

r(t)

= µq(t) +
1

r(t)
[Γ(1− α)W 2(t)− p(t)W (t)]

= µq(t) +
Γ(1− α)

r(t)

(
W (t)− p(t)

2Γ(1− α)

)2

− (p(t))2

4r(t)Γ(1− α)

Integrating t→∞, we get∫ t

T

W ′(s)ds ≤
∫ t

T

[
µq(s) +

Γ(1− α)

r(s)

(
W (s)− p(s)

2Γ(1− α)

)2

− (p(s))2

4r(s)Γ(1− α)

]
ds
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W (t)−W (T ) =

∫ t

T

(
Γ(1− α)

r(s)

[
W (s)− p(s)

2Γ(1− α)

]2
)
ds+

1

4

∫ t

T

(
4µq(s)− (p(s))2

4r(s)Γ(1− α)

)
ds

= W (T ) +

∫ t

T

(
Γ(1− α)

r(s)

[
W (s)− p(s)

2Γ(1− α)

]2
)
ds+

1

4

∫ t

T

(
4µq(s)− (p(s))2

4r(s)Γ(1− α)

)
ds.

Now the equation (11) implies that there exists t∗ > T such that

W (t) >

∫ t

t∗

(
Γ(1− α)

r(s)

[
W (s)− p(s)

2Γ(1− α)

]2
)
ds on [t∗,∞)

Define

Q(t) =

∫ t

t∗

(
Γ(1− α)

r(s)

[
W (s)− p(s)

2Γ(1− α)

]2
)
ds on [t∗,∞) (12)

then W (t) > Q(t) > on [t∗,∞)

Differentiating (12), we get

Q′(t) =
Γ(1− α)

r(t)

[
W (t)− p(t)

2Γ(1− α)

]2

>
Γ(1− α)

r(t)
[Q(t)]2

Since p(t) < 0,

Γ(1− α)

r(t)
<
Q′(t)

Q(t)2
,

Integrating both sides of this inequality from t∗ to t, we get∫ t

t∗

Γ(1− α)

r(s)
ds <

1

Q(t∗)
− 1

Q(t)
.

Therefore since Q(t) > 0, we conclude that

lim
t→∞

∫ t

t∗

Γ(1− α)

r(s)
ds <

1

Q(t∗)
.
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But this is not true. Thus the differential equation (7) is oscillatory, and this

completes the proof.

Theorem 3.3 If p(t) < 0 on [t0,∞) and there exists a non vanishing function c(t) ∈
C ′[t0,∞); c(t) > 0, such that

lim
t→∞

∫ t

t0

1

c(s)
ds =∞ (13)

and

lim
t→∞

[
− 1

4Γ(1− α)

∫ t

t0

(
r(s)c′(s)2

c(s)
− 2c′(s)p(s) +

c(s)p2(s)

r(s)
− 4µq(s)c(s)Γ(1− α)

)
ds+

c′(t)r(t)

2Γ(1− α)

]
=∞ (14)

then any solution of the differential equation (7) is oscillatory.

Proof: Suppose that there exists a nonoscillatory solution U(t) of the differential

equation (7). Define for t > t0

W (t) = −
c(t)r(t))Dα

+U(t)

K(t)
(15)

where c(t) is a non vanishing function belonging to C ′[t0,∞) and
1

c(t)
> 0 on [t0,∞).

Differentiating (15) with respect to t, on the interval [t0,∞).

W ′(t) =
c′(t)

c(t)
W (t) +

p(t)c(t)Dα
+U(t)

K(t)
+
c(t)q(t)f(K(t))

K(t)
+
c(t)r(t)Dα

+U(t)Γ(1− α)

K2(t)

≤ c′(t)

c(t)
W (t) +

p(t)

K(t)
(−W (t)) + c(t)q(t)µ+

Γ(1− α)

c(t)r(t)
W 2(t)

≤ Γ(1− α)

c(t)r(t)

[
W (t) +

c′(t)r(t)

2Γ(1− α)
− c(t)p(t)

2Γ(1− α)

]2

− 1

4Γ(1− α)

[
r(t)c′2(t)

c(t)
− 2c′(t)p(t) +

c(t)p2(t)

r(t)
− 4µq(t)c(t)Γ(1− α)

]
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Now for t ∈ [t0,∞), defining

H(t) = W (t) +
c′(t)r(t)

2Γ(1− α
(16)

W ′(t) ≤ Γ(1− α)

c(t)r(t)

[
H(t)− c(t)p(t)

2Γ(1− α)

]2

− 1

4Γ(1− α)

[
r(t)c′2(t)

c(t)
− 2c′(t)p(t) +

c(t)p2(t)

r(t)
− 4µq(t)c(t)Γ(1− α)

]

Integrating with t0 → t, we get

W (t) ≤W (t0) +

∫ t

t0

(
Γ(1− α)

c(s)r(s)

[
H(s)− c(s)p(s)

2Γ(1− α)

]2
)
ds

− 1

4Γ(1− α)

∫ t

t0

[
r(s)c′2(s)

c(s)
− 2c′(s)p(s) +

c(s)p2(s)

r(s)
− 4µq(s)c(s)Γ(1− α)

]
ds

By using equation (16) we have

H(t) ≤W (t0) +

∫ t

t0

(
Γ(1− α)

c(s)r(s)

[
H(s)− c(s)p(s)

2Γ(1− α)

]2
)
ds

− 1

4Γ(1− α)

∫ t

t0

[
r(s)c′2(s)

c(s)
− 2c′(s)p(s) +

c(s)p2(s)

r(s)
− 4µq(s)c(s)Γ(1− α)

]
ds+

c′(t)r(t)

2Γ(1− α)

Now the equation (14) implies that there exists T > t0 such that

H(t) >

∫ t

t0

(
Γ(1− α)

c(s)r(s)

[
H(s)− c(s)p(s)

2Γ(1− α)

]2
)
ds

holds t > T . Define a function Q(t) for t > T by

Q(t) =

∫ t

t0

(
Γ(1− α)

c(s)r(s)

[
H(s)− c(s)p(s)

2Γ(1− α)

]2
)
ds (17)

Since p(t) < 0, then H(t) > Q(t) > on [t∗,∞)
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Differentiating (17), we get

Q′(t) =
Γ(1− α)

c(t)r(t)

[
H(t)− c(t)p(t)

2Γ(1− α)

]2

Q′(t) >
Γ(1− α)

c(t)r(t)
Q2(t)

Therefore,

Γ(1− α)

c(t)r(t)
<
Q′(t)

Q2(t)

Integrating with T to t. we get∫ t

T

Γ(1− α)

c(s)r(s)
ds <

∫ t

T

Q′(s)

Q2(s)
ds

Since Q(t) < 0,therefore ∫ t

T

Γ(1− α)

c(s)r(s)
ds <

1

Q(T )

But this is not true. Thus the differential equation (7) is oscillatory and this completes

the proof.

For the following theorem, we introduce a class of function R.

Let

D0 = {(t, s) : t > s ≥ t0}

D = {(t, s) : t ≥ s ≥ t0}

The function H ∈ C(D,R) is said to belong to the class R, if

(i) H(t, t) = 0 for t ≥ t0 and H(t, s) = 0 for (t, s)t ∈ D0.

(ii) H has a continuous and non-positive partial derivative
∂H(t, s)

∂s
onD0 with respect

to s.

We assume that φ(t) for t ≥ t0 are given continuous functions such that φ(t) ≥ 0 and

differentiable and define.

θ(t) =
c′(t)

c(t)
− p(t)

r(t)
+ 2Γ(1− α)φ(t)

Journal of Computational Mathematica Page 9 of 14



2456-8686, vi(ii), 2022: 001-014
https://doi.org/10.26524/cm142

ψ(t) = c(t)[(r(t)φ(t))′ + p(t)φ(t) + Γ(1− α)r(t)(φ2(t))]

Theorem 3.4 Suppose that the conditions (A1)− (A5) and (11) hold. Furthermore

assume that there exists H ∈ R such that

lim sup
t→∞

1

H(t, t1)

∫ t

t1

[
(µc(s)q(s)− ψ(s))H(t, s)− 1

4

c(s)r(s)h2(t, s)

Γ(1− α)H(t, s)

]
ds =∞ (18)

Then every solution of (7) is oscillatory.

Proof:

Assume to the contrary that there is a nonoscillatory solution U(t) to the problem

(7). Without loss of generality we may assume that U(t) ia an eventually positive

solution of (7).

Then there exists t1 ≥ t0 such that U(t) > 0 and K(t) > 0 for t ≥ t1. We obtain

Dα
+U(t) ≥ 0 for t ≥ t1.

Now we define the Riccati substitution W(t) by

W (t) = c(t)

[
r(t)Dα

+,tU(t)

K(t)
+ r(t)φ(t)

]
(19)

Then we have

W ′(t) = c′(t)

[
r(t)Dα

+,tU(t)

K(t)
+ r(t)φ(t)

]
+ c(t)

[
r(t)Dα

+,tU(t)

K(t)
+ r(t)φ(t)

]′

=
c′(t)

c(t)
W (t) + c(t)

[
r(t)(Dα

+,tU(t))′

K(t)
−
K ′(t)r(t)Dα

+,tU(t)

K2(t)
+ (r(t)φ(t))′

]
≤ c′(t)

c(t)
W (t) + c(t)

[
(r(t)φ(t))′ − µq(t)− p(t)

r(t)

(
W (t)

c(t)
− r(t)φ(t)

)

− Γ(1− α)

r(t)

(
W (t)

c(t)
− r(t)φ(t)

)2
]

(20)

Let we see that[
W (t)

c(t)
− r(t)φ(t)

]2

=

[
W (t)

c(t)

]2

− 2
W (t)r(t)φ(t)

c(t)
+ (r(t)φ(t))2 (21)
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Substituting (16) into (15), we have

W ′(t) ≤
[
c′(t)

c(t)
− p(t)

r(t)
+ 2Γ(1− α)φ(t)

]
W (t)− Γ(1− α)

r(t)c(t)
W 2(t)+

c(t)
[
(r(t)φ(t))′ + p(t)φ(t) + Γ(1− α)r(t)φ2(t)

]
− µc(t)q(t)

≤ θ(t)W (t)− Γ(1− α)

r(t)c(t)
W 2(t) + ψ(t)− µc(t)q(t)

Multiplying both sides by H(t, s) and integrating from t1 to t, we get∫ t

t1

(µc(s)q(s)− ψ(s))H(t, s)ds ≤ −
∫ t

t1

W ′(s)H(t, s)ds+

∫ t

t1

θ(s)W (s)H(t, s)ds

−
∫ t

t1

Γ(1− α)

r(s)c(s)
W 2(s)H(t, s)ds (22)

Using the integration by parts formula, we get

−
∫ t

t1

W ′(s)H(t, s)ds = −[H(t, s)W (s)]tt1 +

∫ t

t1

H ′s(t, s)W (s)ds

< −H(t, t1)W (t1) +

∫ t

t1

H ′s(t, s)W (s)ds

Substituting (18) into (17), we have∫ t

t1

(µc(s)q(s)− ψ(s))H(t, s)ds

≤ H(t, t1)W (t1) +

∫ t

t1

[
[H ′s(t, s) + θ(s)H(t, s)]W (s)− Γ(1− α)H(t, s)

r(s)c(s)
W 2(s)

]
ds

≤ H(t, t1)W (t1) +

∫ t

t1

[
h(t, s)W (s)− Γ(1− α)H(t, s)

r(s)c(s)
W 2(s)

]
ds

≤ H(t, t1)W (t1)+

∫ t

t1

[√
Γ(1− α)H(t, s)

c(s)r(s)
W (s)− 1

2

√
r(s)c(s)

Γ(1− α)H(t, s)
h(t, s)

]2

ds+

1

4

∫ t

t1

r(s)c(s)h2(t, s)

Γ(1− α)H(t, s)
ds
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≤ H(t, t1)W (t1) +
1

4

∫ t

t1

r(s)c(s)h2(t, s)

Γ(1− α)H(t, s)
ds,

Which yields∫ t

t1

[
(µc(s)q(s)− ψ(s))H(t, s)− 1

4

r(s)c(s)h2(t, s)

Γ(1− α)H(t, s)

]
ds ≤ H(t, t1)W (t1).

Since 0 < H(t, s) ≤ H(t, t1) for t > s ≤ t1,

we have 0 <
H(t, s)

H(t, t1)
≤ 1 for t > s ≤ t1.

Hence

1

H(t, t1)

∫ t

t1

[
(µc(s)q(s)− ψ(s))H(t, s)− 1

4

r(s)c(s)h2(t, s)

Γ(1− α)H(t, s)

]
ds ≤ W (t1).

Letting t→∞, we have

lim sup
t→∞

1

H(t, t1)

∫ t

t1

[
(µc(s)q(s)− ψ(s))H(t, s)− 1

4

r(s)c(s)h2(t, s)

Γ(1− α)H(t, s)

]
ds ≤ W (t1).

which contradicts (13) and complete the proof.

In Theorem 3.4, if we choose H(t, s) = (t−s)λ, t ≥ s ≥ t1, where λ > 1 is a constant,

then we obtain the following corollaries.

Corollary 3.5 Under the conditions of Theorem 3.4, if

lim sup
t→∞

1

(t− t1)λ

∫ t

t1

[
(µc(s)q(s)− ψ(s))(t− s)λ − 1

4

c(s)r(s)((t− s)θ(s)− λ)

Γ(1− α)(t− s)

]
ds <∞

(23)

Then every solution of (7) is oscillatory.

4 Conclusion

In this paper, we establish some new oscillation criteria for certain class of

fractional partial differential equations with damping. In future work, the obtained

results will be extended to a higher order.
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