Vertices Belonging to All Critical Independent Sets of a
Graph

Vadim E. Levit
Ariel University Center of Samaria, Israel
levitv@ariel.ac.il

Eugen Mandrescu
Holon Institute of Technology, Israel
eugen_m@hit.ac.il

Abstract

Let \(G = (V, E) \) be a graph. A set \(S \subseteq V \) is independent if no two vertices from \(S \) are adjacent, and by \(\text{Ind}(G) = \Omega(G) \) we mean the set of all (maximum) independent sets of \(G \), while \(\text{core}(G) = \cap \{S : S \in \Omega(G)\} \). [13]. The neighborhood of \(A \subseteq V \) is \(N(A) = \{v \in V : N(v) \cap A \neq \emptyset\} \). The independence number \(\alpha(G) \) is the cardinality of each \(S \in \Omega(G) \), and \(\mu(G) \) is the size of a maximum matching of \(G \).

The number \(\text{id}_c(G) = \max\{|I| - |N(I)| : I \in \text{Ind}(G)\} \) is called the critical independence difference of \(G \), and \(A \in \text{Ind}(G) \) is critical if \(|A| - |N(A)| = \text{id}_c(G) \). [22]. We define \(\text{ker}(G) = \cap \{S : S \text{ is a critical independent set}\} \).

In this paper we prove that if a graph \(G \) is non-quasi-regularizable (i.e., there exists some \(A \in \text{Ind}(G) \), such that \(|A| > |N(A)| \)), then:

• \(\text{ker}(G) \subseteq \text{core}(G) \)
• \(|\text{ker}(G)| > \text{id}_c(G) \geq \alpha(G) - \mu(G) \geq 1 \).

Keywords: independent set, critical set, critical difference, maximum matching

1 Introduction

Throughout this paper \(G = (V, E) \) is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set \(V = V(G) \) and edge set \(E = E(G) \). We consider only graphs without isolated vertices.

If \(X \subseteq V \), then \(G[X] \) is the subgraph of \(G \) spanned by \(X \). By \(G - W \) we mean either the subgraph \(G[V - W] \), if \(W \subseteq V(G) \), or the partial subgraph \(H = (V, E - W) \) of \(G \), for \(W \subseteq E(G) \). In either case, we use \(G - w \), whenever \(W = \{w\} \). If \(X, Y \subset V \) are non-empty and disjoint, then we denote \((X, Y) = \{xy : xy \in E, x \in X, y \in Y\} \).

The neighborhood of a vertex \(v \in V \) is the set \(N(v) = \{w : w \in V \text{ and } vw \in E\} \), while the closed neighborhood of \(v \in V \) is \(N[v] = N(v) \cup \{v\} \); in order to avoid ambiguity, we use also \(N_G(v) \) instead of \(N(v) \). In particular, if \(|N(v)| = 1 \), then \(v \) is a pendant vertex.
of G, and $\text{pend}(G) = \{v \in V(G) : v$ is a pendant vertex in $G\}$. The neighborhood of $A \subseteq V$ is denoted by $N(A) = N_G(A) = \{v \in V : N(v) \cap A \neq \emptyset\}$, and $N[A] = N(A) \cup A$.

A set $S \subseteq V(G)$ is independent if no two vertices from S are adjacent, and by $\text{Ind}(G)$ we mean the set of all the independent sets of G. An independent set of maximum size will be referred to as a maximum independent set of G, and the independence number of G is $\alpha(G) = \max\{|S| : S \in \text{Ind}(G)\}$. A graph G is quasi-regularizable if one can replace each edge of G with a non-negative integer number of parallel copies, so as to obtain a regular multigraph of degree ≥ 0, [2]. For instance, $K_4 - e, e \in E(K_4)$, is quasi-regularizable, while P_3 is not quasi-regularizable. It is clear that a quasi-regularizable graph can not have isolated vertices.

Theorem 1.1 For a graph G the following assertions are equivalent:

(i) quasi-regularizable;

(ii) $|S| \leq |N(S)|$ holds for every $S \in \text{Ind}(G)$;

(iii) G has a perfect 2-matching, i.e., G contains a system of vertex-disjoint odd cycles and edges covering all its vertices.

Let $\Omega(G) = \{S : S$ is a maximum independent set of $G\}$ and $\xi(G) = |\text{core}(G)|$, where $\text{core}(G) = \cap \{S : S \in \Omega(G)\}$, [13].

Similarly, let $\text{corona}(G) = \cup \{S : S \in \Omega(G)\}$, and $\zeta(G) = |\text{corona}(G)|$, [9].

A matching is a set of non-incident edges of G; a matching of maximum cardinality $\mu(G)$ is a maximum matching, and a perfect matching is a matching covering all the vertices of G.

In the sequel we need the following characterization of a maximum independent set of a graph, due to Berge.

Theorem 1.2 [2] An independent set S belongs to $\Omega(G)$ if and only if every independent set A of G, disjoint from S, can be matched into S.

G is called a König-Egerváry graph provided $\alpha(G) + \mu(G) = |V(G)|$ [8, 20]. It is known that each bipartite graph satisfies this property.

Theorem 1.3 [12] If G is a König-Egerváry graph, M is a maximum matching, then M matches $V(G) - S$ into S, for every $S \in \Omega(G)$, and $\mu(G) = |V(G) - S|$.

In Boros et al. [8] it has been proved that if G is connected and $\alpha(G) > \mu(G)$, then $\xi(G) = |\text{core}(G)| > \alpha(G) - \mu(G)$. This strengthened the following finding stated in [13]: if $\alpha(G) > (|V(G)| + k - 1)/2$, then $\xi(G) \geq k + 1$; moreover, $\xi(G) \geq k + 2$ is valid, whenever $|V(G)| + k - 1$ is an even number. For $k = 1$, the previous inequality provides us with a generalization of a result of Hammer et al. [8] claiming that if a graph G has $\alpha(G) > |V(G)|/2$, then $\xi(G) \geq 1$. In [12] it was shown that if G is a connected bipartite graph with $|V(G)| \geq 2$, then $\xi(G) \neq 1$. Jamison [9], Zito [29], and Gunther et al. [7] proved independently that $\xi(G) \neq 1$ is true for any tree T.

In Chlebík et al. [5] it has been found that if there is some $S \in \text{Ind}(G)$, such that $|S| > |N(S)|$, then $|\text{core}(G)| > \max\{|I| - |N(I)| : I \in \text{Ind}(G)\}$. It strengthens the inequality $|\text{core}(G)| > \alpha(G) - \mu(G)$ [8], since $\max\{|I| - |N(I)| : I \in \text{Ind}(G)\} \geq \alpha(G) - \mu(G)$ [17, 19].
The number \(d(X) = |X| - |N(X)| \) is called the difference of the set \(X \subseteq V(G) \), and
\(d_c(G) = \max\{d(X) : X \subseteq V(G)\} \) is the critical difference of \(G \). A set \(U \subseteq V(G) \) is critical if \(d(U) = d_c(G) \) \[22\]. The number \(id_c(G) = \max\{d(I) : I \in \text{Ind}(G)\} \) is called the critical independence difference of \(G \). If \(A \subseteq V(G) \) is independent and \(d(A) = id_c(G) \), then \(A \) is called critical independent \[22\].

For a graph \(G \) let us denote \(\ker(G) = \cap \{S : S \text{ is a critical independent set} \} \) and \(\varepsilon(G) = |\ker(G)| \).

For instance, the graph \(G_1 \) in Figure 1 has \(\ker(G_1) = \text{core}(G_1) = \{a, b\} \). The graph \(G_2 \) from Figure 1 has \(X = \{x, y, z, p, q\} \) as a critical non-independent set, because
\(d(X) = 1 = d_c(G_2) \), while \(\ker(G_2) = \{x, y\} \subset \text{core}(G_2) = \{x, y, z\} \). The graph \(G_3 \) from Figure 1 has \(\{t, u, v\} \) as a critical set, \(\ker(G_3) = \{u, v\} \), while \(\text{core}(G_3) = \{t, u, v, w\} \) is not a critical set.

![Figure 1: Non-quasi-regularizable graphs.](image)

Clearly, \(d_c(G) \geq id_c(G) \) is true for every graph \(G \).

Theorem 1.4 \[22\] The equality \(d_c(G) = id_c(G) \) holds for every graph \(G \).

If \(A \in \Omega(G[N[A]]) \), then \(A \) is called a local maximum independent set of \(G \) \[14\].

It is easy to see that all pendant vertices are included in every maximum critical independent set. It is known that the problem of finding a critical independent set is polynomially solvable \[11, 22\].

Theorem 1.5
(i) \[18\] Each local maximum independent set is included in a maximum independent set.
(ii) \[17\] Every critical independent set is a local maximum independent set.
(iii) \[4\] Each critical independent set is contained in some maximum independent set.
(iv) \[10\] There is a matching from \(N(S) \) into \(S \), for every critical independent set \(S \).

In this paper we prove that \(\ker(G) \subseteq \text{core}(G) \) and \(\varepsilon(G) \geq d_c(G) \geq \alpha(G) - \mu(G) \) hold for every graph \(G \).

2 Results

Theorem 2.1 Let \(A \) be a critical independent set of the graph \(G \) and \(X = A \cup N(A) \).
Then the following assertions are true:
(i) \(H = G[X] \) is a König-Egerváry graph;
(ii) \(\alpha(G[V - X]) \leq \mu(G[V - X]) \);
(iii) \(\mu(G[X]) + \mu(G[V - X]) = \mu(G) \); in particular, each maximum matching of \(G[X] \) can be enlarged to a maximum matching of \(G \).
Proof. (i) By Theorem 1.5(ii), A is a local maximum independent set, which ensures that $\alpha(H) = |A|$, while Theorem 1.5(iv) implies $\mu(H) = |N(A)|$. Consequently, we get that

$$\alpha(H) + \mu(H) = |A \cup N(A)| = |X| = |V(H)|,$$

i.e., H is a König-Egerváry graph.

(ii) According to Theorem 1.5(iii), there exists a maximum independent set S such that $A \subseteq S$. Suppose that $|B| > |N(B)|$ holds for some $B \subseteq S \setminus A$. Then, it follows that

$$|A| - |N(A)| < (|A| - |N(A)|) + (|B| - |N(B)|) \leq |A \cup B| - |N(A \cup B)|,$$

which contradicts the hypothesis on A, namely, the fact that $|A| - |N(A)| = d_e(G)$. Hence $|B| \leq |N(B)|$ is true for every $B \subseteq S \setminus A$. Consequently, by Hall’s Theorem there exists a matching from $S \setminus A$ into $V \setminus S \setminus N(A)$ that implies $|S \setminus A| \leq \mu(G[V \setminus X])$.

It remains to show that $\alpha(G[V \setminus X]) = |S \setminus A|$. By way of contradiction, assume that

$$\alpha(G[V \setminus X]) = |D| > |S \setminus A|$$

for some independent set $D \subseteq V \setminus X$. Since $D \cap N[A] = \emptyset$, the set $A \cup D$ is independent, and

$$|A \cup D| = |A| + |D| > |A| + |S \setminus A| = \alpha(G),$$

which is impossible.

(iii) Let M_1 be a maximum matching of H and M_2 be a maximum matching of $G[V \setminus X]$. We claim that $M_1 \cup M_2$ is a maximum matching of G.

![Figure 2: $S \in \Omega(G)$ and A is a critical independent set of G.](image)

The only edges that may enlarge $M_1 \cup M_2$ belong to the set $(N(A), V \setminus S \setminus N(A))$. The matching M_1 covers all the vertices of $N(A)$ in accordance with Theorem 1.3 and part (i). Therefore, to choose an edge from the set $(N(A), V \setminus S \setminus N(A))$ means to loose an edge from M_1. In other words, no matching different from $M_1 \cup M_2$ may overstep $|M_1 \cup M_2|$.

Consequently, each maximum matching of $G[X]$ can find its counterpart in $G[V \setminus X]$ in order to build a maximum matching of G. ■

Theorem 2.1 allows us to give an alternative proof of the following inequality due to Lorentzen.
Theorem 2.4
For a graph G

In addition, \(\text{core}(N) \)

Proof. Let $A, B \subseteq V(G)$, we get $\alpha(G[V-X]) - \mu(G[V-X]) \leq 0$. Hence it follows that $\alpha(G[X]) - \mu(G[X]) \geq (\alpha(G[X]) + \alpha(G[V-X])) - (\mu(G[X]) + \mu(G[V-X])).$

Theorem 2.4(iii) claims that $\mu(G[X]) + \mu(G[V-X]) = \mu(G)$.

Since A is a critical independent set, there exists some $S \in \Omega(G)$ such that $A \subseteq S$, and $\alpha(G[X]) = |A|$, by Theorem 2.4(i). Hence we have

$$\alpha(G[X]) + \alpha(G[V-X]) = |A| + |S - A| = \alpha(G).$$

In addition, Theorem 2.4(i) and Theorem 1.3 imply that $\mu(G[X]) = |N(A)|$.

Finally, we obtain

$$d_e(G) = \max \{|I| : I \in \text{Ind}(G)| = |A| - |N(A)| =$$

$$= \alpha(G[X]) - \mu(G[X]) \geq \alpha(G) - \mu(G),$$

and this completes the proof. ■

Applying Theorem 2.4 and Theorem 1.3 we get the following.

Corollary 2.3 [17] Let J be a maximum critical independent set of G, and $X = J \cup N(J)$. Then the following assertions are true:

(i) $\alpha(G) = \alpha(G[X]) + \alpha(G[V-X])$;

(ii) $\alpha(G) = \alpha_e(G) + \alpha(G[V-X])$;

(iii) $G[X]$ is a König-Egerváry graph.

The graph G from Figure 3 has $\ker(G) = \{a, b, c\}$. Notice that $\ker(G) \subseteq \text{core}(G)$; $S = \{a, b, c, v\}$ is a largest critical independent set, and neither $S \subseteq \text{core}(G)$ nor $\text{core}(G) \subseteq S$. In addition, $\text{core}(G)$ is not a critical independent set of G.

Figure 3: G is a non-quasi-regularizable graph with $\text{core}(G) = \{a, b, c, u\}$.

Theorem 2.4 For a graph $G = (V, E)$ of order n, the following assertions are true:

(i) the function d is supermodular, i.e., $d(A \cup B) + d(A \cap B) \geq d(A) + d(B)$ for every $A, B \subseteq V(G)$;

(ii) if A and B are critical in G, then $A \cup B$ and $A \cap B$ are critical as well;

(iii) $\ker(G) = \cap \{B : B$ is a critical set of $G\}$.

5
Proof. (i) Let us notice that \(N(A \cup B) = N(A) \cup N(B) \) and \(N(A \cap B) \subseteq N(A) \cap N(B) \). Further, we obtain
\[
d(A \cup B) = |A \cup B| - |N(A \cup B)| = |A \cup B| - |N(A) \cup N(B)| =
\]
\[
= |A| + |B| - |A \cap B| - |N(A)| - |N(B)| + |N(A) \cap N(B)| =
\]
\[
= (|A| - |N(A)|) + (|B| - |N(B)|) + |N(A) \cap N(B)| - |A \cap B| =
\]
\[
= d(A) + d(B) - (|A \cap B| - |N(A \cap B)|) + |N(A) \cap N(B)| - |A \cap B| =
\]
\[
= d(A) + d(B) - |A \cap B| + |N(A) \cap N(B)| - |N(A \cap B)| \geq
\]
\[
\geq d(A) + d(B) - d(A \cap B).
\]

(ii) By part (i), we have that
\[
d(A \cup B) + d(A \cap B) \geq d(A) + d(B) = 2d_c(G).
\]
Consequently, we get that \(d(A \cup B) = d(A \cap B) = d_c(G) \), i.e., both \(A \cup B \) and \(A \cap B \) are critical sets.

(iii) Let \(\Gamma_{c_i} \) be the family of all critical independent sets of \(G \), while \(\Gamma_c \) denotes the family \(\{B : B \text{ is a critical set in } G\} \).

By part (ii), both sets
\[
\ker(G) = \cap \{S : S \in \Gamma_{c_i}\} \text{ and } Q_c = \cap \{B : B \in \Gamma_c\}
\]
are critical. Theorem 1.4 implies that \(\Gamma_{c_i} \subseteq \Gamma_c \), and therefore, \(Q_c \subseteq \ker(G) \). On the other hand, \(Q_c \) is independent, because by Theorem 1.4, one of the critical sets from \(\Gamma_c \) is independent. Consequently, we obtain \(\ker(G) \subseteq Q_c \), and this completes the proof. ■

Theorem 2.5 For a graph \(G = (V, E) \) of order \(n \), the following assertions are true:
(i) \(V \supseteq \text{corona}(G) \supseteq S \supseteq \text{core}(G) \supseteq \ker(G) \), for every \(S \in \Omega(G) \);
(ii) \(n \geq \xi(G) \geq \alpha(G) \geq \xi(G) \geq \varepsilon(G) \geq d_c(G) \geq \alpha(G) - \mu(G) \);
(iii) \(\xi(G) \geq \alpha(G) - \mu(G) + \varepsilon(G) - d_c(G) \).

Proof. (i) Clearly, \(\text{core}(G) \subseteq S \subseteq \text{corona}(G) \subseteq V \) hold for each \(S \in \Omega(G) \). The set \(\ker(G) \) is independent by definition. According to Theorem 2.4(ii), \(\ker(G) \) is critical. Consequently, by Theorem 2.4(iv), there exists a matching \(M_L \) from \(N(\ker(G)) \) into \(\ker(G) \). Figure 4 will accompany us all the way to the end of the proof.

Let \(S \in \Omega(G) \), and \(A_1 = \ker(G) \cap S \). Since \(\ker(G) - A_1 \) is stable and disjoint from \(S \), Theorem 2.2 ensures that there is a matching \(M_B \) from \(\ker(G) - A_1 \) into \(S \), covering some subset \(A_2 \) of \(S - A_1 \). Let \(S \in \Omega(G) \), and \(A_1 = \ker(G) \cap S \). Since \(\ker(G) - A_1 \) is stable and disjoint from \(S \), Theorem 2.2 ensures that there is a matching \(M_B \) from \(\ker(G) - A_1 \) into \(S \), covering some subset \(A_2 \) of \(S - A_1 \). Clearly, we have
\[
|\ker(G) - A_1| = |A_2|, A_1 \cap A_2 = \emptyset, \text{ and } A_2 \subseteq N(\ker(G) - A_1) \cap S.
\]

Assume that there is some \(v \in (N(\ker(G) - A_1) \cap S) - A_2 \). The vertex \(v \) must be matched with some vertex from \(\ker(G) - A_1 \) by \(M_L \), because \(\{v\} \cup A_1 \subseteq S \). Hence \(M_L \) matches the set \(N(\ker(G) - A_1) \cap S \) into \(\ker(G) - A_1 \), which is impossible, since
\[
|N(\ker(G) - A_1) \cap S| \geq |\{v\} \cup A_2| > |A_2| = |\ker(G) - A_1|.
\]
Corollary 2.7

If \(G \) is a non-quasi-regularizable graph, then

\(n \geq \zeta (G) \geq \alpha (G) \geq \xi (G) \geq \varepsilon (G) \geq d_c(G) \geq \alpha (G) - \mu (G) \geq 1; \)

\(\xi (G) > \alpha (G) - \mu (G) + \varepsilon (G) - d_c(G). \)

Proof. According to Theorem 2.4, \(G \) is non-quasi-regularizable if and only if \(\ker(G) \neq \emptyset \), i.e., \(|\ker(G)| \geq 2 \). The fact that \(G \) has no isolated vertices implies \(N(\ker(G)) \neq \emptyset \), and consequently, it follows \(\varepsilon (G) = |\ker(G)| > |\ker(G)| - |N(\ker(G))| = d_c(G) \). Further, using Theorem 2.5 we get both \((i)\) and \((ii)\).

Corollary 2.7 \[7 \] If there is some \(S \in \text{Ind}(G) \) with \(|S| > |N(S)| \), then \(\xi (G) > d_c(G) \).

Figure 4: \(S \in \Omega(G) \), \(\ker(G) \), and \(A_1 = S \cap \ker(G) \).

Consequently, we get that \(N(\ker(G) - A_1) \cap S = A_2. \) Thus \(M_L \) matches the set \(N(\ker(G) - A_1) \cap S \) onto \(\ker(G) - A_1 \), and \(N(A_1) \) into \(A_1 \). Clearly, we have

\[|\ker(G) - A_1| = |A_2|, \ A_1 \cap A_2 = \emptyset, \text{ and } A_2 \subseteq N(\ker(G) - A_1) \cap S. \]

Assume that there is some \(v \in (N(\ker(G) - A_1) \cap S) - A_2 \). The vertex \(v \) must be matched with some vertex from \(\ker(G) - A_1 \) by \(M_L \), because \(\{v\} \cup A_1 \subseteq S \). Hence \(M_L \) matches the set \(N(\ker(G) - A_1) \cap S \) into \(\ker(G) - A_1 \), which is impossible, since

\[|N(\ker(G) - A_1) \cap S| \geq |\{v\} \cup A_2| > |A_2| = |\ker(G) - A_1|. \]

Consequently, we get that \(N(\ker(G) - A_1) \cap S = A_2. \) Thus \(M_L \) matches the set \(N(\ker(G) - A_1) \cap S \) onto \(\ker(G) - A_1 \), and \(N(A_1) \) into \(A_1 \).

In conclusion, we may assert that \(|\ker(G)| - |N(\ker(G))| = |A_1| - |N(A_1)| \). Hence, we infer that \(\ker(G) - A_1 = \emptyset \), otherwise we have that \(A_1 \) is a critical independent set of \(G \) with \(|A_1| < |\ker(G)| \), in contradiction with the hypothesis on minimality of \(\ker(G) \).

This ensures that \(\ker(G) \subseteq S \) for every \(S \in \Omega(G) \), which means that \(\ker(G) \subseteq \text{core}(G) \).

\((ii)\) Using part \((i)\), Theorem 2.4\((iii)\), and Corollary 2.2, we deduce that

\[n \geq \zeta (G) \geq \alpha (G) \geq \xi (G) \geq \varepsilon (G) = |\ker(G)| \geq |\ker(G)| - |N(\ker(G))| = d_c(G) \geq \alpha (G) - \mu (G), \]

which completes the proof.

\((iii)\) It follows immediately from part \((ii)\). ■

Notice that \(\xi (K_{2,3}) = \varepsilon (K_{2,3}) > d_c(K_{2,3}) = 1 = \alpha (K_{2,3}) - \mu (K_{2,3}) \), while the graph \(G_2 \) is from Figure 4 satisfies \(\xi (G_2) > \varepsilon (G_2) > d(G_2) = 1. \)

Corollary 2.6 If \(d_c(G) > 0 \) or, equivalently, \(G \) is a non-quasi-regularizable graph, then

\((i)\) \(n \geq \zeta (G) \geq \alpha (G) \geq \xi (G) \geq \varepsilon (G) \geq d_c(G) \geq \alpha (G) - \mu (G) \geq 1; \)

\((ii)\) \(\xi (G) > \alpha (G) - \mu (G) + \varepsilon (G) - d_c(G). \)

Proof. According to Theorem 2.4, \(G \) is non-quasi-regularizable if and only if \(\ker(G) \neq \emptyset \), i.e., \(|\ker(G)| \geq 2 \). The fact that \(G \) has no isolated vertices implies \(N(\ker(G)) \neq \emptyset \), and consequently, it follows \(\varepsilon (G) = |\ker(G)| > |\ker(G)| - |N(\ker(G))| = d_c(G) \). Further, using Theorem 2.5 we get both \((i)\) and \((ii)\). ■
3 Conclusions

Writing this paper we have been motivated by the inequality

\[\xi(G) = |\text{core}(G)| > \alpha(G) - \mu(G), \]

which is true for every graph \(G \) without isolated vertices, such that \(\alpha(G) > \mu(G) \) [3].

What we have found is that there exists a subset of \(\text{core}(G) \), which is a real obstacle to its nonemptiness. The cardinality of this subset, namely, \(\varepsilon(G) = |\text{ker}(G)| \) stands out above \(\alpha(G) - \mu(G) \) on its own.

The problem of whether there are vertices in a given graph \(G \) belonging to \(\text{core}(G) \) is \(\text{NP} \)-hard [3]. On the other hand, it has been noticed that for some families of graphs \(\text{core}(G) \) may be computed in polynomial time.

We conclude with the following question.

Problem 3.1 Is it true that for any fixed positive integer \(k \), to decide if \(\varepsilon(G) > k \) is \(\text{NP} \)-complete?

References

