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Rapid technological evolution in multislice computed tomography (CT) over the last decade with 
improved spatial and temporal resolution has enabled cardiac CT to become a viable and effective 
alternative in the diagnosis of coronary artery disease. Within recent years CT coronary 
angiography has demonstrated high sensitivity and specificity, and in particular a very high 
negative-predictive value, making it a valuable imaging modality for ruling out suspected coronary 
artery disease. In addition, CT angiography demonstrates accuracy in the detection and 
characterization of coronary plaques, and it has been reported to play an important role in 
predicting disease progression and cardiac events. The goal of this article is to provide an overview 
on the role and current clinical applications of cardiac CT in the evaluation of coronary artery 
disease. Emerging areas of cardiac CT, including dual-energy CT and CT myocardial perfusion 
are also discussed, as well as the limitations and future directions of cardiac CT.
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However, most recent advances in CT tech-
nology, including larger detector coverage and 
the availability of two generations of dual-source 
CT (DSCT) systems combined with substantial 
research efforts focused on plaque characteriza-
tion and identification of positive remodeling 
suggest the feasibility of CT as a standalone 
modality allowing an integrative assessment of 
all aspects of coronary heart disease [23–26].

The purpose of this article is to review cur-
rent and future applications of cardiac CT in the 
evaluation of CAD.

Technical evolution
In 1984, electron-beam CT was introduced as the 
first system capable of ECG-synchronized CT 
imaging of the cardiac anatomy [27]. The rapid 
rise of cardiac CT from a research application 
to a clinically appreciated modality was mainly 
driven by the introduction of MDCT. Since 1998, 
four-slice CT systems with higher volume cover-
age speed and improved temporal resolution of 
250 ms have been clinically used for cardiac exam-
inations at low to moderate heart rates, enabling 
quantification of coronary artery calcification 
and initial evaluation of coronary artery stenosis, 
cardiac function and the ana lysis of atheroscle-
rotic plaque [28–33]. With each subsequent scanner 

Coronary artery disease (CAD) represents the 
most relevant cause of death and morbidity in 
the adult population of developed and devel-
oping countries [1,2]. During the last decades, 
strong research and financial effort has been 
made to identify more selective biomarkers 
and refine imaging technologies to better assess 
the cardiovascular risk in both primary and 
 secondary prevention [3]. 

Rapid technological advances have made com-
puted tomography (CT) a widely embraced modal-
ity in the non-invasive evaluation of CAD [4]. The 
capabilities of multidetector row CT (MDCT) to 
identify and rule out significant coronary artery 
stenosis have been consistently confirmed and 
clinically embraced as a core application of cardiac 
CT [5–13]. For comprehensive imaging of the heart, 
CT has been evaluated for the assessment of the 
myocardium, myocardial perfusion and viability, 
cardiac function, wall motion, as well as cardiac 
valves [14–20]. Nevertheless, the diagnostic value 
of cardiac CT beyond strict morphological evalu-
ation of coronary stenosis remains uncertain. It 
proved to be surprisingly difficult to predict the 
hemodynamic relevance of stenosis and further 
stratify risk by detailed plaque characterization 
strictly based on anatomical information acquired 
during CT coronary angiography [21,22].

THeMed ArTICLe y Cardiac Imaging

For reprint orders, please contact reprints@expert-reviews.com



Expert Rev. Cardiovasc. Ther. 9(1), (2011)28

Review

generation and improvement in temporal resolution, the proportion 
of successfully examined patients with non-invasive coronary CT 
angiography gradually increased [34]. The introduction of 64-slice 
CT systems in 2004 further increased temporal resolution up to 
approximately 165 ms, enabling detailed image acquisition of the 
heart with a 5–10 s scan time [35,36]. However, temporal resolution 
in patients with high heart rates and irregular heart rhythm was 
still limited, making pharmacological modulation for heart rates 
above 60–70 beats per minute (bpm) essential [37,38].

With the introduction of DSCT in 2006, a new scanner con-
cept was presented consisting of two x-ray tubes and two detectors 
mounted perpendicularly in the same gantry [39]. This configu-
ration allows full image reconstruction during quarter-rotation 
scanning as opposed to half-rotation scanning with conventional 
single-source multidetector CT systems, improving the tempo-
ral resolution to approximately 83 ms, reflecting one-quarter of 
the gantry rotation time [39,40]. With the recent introduction of 
second-generation DSCT, a ‘high-pitch single-heartbeat acquisi-
tion’ became feasible. In early reports, the ability of DSCT to 
perform ECG-triggered spiral data acquisition using very high 
pitch values (≥3.0) has been described. The application of high 
pitch values allows for an image acquisition of the entire volu-
metric data set of the heart within one cardiac cycle. As pitch is 
inversely related to radiation exposure, this scan mode is associ-
ated with approximately one-tenth of the exposure of a retro-
spectively ECG-triggered spiral scan and half to one-third of the 
dose of a prospectively ECG-triggered scan [41,42].

Motivated by the concept to completely cover the scanning vol-
ume within a single heart beat, 256- and 320-row single-source 
systems, as well as 128-row dual-source CT scanners, have been 
introduced recently [43,44]. The availability of detector arrays that 
are wide enough to cover the entire cardiac anatomy also enables 
new approaches in the assessment of cardiac function, including the 
acquisition of dynamic, time-resolved data on myocardial perfusion 
and the myocardial blood supply. These advancements may also 
reduce patient radiation and susceptibility to arrhythmia [43–45].

Furthermore, dual-energy acquisition techniques for the 
evaluation of myocardial blood supply based on static, non-
time-resolved CT coronary angiograms using DSCT are being 
investigated [46,47]. Operated in dual-energy mode, the two-tube 
configuration of DSCT enables the simultaneous acquisition of 
high and low x-ray energy spectra with a single CT scan, per-
mitting ana lysis of myocardial blood supply by determining the 
iodine (and thus blood) volume of the myocardium [46–48]. 

In addition, alternative image reconstruction approaches are 
being introduced that hold promise to realize substantial artifact 
and noise reduction, while at the same time increasing image 
sharpness, thus consequently increasing the accuracy of stenosis 
detection with coronary CT angiography, enabling a more precise 
delineation of calcified plaques and enhancing diagnostic capabili-
ties to detect restenosis in coronary artery stents. The term ‘iterative 
reconstruction’ is used for a variety of approaches that either rely on 
ray-tracing in the image to calculate synthetic projections that are 
then compared with the originally measured projections to derive 
correction terms, or translate the iteration process into the image 

domain by performing an iterative chain of locally adapted nonlin-
ear image processing steps. Although increased spatial resolution is 
directly correlated with increased image noise in standard filtered 
backprojection reconstructions as they are used in CT scanners 
today, iterative reconstruction approaches to a certain extent allow 
the decoupling of spatial resolution and image noise. In an itera-
tive reconstruction, a correction loop is introduced into the image 
reconstruction process. Iterative corrections are performed with 
further image noise reduction without degrading image sharpness, 
and involve a comparison of an initially reconstructed master image 
with a corrected image. Besides an increase in diagnostic accu-
racy, the decrease in image noise provided by iterative reconstruc-
tion allows for a significant reduction of radiation dose in routine 
clinical use while maintaining similar signal-to-noise ratios as with 
standard radiation dose acquisition protocols [49,50].

Coronary calcium scoring
Coronary calcium scoring using CT has been validated as a useful 
imaging tool for risk stratification and reclassification of the risk 
of CAD [51]. Atherosclerotic lesions of the coronary arteries often 
contain calcified components that used to be accurately mea-
sured by electron beam CT, but this method has been replaced 
by MDCT applying the Agatston scoring methodology [52,53]. 
Recent guidelines from the American Heart Association reviewed 
scientific data for cardiac multislice CT imaging of CAD and 
atherosclerosis in symptomatic and asymptomatic patients, and 
approved screening using calcium scoring as a methodology to 
reclassify risk in patients with an intermediate risk based on tradi-
tional scores such as the Framingham and Procam algorithms [54]. 
Further effort has been undertaken to correlate atherosclerosis to 
different pathological processes. One example is the Rule Out 
Myocardial Infarction Using Computer-Assisted Tomography 
(ROMICAT) trial, which sought to determine whether aortic 
valve calcification is associated with the presence and extent of 
the overall plaque burden, as well as with plaque composition. As 
a result it was suggested to consider aggressive medical therapy if 
aortic valve calcification was present [55].

Computed tomography calcium scoring is usually performed 
as a screening method in a low radiation dose scanning technique 
to detect and calculate the density, volume or mass of calcified 
plaques. The total coronary calcium burden is used for prog-
nosis and risk stratification in CAD. The underlying rationale 
is the concept that coronary artery calcification is part of the 
atherosclerotic degeneration of the arterial wall, and coronary 
atherosclerosis is the only disease associated with calcium in the 
coronary arteries [56]. Thus, measurement of the amount of cal-
cium allows for an accurate estimation of the amount of coronary 
atherosclerosis and, therefore, the risk of CAD. The total calcium 
score is calculated by adding up the volume of calcium in all 
coronary arteries by a weighting factor, dependent on the density 
of each calcified plaque. Calcium scoring is regarded as a good 
and independent predictor of cardiac events and adds incremental 
prognostic value to other risk factors [57,58]. Increasing degrees of 
coronary calcium scores predict adverse cardiovascular events and 
all-cause mortality [57,59–61].
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Patients with a normal or zero calcium score fall into the lowest 
risk category, and are thus associated with a low risk of cardiac 
events, or are considered to be clinically absent of any major athero-
sclerosis [57,60,62]. The predictive value of this methodology has 
been further supported recently. In their study, Min et al. aimed to 
identify the incidence and predictors of conversion for a normal to 
abnormal coronary artery calcium score over a period of 5 years [59]. 
They concluded that the rate of conversion to an abnormal calcium 
score was nonlinear and occurred at a low frequency before 4 years 
of follow-up, suggesting that repeat calcium scoring examinations 
should not be performed for a minimum of 4 years in individuals 
with a normal calcium score of zero [59]. However, even though a 
negative calcium score is associated with a low risk for developing 
cardiovascular events in the following 2–5 years, it may not exclude 
luminal obstructive disease, especially in patients who are young 
and present with acute coronary syndrome [63–65]. Rubinshtein 
et al. concluded that 7% of patients with acute or long-term chest 
pain who had zero calcium score at CT were found to have signifi-
cant CAD [66]. According to the literature the cumulative incidence 
of a zero or low calcium score is associated with a risk of 0.1 and 
0.7% of cardiac events with a follow-up period of 3–5 years [52]. In 
addition, thickness of reconstructed slices is important as 3.0-mm 
or thicker slice reconstructions result in missing calcified lesions 
compared with 0.5-mm slice reconstructions [58,67].

Despite the recognized limitations of this test, coronary calcium 
scoring is currently seeing renewed interest as an aid for further car-
diovascular risk stratification and risk factor management in both 
asymptomatic and symptomatic populations [51]. The technology 
is seen as an opportunity to non-invasively assess the progression 
of CAD and monitor the clinical efficacy of medical therapies by 
tracking the changing calcium score. As clinical decision making 
regarding the need for medical intervention can often be uncertain 
in asymptomatic individuals with one or more conventional risk 
factors for coronary disease, a technology such as coronary calcium 
scoring might become integral [68]. The importance of calcium 
scoring for clinical decision making was recently acknowledged by 
Polonsky et al. [69]. Their study demonstrated that adding calcium 
scoring to traditional risk factors results in a significant improve-
ment in the classification of risk for the prediction of cardiovascular 
events in an asymptomatic population sample. They concluded that 
the use of calcium scoring plus traditional risk factors substantially 
enhances the ability to classify a multiethnic cohort of asymptom-
atic persons without known cardiovascular disease into clinically 
accepted categories of risk of future cardiovascular events.

To date, asymptomatic individuals with intermediate cardiovas-
cular risk are seen as candidates for CT coronary calcium screen-
ing to allow improved risk stratification and to determine the level 
of aggressiveness of risk factor modification. In high-risk individu-
als the role of coronary calcium screening is still debated [54]. 
Further guidance can be expected with the upcoming update of 
the American College of Cardiology/American Heart Association 
recommendations. Nevertheless, additional integrating evidence 
regarding all available techniques is needed to determine the 
most practical and effective system for assessing cardiac risk to 
 optimally target and follow the effect of preventive measures.

CT coronary angiography
Over the last decade, there has been increasing interest in the 
imaging and diagnosis of CAD using multislice CT owing 
to its non-invasive nature and fast scanning technique with 
extended z-axis coverage. Early studies using four-slice and 
16-slice CT showed moderate diagnostic accuracy with pooled 
sensitivities and  specificities of 78 and 93%, and 82 and 95%, 
respectively [28,35,68,70,71]. 

With the introduction of 64-slice CT and substantial improve-
ments in spatial and temporal resolution, pooled estimates of assess-
able segments for CT coronary angiography increased to 97%, 
assessable segments were found to improve with the increase of CT 
detectors and significant difference was reached comparing 64-slice 
with four- and 16-slice scanners [71]. In the Assessment by Coronary 
Computed Tomographic Angiography of Individuals Undergoing 
Invasive Coronary Angiography (ACCURACY) prospective mul-
ticenter study of patients with chest pain without known CAD and 
intermediate disease prevalence, 64-slice CT angiography had a 
patient-based sensitivity of 94% and specificity of 83% in detect-
ing coronary stenosis of 70% or more [72]. In the Coronary Artery 
Evaluation Using 64-Row Multidetector Computed Tomography 
Angiography (CORE-64) prospective multicenter study of patients 
with suspected symptomatic CAD, 64-slice CT angiography had a 
patient-based sensitivity of 85% and specificity of 90% for detect-
ing coronary stenosis of 50% or higher [73]. However, in both stud-
ies patients with heavy coronary artery calcifications were excluded. 
Other representative studies evaluating the performance of 64-row 
CT and DSCT for detecting hemodynamically significant coro-
nary artery stenosis report sensitivities between 86 and 99%, speci-
ficities between 92 and 98%, positive-predictive values between 47 
and 91%, and most importantly negative-predictive values between 
92 and 100%, allowing a reliable non-invasive exclusion of signifi-
cant coronary artery stenosis using CT [11,21,38,74–77]. The predictive 
value of this method ology has been further supported recently. In 
their study, Min et al. aimed to investigate the prognostic value 
of CT coronary angiography for the prediction of major adverse 
cardiovascular events [78]. They concluded that the CT coronary 
angiography presentation of plaque severity and composition suc-
cessfully identifies patients at risk for major adverse cardiovascular 
events and a negative CT scan portends an extremely low risk 
for incidence of such events. Table 1 provides a further overview of 
recent literature. Nevertheless, despite the rapid advances in scan-
ner technology and image postprocessing, at times motion artifacts 
from high or irregular heart rates, excessive image noise in obese 
patients, and heavy vascular calcifications, especially with calcium 
scores above 400, result in limited diagnostic accuracy [56,79–81]. 
Further improvements in scanner technology suggest improve-
ments in image robustness, especially in high and arrhythmic heart 
rates, the ability to evaluate heavily calcified vessels, and reduced 
blooming artifacts from heavy calcification and metallic stents 
using dual-energy [82–84].

Currently, however, besides heavy calcifications of coronary 
arteries motion artifacts remain the most important challenge for 
coronary CT angiography even with the latest generation of scan-
ners making further evaluation in symptomatic yet inconclusive 
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patients necessary. In these patients additional non-invasive physi-
ologic testing including nuclear myocardial perfusion imaging 
is recommended to identify intermediate but hemodynamically 
 relevant stenosis [85].

In order to facilitate image interpretation and ensure diagnos-
tic accuracy of stenosis identification, automated computer-aided 
detection solutions have recently been introduced (Figure 1). A recent 
study investigating the performance of a computer-aided detection 
algorithm for automated detection of significant stenosis at CT 
coronary angiography reported 100% sensitivity, 65% specificity, 
76% accuracy, 100% negative-predictive value and 58% positive-
predictive value compared with invasive cardiac catheterization [86].

To further guide referring physicians and radiologists in the use 
of this examination, the issuance of guidelines and appropriate-
ness criteria by the professional societies has helped to define the 
indications for coronary CT angiography. There is consensus 
that coronary CT angiography is appropriate in symptomatic 
individuals, especially if symptoms, sex and age suggest a low-to-
intermediate probability of significant coronary artery stenosis. 
There is also consensus that coronary CT angiography to date has 

no role for general screening for coronary 
atherosclerosis in asymptomatic individu-
als with low and intermediate cardiac risk 
(class III, level of evidence C), because the 
current levels of radiation are incompatible 
with the prerequisites of a successful screen-
ing test and data on the cost–effectiveness 
of this indication are lacking [54,87–93]. 
Whether CT coronary angiography has 
incremental value for risk stratification, risk 
modification and therapeutic monitoring 
in asymptomatic high-risk individuals is a 
topic of ongoing research [94].

CT angiography of coronary artery 
bypass grafts
Invasive coronary angiography has been 
seen as the diagnostic standard for evalu-
ating the status of both arterial and venous 
coronary artery bypass graft (CABG) ves-
sels. However, CT has emerged as a promis-
ing non-invasive technique to visualize the 
coronary artery lumen and patency of the 
venous and arterial conduits. The anatomi-
cal features of arterial and vein grafts render 
these vessels specifically suitable for study 
with CT [95,96]. Because of their large size, 
relative immobility and lack of calcification, 
grafts appear ideally suited for evaluation 
compared with native coronary arteries [97]. 
While this applies mostly to venous grafts, 
arterial grafts (e.g., internal mammarian 
arteries) can be more challenging to evalu-
ate due to their smaller vessel diameter and 
more frequent artifacts caused by metallic 

clips. Onuma et al. described limited evaluability of arterial grafts 
(90%) compared with venous grafts (99%) [98]. Recent studies 
comparing 16- and 64-slice CT with conventional coronary angi-
ography describe sensitivities, specificities, positive and negative-
predictive values up to 100, 95, 85 and 100%, respectively [98–100]. 
However, with sensitivities and specificities to detect significant 
stenoses as low as 83.3 and 80.2%, and up to 16% of distal run-
offs nonassessable, evaluating the distal anastomosis and run-off 
arteries still remains challenging and might limit further clini-
cal implementation [98,99,101]. Even though current data suggest 
attractive diagnostic potential in patients before or after cardiac 
surgery, the exact role of technological advances including DSCT 
in the exact evaluation of distal run-off vessels and anastomoses 
remains unclear and warrants further studies [102].

Coronary artery stents
Percutaneous coronary intervention and stent placement is a 
preferred method for minimally invasive coronary reperfusion. 
However, even with the advent of drug-eluting stents that are 
engineered to reduce the cellular proliferation that results in 

Table 1. Accuracy of 16‑slice, 64‑slice, 256‑slice, 320‑slice and dual‑
source computed tomography for the detection of coronary artery 
stenosis in comparison with invasive cardiac catheterization.

Author Patients 
(n)

Sensitivity 
(%)

Specificity 
(%)

NPV 
(%)

PPV (%) Ref.

16‑slice CT

Kuettner et al. 124 85 98 96 87 [191]

Mollet et al. 51 95 98 99 79 [192]

Hoffmann et al. 103 95 98 99 87 [193]

Achenbach et al. 50 94 96 99 69 [194]

64‑slice CT

Leschka et al. 53 94 97 99 87 [76]

Raff et al. 70 86 95 98 66 [80]

Leber et al. 59 88 97 99 [132]

Nikolaou et al. 72 86 95 97 72 [195]

256‑slice CT

Korosoglou et al. 27 86 95 90 [153]

Chao et al. 104 98.8 50 92.4 87.5 [196]

320‑slice CT

Dewey et al. 30 100 94 [197]

de Graaf et al. 64 94 95 88 98 [198]

DSCT

Leber et al. 88 94 99 81 99 [11]

Johnson et al. 35 88 98 78 99 [199]

Ropers et al. 100 92 97 68 99 [77]

Brodoefel et al. 100 91 92 75 97 [200]

CT: Computed tomography; DSCT: Dual-source computed tomography; NPV: Negative-predictive value; 
PPV: Positive-predictive value.
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neointimal hyperplasia, restenosis remains a common clinical 
problem, making early identification of crucial interest to prevent 
myocardial ischemia and improve prognosis [103]. 

Non-invasive assessment of coronary artery stent patency and 
detection of in-stent restenosis have been thoroughly investigated 
since the introduction of cardiac MDCT [104,105]. In clinical prac-
tice, stent patency is often determined by the visualization of 
contrast agent distal to the stent. However, patency can also be 
mimicked by collateral flow or retrograde filling. Conversely, the 
absence of contrast agent distal to the stent indicates severe in-
stent restenosis [105]. The biggest challenge for MDCT technol-
ogy is to overcome beam-hardening artifacts due to the stent’s 
metallic composition and partial volume artifacts. With earlier 

scanner generations lumen assessment was often not possible due 
to artifacts and sensitivities remained low [106,107]. Stent assess-
ment using 64-slice MDCT has provided further improvements; 
however, stent size, type and metallic composition still greatly 
influence diagnostic  visualization [108].

A meta-ana lysis by Hamon et al. reviewed the role of MDCT in 
15 studies including 807 patients and 1175 stents [109]. The results 
demonstrated a pooled sensitivity of 85% and a specificity of 91% 
for 64-slice CT. However, in these 15 studies 13% of stents were 
excluded from evaluation, which potentially overestimates the 
performance of MDCT, leading the authors to conclude that the 
clinical use of MDCT as an alternative to invasive catheterization 
for in-stent restenosis detection remains limited.

1 cm

Figure 1. A 52‑year‑old man with a history of hyperlipidemia. (A & B) Curved multiplanar reformation of the left anterior 
descending artery and left circumflex artery shows several calcified and noncalcified plaques and stenoses (arrows). (C) Corresponding 
3D segmentation by computer-aided detection algorithm, resulting in correct automated placement of detection markers. 
(D & E) Revealed stenoses were confirmed by invasive coronary catheterization.

Integrative computed tomographic imaging of coronary artery disease
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the assessment of myocardial and valvular function an integra-
tive part of the image interpretation for a comprehensive cardiac 
ana lysis [118,120,129].

Coronary atherosclerotic plaque imaging
Since it has been shown that contrast-enhanced CT coronary angi-
ography can sensitively detect coronary atherosclerotic plaques 
and differentiate between calcified and noncalcified athero sclerotic 
plaque components, there has been intense interest in the evalu-
ation of coronary CT angiography as a tool for risk stratification 
and for monitoring risk factors [130–132]. The underlying rationale is 
a growing understanding of the relationship between plaque com-
position and different clinical manifestations of CAD. Symptoms 
of chronic stable angina correlate well with stenotic, mainly fibro-
calcified lesions, whereas acute coronary syndrome and sudden 
cardiac death are more likely to be associated with a rupture of pre-
viously nonstenotic, mostly lipid-rich, ‘vulnerable’ plaques [133–135]. 
Thrombus formation and plaque rupture play key roles in the onset 
of acute coronary syndrome. Plaque rupture is the most frequent 
cause of acute myocardial infarction and it has been recognized 
that thin-cap fibroatheroma (TCFA) is the primary plaque type 
at the site of plaque rupture [136–138]. With the hope of guiding 
patient management, coronary artery plaque composition has 
been extensively studied using invasive imaging techniques such 
as intravascular ultrasound and, more recently, optical coherence 
tomography [139–141]. However, the complexity, associated costs, 
invasiveness and restricted availability limit a more extensive clini-
cal application of these modalities beyond specific clinical scenarios 
and research. To overcome some of these hurdles, CT coronary 
angiography, with its high temporal and spatial resolution, has 
been the subject of research to investigate the potential of an atten-
uation-based plaque detection and character ization. Studies have 
shown that CT is able to analyze coronary plaques quantitatively 
and qualitatively, especially by assessing the intraplaque density, 
and it has been shown that CT results correlate reasonably well 
with histological findings [142–147]. However, a direct comparison of 
intravascular ultrasound and multislice CT has revealed a general 
overestimation on multislice CT for quantitative measurements 
of all areas and thickness [132,148]. The formation of noncalcified 
plaque is recognized to be frequently associated with positive vas-
cular remodeling, which is detectable on CT. Noncalcified plaques 
have CT attenuation values between 7 and 152 Hounsfield units 
(HU) and can be differentiated from epi cardial fat (~-30 HU) 
and unenhanced blood (~40 HU) [130,144,146]. On the basis of 
ex vivo studies, attenuation ranges for specific plaque components 
according to their HU have been proposed and MDCT has been 
cited to be able to identify differences in plaque morphologies 
between TCFA and non-TCFA [137,149]. However, in vivo attenu-
ation measurements of coronary artery plaques are complicated 
by the small size and irregular shapes of target lesions resulting in 
substantial volume averaging, by substantial overlap in attenuation 
values of fibrous and lipid-rich plaques, and perturbing influences 
of contrast attenuation in the adjacent coronary lumen limiting a 
reliable differentiation beyond a characterization of calcified from 
noncalcified plaque components [150]. Because of increasing interest 

To date, there are only a few studies investigating the role of 
advanced scanner generations for the evaluation of stent patency. 
In their study Pugliese et al. showed a sensitivity, specificity, pos-
itive-predictive value and negative-predictive value of DSCT of 
94, 92, 77 and 98%, respectively [110]. However, performance of 
DSCT is hampered by frequent false-positive findings in smaller 
stents (≤2.75 mm). Furthermore, Oncel et al. demonstrated sen-
sitivity, specificity and positive and negative-predictive values of 
DSCT in the detection of in-stent restenosis or occlusion of 100, 
94, 89 and 100%, respectively [111]. In their population only two 
out of 48 stents (4.2%) were misclassified as stenotic and later 
proven patent at conventional catheterization. Initial results with 
320-slice CT show that CT angiography allows accurate non-
invasive assessment of significant in-stent restenosis with sensitiv-
ity, specificity, positive and negative-predictive values of 100, 81, 
58 and 100%, respectively, on a patient basis [9]. Besides quite 
promising results using newest scanner generations, the diag-
nostic performance of CT is mainly influenced by stent type, 
stent diameter and thickness of stents struts [112]. Based on these 
results, invasive catheter angiography remains the gold standard 
for the assessment of coronary in-stent restenosis [9,112]. Further 
studies performed with newer scanner generations should focus 
on improving imaging  techniques to reduce artifacts resulting 
from the implanted stents.

New & emerging applications
Cardiac function
Left ventricular volumes and function are predictive markers of 
a variety of cardiovascular diseases, and left ventricular hypertro-
phy is an important prognostic marker in patients with or without 
CAD. In addition, patients with both CAD and depressed left ven-
tricular function are at high risk for sudden death [113–116]. While 
trans thoracic and transesophageal echocardiography are applied 
routinely and radionucleide ventriculography has been used, MRI 
has evolved into the preferred technique for the exact determination 
of cardiac function parameters [117–119]. However, with advances 
in CT scanner technology and the existence of isotropic voxels, 
image reconstruction can be performed in any desired plane [120]. 
Despite early reports about the underestimation of left ventricular 
ejection fraction, visual evaluation of wall motion abnormalities 
detected at cardiac CT showed good agreement with echocar-
diography and MRI, and further improved with current scanner 
generations [120–126].

Results obtained with modern CT scanner generations starting 
with 64-slice CT approach the accuracy of cardiac MRI, with 
a slight overestimation of end-systolic volume compared with 
MRI, resulting in a systematic underestimation of left ventricular 
ejection fraction that ranges from 1 to 7% [117,119,120,123,127,128]. 

Nevertheless, each time retrospectively ECG-gated cardiac CT 
is performed, data inherently contain image information of the 
complete cardiac cycle, which can be used to evaluate ventricu-
lar wall motion and global functional parameters for additional 
diagnostic benefit. With the introduction of modern postprocess-
ing software, intuitive ana lysis of cine images and immediate 
quantification of functional parameters can be achieved, making 
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in non-invasive atherosclerotic plaque characterization, a multi-
tude of software solutions have been developed (Figure 2) allowing 
automated plaque detection and volumetric quantification of cal-
cified and noncalcified atherosclerotic plaque components. Even 
though the accuracy and precision of these software applications 
remains largely unverified, they might have the potential to over-
come limitations such as underestimation of mixed and noncalci-
fied plaque volumes and a trend to overestimate calcified plaque 
volumes [143]. Despite promising results, the CT differentiation of 
lipid-rich content from fibrous content remains challenging due to 
considerable overlap in the attenuation values of lipid and fibrous 
tissues, leaving the identification of the truly ‘vulnerable’ plaque 
at risk of rupture a technological challenge and questioning the 
current clinical application beyond mere research [151]. 

Innovations in CT technology are promising to further enhance 
the ability of CT in the quantitative ana lysis of coronary plaques, 
but their role for a substantial improvement of coronary athero-
sclerotic plaque characterization in a clinical setting still needs to 
be evaluated in further studies [152,153].

Myocardial perfusion
Myocardial perfusion imaging (MPI) has proven to be a valuable 
methodology for assessing the physiologic significance of a steno-
sis, allowing both a reliable diagnosis and prognosis in patients 
with CAD to be made [4,22,154–156]. Pharmacologic-induced cor-
onary vaso dilation during the infusion of radionuclide tracers 
has been shown to be as accurate as exercise stress testing with 
single-photon emission tomography in diagnosing coronary dis-
ease [22]. However, sensitivity and specificity of stress testing has 
been described to be limited with accuracies ranging from 70 to 
86%, typically detecting CAD in later stages when significant 
coronary stenosis is present [157]. By contrast, the morphological 
evaluation of coronary arteries with CT coronary angiography 
and the limited ability for dynamic evaluations of the myocar-
dial contrast medium passage with multislice CT have thus far 
been proven to be unsatisfactory to assess the physiological sig-
nificance of coronary artery stenosis. Studies investigating the 
relationship between stenosis of 50% or more at CT coronary 
angiography and corresponding myocardial perfusion defects at 
nuclear imaging demonstrated a relatively weak correlation for 
detecting reversible myocardial perfusion defects with a sensitivity 
and specificity ranging between 85–95 and 53–79%, respectively 
[158–160]. Only increasing cut-off thresholds to degrees of stenosis 
of 70% or more prompted a significant increase in agreement 
between CT and nuclear studies [158,160]. On the other hand, a 
comprehensive assessment of myocardial perfusion from physi-
ologic testing and morphologic evaluation of the coronary arteries 
by means of image fusion of nuclear imaging and coronary CT 
angio graphy has been shown to provide incremental diagnostic 
value over either technique alone. Nevertheless, obtaining diag-
nostic information on coronary artery morphology and the corre-
sponding myocardial perfusion using one single modality remains 
a coveted goal [158–160]. 

Initial research efforts to perform CT myocardial perfusion 
imaging date back to the era of electron-beam CT and four-row 

Figure 2. Overview of different commercially available 
software solutions allowing dedicated plaque ana lysis and 
characterization. (A) Circulation (Siemens Healthcare, Erlangen, 
Germany); (B) Aquarius (TeraRecon, CA, USA); (C) Vitrea (Vital 
Images, MN, USA).

MDCT, which revealed acute myocardial infarctions as hypo-
attenuated myocardium in animal models [161,162]. The early 
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introduction of these observations into clinical practice showed 
91% sensitivity, 79% specificity and 83% accuracy for the CT 
detection of myocardial infarction [163]. 

However, only the introduction of the most recent techno-
logical advances suggests the feasibility of CT as a standalone 
modality for an integrative evaluation of all aspects of coro-

nary heart disease [46,47,164–168]. In their 
study George et al. compared the com-
bination of CT coronary angiography 
and rest–stress CT myocardial perfusion 
imaging to detect hemodynamically sig-
nificant stenosis, with the combination 
of rest–stress single photon emission CT 
(SPECT) and quantitative coronary angi-
ography as the reference standard using 
adenosine stress 64- and 256-row CT in 
40 patients with abnormal myocardial 
perfusion SPECT findings [23]. They 
reported 86%(79%) sensitivity, 92% 
(91%) specificity, 92% (75%) positive-
predictive value and 85% (92%) neg-
ative-predictive value on a per-patient 
(per-vessel territory) ana lysis, with an 
estimated mean effective radiation dose 
of 21.6 mSv for the combined rest and 
stress 256-row CT imaging and 16.8 mSv 
for the 64-row stress CT examinations. 
Initial studies applying DSCT in dual-
energy mode have reported good corre-
lation between CT and SPECT studies 
for detecting decreases in the myocardial 
blood supply [46,47]. Since dual-energy 
CT data can be postprocessed in differ-
ent ways it may have the potential for the 
detection of obstructive CAD and simul-
taneously provide information about the 
hemodynamic consequences of detected 
lesions on myocardial perfusion from a 
single dual-energy CT acquisition. Figure 3 
provides an example of a perfusion study 
in a patient  presenting with atypical 
chest pain.

Moreover, second-generation DSCT 
scanners might be capable of perform-
ing dynamic first-pass myocardial CT 
perfusion (Figure 4). According to ini-According to ini-
tial studies, adenosine-stress dynamic 
volume CT myocardial perfusion can 
provide comparable results to MRI for 
the differentiation between normal and 
ischemic myocardium, and for the deter-
mination of semiquantitative parameters 
of myocardial blood flow with high spe-
cificity and a low rate of false-positive 
findings [169,170]. In addition, the results 
of these studies suggest the feasibility 
of dynamic first-pass perfusion CT to 
obtain absolute quantitative parameters 
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Figure 3. A 45‑year‑old man presenting with atypical chest pain. (A) Volume-
rendering technique and (B) computed tomography (CT) coronary angiography 
illustrate a complete occlusion of the proximal left anterior descending artery (LAD; 
arrows), which was confirmed by (C) invasive coronary angiography. (D) While the 
merged gray scale image of myocardial stress-perfusion CT reveals no definite hypo-
enhancement of the left ventricular myocardium, (E) the four chamber view of 
adenosine induced stress dual-energy CT (DECT) depicts an extensive perfusion defect 
(arrows) at ventricular septum and apical portion (arrows) of the left ventricle, which is 
verified by (F) SPECT. (G) The merged grayscale image of rest perfusion CT study also 
shows normal myocardial contrast enhancement. However, rest (H) DECT and (I) 
SPECT demonstrate a partially reversible perfusion defect (arrows) in the corresponding 
LAD territory. (J) Delayed enhancement CT identifies subtle delayed hyper-
enhancement (arrows) at the left ventricular apex of the left ventricle. The apical iodine 
uptake is visualized more prominently at the iodine map of (K) DECT and confirmed by 
(L) delayed-phase MRI (arrows).
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of myocardial blood flow as a moderate 
correlation between absolute myocardial 
blood flow quantification and the upslope 
of the signal intensity over time curve 
was observed.

Further research efforts are being 
directed towards optimizing the visualiza-
tion of perfusion abnormalities. The results 
of a recent study suggest that minimum-
intensity projection and thick multiplanar 
reformation might be beneficial in the 
qualitative and quantitative evaluation of 
infarcted myocardium [171].

Myocardial viability
The identification of dysfunctional but 
viable myocardium in patients with CAD 
is of paramount clinical importance since 
viable myocardium most likely benefits 
from revascularization, whereas revascu-
larization of scar tissue will not lead to 
improvement of left ventricular function 
[172]. Myocardial viability has traditionally 
been assessed by using nuclear techniques 
[173,174]. However, the concept of delayed 
contrast enhancement has been success-
fully implemented with MRI to identify 
the location, extent and transmurality of 
myocardial infarction [175,176]. MRI delayed 
enhancement imaging reliably detects myo-
cardial scarring and is used clinically to 
detect occult infarcts, to predict functional 
recovery after revascularization therapy and 
to identify risk for future adverse cardiac 
events,  making it the clinical reference 
standard [177–181]. 

Delayed enhanced imaging using MRI 
detects accumulations of gadolinium-
based contrast material in areas of myo-
cardial necrosis after infarction [175]. In 
theory, the same principle may apply to 
cardiac CT since iodine-based intra venous 
contrast has similar kinetics as gado-
linium. It has been repeatedly shown in 
animal studies that CT can detect iodine accumulation in irre-
versibly damaged myocardium [182,183]. Furthermore, delayed-
enhancement CT has been shown to correlate well with MRI 
during the different stages of infarction, enabling the assessment 
of reperfusion during acute, subacute and chronic stages, as well 
as the accurate degree of transmurality [184–186]. In humans, 
delayed-enhancement CT and MRI also correlate well; however, 
CT system atically underestimates the true infarct size compared 
with MRI [187,188]. To date, no universal agreement on the most 
suitable protocol for delayed-enhancement CT imaging could 
be achieved as some studies indicate the highest difference in 

contrast attenuation between normal and infarcted myocardium 
occurred 5 min after intravenous contrast injection, whereas 
intervals of up to 15 min have been proposed by others as 
well as low-kilovoltage scanning protocols for better contrast 
 differentiation [182,189]. 

The clinical value of CT viability imaging alone might 
be limited by the additional amount of radiation, which is 
approximately 3.8 mSv in female and 2.8 mSv in male patients 
[190]. However, the integration into a comprehensive scanning 
protocol might allow a non-invasive patient evaluation using 
a single modality and has the potential to provide safer and 

Figure 4. Dynamic real‑time myocardial stress‑perfusion in a 50‑year‑old man 
presenting with atypical chest pain using second‑generation dual‑source 
computed tomography. (A & B) The absolute quantification of the myocardial 
perfusion and resulting computed tomography (CT) myocardial blood pool perfusion 
maps reveal hypo-perfusion (blue color, labeled with arrows) most prominent 
inferoseptally in the mid-ventricular portion of the left ventricle with decreased 
myocardial blood flow of approximately 60 ml/100 ml/min. (C & D) CT findings were 
confirmed by SPECT and (E) stress-perfusion MRI. (F) Curved multiplanar reformat 
depicting a calcified and noncalcified plaque, causing occlusion of the proximal right 
coronary artery.
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cheaper assessment with less radiation than the current rou-
tine combination of nuclear myocardial perfusion imaging and 
 conventional angiography.

Conclusion
Computed tomography has been recognized as the most valuable 
and potentially effective alternative to invasive coronary angiog-
raphy for the detection and diagnosis of CAD. Owing to its rapid 
technological development, ongoing refinements and improved 
diagnostic accuracy, current technical limitations, including the 
association of coronary CT angiography with relatively high 
levels of radiation, are increasingly being addressed. The recent 
introduction of larger detector arrays and two generations of 
DSCT scanners brought substantial improvements in temporal 
resolution. New acquisition concepts such as ‘high-pitch single-
heartbeat acquisitions’ have similar potential to reduce radia-
tion dose. It can be expected that improved technology, ongoing 
development of scan protocols and appropriate clinical studies 
will further refine the role of cardiac CT in the near future, 
widening the scope of coronary CT angiography over mere ana-
tomical assessment to a complete ana lysis of cardiac morphology, 
function, perfusion and viability. Currently, clinical applications 
seem most likely in the context of stable and acute chest pain 
to rule out coronary disease in selected subgroups of individu-
als who do not have a high pretest likelihood of disease and in 
whom a negative CT scan would replace an otherwise necessary 
invasive coronary angiogram.

With appropriate patient selection, it can be expected that car-
diac CT can not only accurately diagnose all aspects of heart 
disease, but also markedly decrease healthcare costs and reliably 
predict clinical outcomes.

Key issues

• To date, the clinically accepted diagnostic value of computed tomography (CT) coronary angiography is focused on a mere 
morphological evaluation.

• Currently, there is no single modality available to comprehensively evaluate all aspects of coronary artery disease including morphology, 
function, perfusion and viability.

• Current limitations of cardiac CT include limited temporal resolution, especially in patients with high resting heart rates and irregular 
heart rhythm, and high levels of radiation exposure.

• Ongoing innovations in scanner technology and acquisition protocols continue to improve the performance and clinical scope of cardiac 
CT, and enable substantial reductions in radiation exposure.

• Technologies and acquisition protocols are currently being investigated to combine coronary CT angiography with CT-based methods 
for the evaluation of myocardial function, perfusion and viability to allow a comprehensive assessment of all aspects of coronary artery 
disease with CT as the sole imaging modality.
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