Determining the Bioactive Constituents in *Calotropis gigantea* Leaves by GC-MS, HPLC and FTIR Techniques

S. Uthirasamy^{1*}, T. Chitra¹, A. Murugan¹, G. Manjula¹, P. Arulmanickam¹, T. Kavitha¹ and M. Thinakaran¹

DOI: 10.9734/bpi/nvbs/v1/1788C

ABSTRACT

Medicinal plants have initiated in many countries because of their contributions to health care. Calotropis gigantea is a biological ingredient with potential therapeutic qualities that belongs to the Asclepiadaceae family.Calotropis gigantea leaves have long been used to treat abdominal pain, tumours, skin problems, wounds, and insect stings.This plant's therapeutic characteristics make it an important source of a medicinal compound. Calotropis gigantean's bioactive components were studied using GC-MS, HPLC, and FTIR. Gas Chromatography-Mass Spectroscopy (GC-MS) study reveals major bioactive chemicals. Only leaves contained the chemical compounds Androstane-11,17-Dione, 3-[(Trimethylsilyl)Oxy]-, 17-[O-(Phenylmethyl)Oxime], 3.Alpha.-(Trimethylsiloxy)Cholest-5-Ene, Urs-12-EN-28-Oic acid, 3-Hydroxy-, Methyl ester, (3.BETA.)-, Pseduosarsasapogenin-5, 20-Dien Methyl Ether, Beta. Carotene, 1.Alpha.,2.Alpha.-Epoxy-1.Beta.-Methylcholesta-4,6-Dien-3-One, 3-O-Acetyl-6-Methoxy-Cycloartenol whereas the rest of the compounds were similar in plants.

Keywords: Calotropis gigantean; GC-MS analysis; HPLC and FTIR.

1. INTRODUCTION

Due to various their therapeutic diversity, herbal plants are regarded as the most important part of our natural wealth, and so have a unique place. Secondary metabolites, which are implicated in most plants' therapeutic actions, are responsible for the medicinal characteristics of these plants. As it is very effective, inexpensively available, reportedly has no side effects, and is utilised as an alternative to allopathic treatments, there has been an upsurge in demand in international trade. Herbal medications are abundant in nature and have no negative side effects. Medicinal plants have initiated in many countries because of their contributions to health care. The primary benefits of using plantbased medicines are relatively safer than synthetic alternatives, offering marked therapeutic benefits and more affordable treatment. Thus, over 50% of these modern drugs are of natural product origin and these natural products play an important role in the drug development in pharmaceutical industry. The plant has been traditional medicinal for several thousand year [1]. The knowledge medicinal plant has been accumulated in the course of many centuries based on different medicinal systems such as Avurveda, Unani, and Siddha. In India, it is reported that traditional healers use 2500 plants species 100 species plant serves as regular sources of medicine during the last decades there had been an increasing interest in the study of medicinal plants and their traditional use in different parts of the world. According to the reports of the world health organization (WHO), as many as 80% of the world's people depend on traditional medicinal for their primary health care needs, due to the considerable economic benefit in their development and use for the treatment of various disease [2]. Calotropis gigantea white commonly known as Mudar Yercum widely distributed in the Eastern and southern parts of India. It is a weed plant commonly known as giant milkweed and scientifically reported for several medicinal properties viz. Calotropis gigantea has shown enormous protective properties and

¹Research Department of Zoology, Erode Arts and Science College, Erode-09, Tamil Nadu, India. *Corresponding author: E-mail: suthirasamy@gmail.com;

Determining the Bioactive Constituents in Calotropis gigantea Leaves by GC-MS, HPLC and FTIR Techniques

provides wide treatment opportunities hence it was analyzed for anti-proliferative activity on colorectal cancer [3]. Calotropis gigantea (family Asclepiadaceae) commonly known as 'Sweta Arka' is a highly medicinal drought resistant and relatively high degree salt tolerant wild plant species of the Indian Himalayan region. Plant contain milky latex in the stem which is used as an antidote for snake poison in dried form. Whereas, dried leaves of the Calotropis plant are used as an expectorant and anti- inflammatory for the cure of paralysis and rheumatic pains [4-7]. The flowers have reported to take over analgesic activity, anti-microbial and cytotoxicactivity [8,9]. Leaves and areal parts of the plant have reported for anti-diarrheal activity and anti-bacterial activity, anti-oxidant activity [10]. The α -Amylase inhibition is considered a strategy for the treatment of disorders in carbohydrate uptake, such as diabetes, obesity, dental caries and periodontal diseases [11]. Taking this into consideration, a-Amylase inhibition, antioxidant activity, and phytochemical analysis of Nepalese originated C. gigantea (L.) Dry and were evaluated.TLC of fractions showed a compound at RF value at0.45 in toluene: chloroform: methanol with mobile phase ratio 7:2:1 respectively [12]. Calotropis gigantea is a widely used plant in the traditional medical system. However, there are no reports on its potential in cancer management. Therefore, we aimed to examine the phytochemical composition and cytotoxic activity of C. Gigantean methanolic leaf extract against three different cancer cell lines: HeLa (cervical), MCF7 (breast), and A549 (lung) [13]. Roots have reported to contain anti-pyretic activity [14]. Chitme HR et al. [15] Within a decade, there were a number of dramatic advances in analytical techniques including HPLC, FTIR and GC-MS that were powerful tools for separation, identification and structure determination of phytochemicals [16]. Plant biochemistry is epitomized the considerable diversity of organic substances that are intricate and accumulated through plants, the chemical composition of these substances, their biosynthesis turn over and metabolism in plants, their Innate circulation and their biological medicinal plants are supportive for therapeutic as well as for remedial of human diseases, since of the occurrence of phytochemical constituents [17]. The aim of this study is to determine the bioactive compounds present into the Calotropis gigantean leaves extract with the aid of HPLC, FTIR and GC-MS Techniques, which may provide an insight in its use of traditional medicine.

2. MATERIALS AND METHODS

Extraction of the Plant Material

The plant *Calotropis gigantean* leaves were collected washed with running tap water and shade dried. The leaves were crushed to coarsely powdered by a grinder. These coarse powders (25 g) were then subjected to successive extraction in 250 ml of each solvent (methanol, petroleum ether and acetone) by using Soxhlet apparatus. The collected extracts were preserved in airtight bottles at 4°C in refrigerator and then taken up for further investigations. The DMSO (Dimethyl sulfoxide) acts as dissolved solvents for these extracts.

GC MS Analysis

GC MS analysis was carried out on Shimadzu 2010 plus comprising an AOC-20i auto sampler and gas chromatography interfaced to a mass spectrometer instrument employing the following conditions: column RTX 5Ms (Column diameter is 0..32 mm, column length is 30 m, column thickness 0.50 µm), operating in electron impact mode at70 eV; Helium gas (99.999%) was used as carrier gas at a constant flow of 1.73 ml /min and an injection volume of 0.5 µl was employed (split ratio of 10:1) injector temperature 270°C; ion-source temperature 200°C. The oven temperature was programmed from40°C (isothermal for 2 min), with an increase of 8°C/min, to 150°C, then 8°C/min to 250°C, ending with a 20 min isothermal at 280°C. Mass spectra were taken at 70 eV; a scan interval of 0.5 seconds and fragments from 40 to 450 Da. Total GC running time is 51.25 min. The relative percentage amount of each component was calculated by comparing its average peak area to the total areas. Software adapted to handle mass spectra and chromatograms was aTurboMassVer 5.2.0 [18].

FTIR Spectroscopic Analysis

In the FTIR spectrophotometer analysis, the extracts were centrifuged at 3000 rpm for 10 min and filtered through Whatman No. 1 filter paper by using a high pressure vacuum pump. The sample is

diluted to 1:10 with the same solvent. The extracts were scanned in the wavelength ranging from 260-900 nm using Perkin Elmer A Spectrophotometer and the characteristic peaks were detected. FTIR analysis was performed using the Perkin Elmer Spectrophotometer system, which was used to detect the characteristic peaks in ranging from 400-4000 cm-1 and their functional groups. The peak values of the FTIR were recorded. Each and every analysis was repeated twice for the spectrum conformation.

HPLC Analysis Sample Preparation

In the sample was prepared according to the procedure. The extraction was carried out using 2 ml of fermented broth with 50 mL of 95% ethanol under 80 kHz, 45°C in an ultrasonic extraction device for 30 min, repeated twice. The extract was collected and filtered; the filtrate was dried at 50°C under reduced pressure in a rotary evaporator. The dried crude extract was dissolved in the 100 ml mobile phases. After filtering through a filter paper and a 0.45 mm membrane filter (Millipore), the extract was injected into HPLC.

HPLC Conditions

Flavonoids were analysed using an RP HPLC methods [12]. Shimadzu Corp., Kyoto, consisting of a LC-10ATVp pump, SCL 10A system controller and a variable Shimadzu SPD- 10ATVp UV VIS detector and a loop injector with a loop size of 20 μ l. The peak area was calculated by CLASS VP software. Reverse-phase chromatographic analysis was carried out in isocratic conditions using a C-18 reverse phase column (250×4.6 mm i.d., particle size 5 μ m, Luna 5 μ C-18; Phenomenex, Torrance, CA, the USA) at 25°C. The gradient elution of solvent A [water-acetic acid (25:1 v/v)] and solvent B (methanol) had a significant effect on the resolution of compounds. As a result, solvent gradients were formed, using a dual pumping system, by varying the proportion of solvent A [water-acetic acid (25:1, v/v)] to solvent B (methanol). Solvent B was increased to 50% in 4 min and subsequently increased to 80% in 10 min at a flow rate of 1.0 mL/min. The detection wavelength was 280 nm.

3. RESULT AND DISCUSSION

In the present study, the investigation of phytochemicals screening was different solvent extracts like methanol, petroleum ether and acetone in that methanol extract showed better activity, so the further test was carried out with the methanol extract. The pharmacological activities of any plant sample are due to the presence of metabolites, secondary metabolites and secretory products in it. These usually consist of phenolic compounds, alkaloids, tannins, saponins, carbohydrates, glycosides, flavonoids, steroids, etc. Most phenolic compounds such as flavonoids, glycosides, triterpenoids, flavonoids, carbohydrates and anthraquinones are found distributed throughout the plant kingdom [19].

GCMS Analysis: The studies on the active principles in the *Calotropis gigantea* leaves of Methanolic extract by GC MS analysis clearly showed the presence of various compounds. The active principles with their Retention Time (RT), Molecular Formula (MF), Molecular Weight (MW), and compound names are presented in (Tables 1 and 2).

FTIR Analysis: The FT-IR spectrum was used to identify the functional groups of the active components present in the extract based on the peak values in the region of IR radiation. When the extract was passed into the FTIR, the functional groups of the components were separated based on the ratio of its peak. The results of FTIR analysis confirmed the presence of Intermolecular hydrogen bonded OH strong with tertiary alcohol, Methylamino alkanes (Strong), Alkanes, Aromatic methane (weak) and aliphatic aldehyde which is very strong which are present in *Calotropis gigantean*.

SI. no	RT	Compound name	Molecular weight	Molecular formula
1	695	ANDROSTANE-11,17-DIONE, 3-	481	C29H43O3NSi
		[(TRIMETHYLSILYL)OXY]-, 17-[O- (PHENYLMETHYL)O		
2	695	3.ALPHA(TRIMETHYLSILOXY)CHOLEST-5-ENE	458	C30H54OSi
3	690	1-MONOLINOLEOYLGLYCEROL	498	C27H54O4Si2
-		TRIMETHYLSILYL ETHER		
4	682	9,10-SECOCHOLESTA-5,7,10(19)-TRIENE-1,3- DIOL, 25-[(TRIMETHYLSILYL)OXY]-, (3.	488	C30H52O3Si
5	670	9,12-OCTADECADIENOIC ACID, (2-PHENYL-1,3- DIOXOLAN-4-YL)METHYL ESTER, CI	442	C28H42O4
6	659	3.BETAHYDROXYGUAIA-4(15),10(14),11(13)- TRIEN-6,12-OLIDE 8-(.ALPHA.,.BETA	364	C19H24O7
7	644	PSEDUOSARSASAPOGENIN-5,20-DIEN METHYL ETHER	428	C28H44O3
8	638	DODECANEDIOIC ACID, BIS(TRIMETHYLSILYL) ESTER	374	C18H38O4Si2
9	636	9,12-OCTADECADIENOIC ACID, (2-PHENYL-1,3- DIOXOLAN-4-YL)METHYL ESTER, T	442	C28H42O4
10	631	2-TRIMETHYLSILOXY-6-HEXADECENOIC ACID, METHYL ESTER	356	C20H40O3Si
11	623	PENTACOSENOIC ACID, 2- [(TRIMETHYLSILYL)OXY]-, METHYL ESTER	482	C29H58O3Si
12	622	PENTACOSANOIC ACID, 2- [(TRIMETHYLSILYL)OXY]-, METHYL ESTER	484	C29H60O3Si
13	620	9,12,15-OCTADECATRIENOIC ACID, 2-PHENYL-	440	C28H40O4
14	611	1,3-DIOXAN-5-YL ESTER 9,12-OCTADECADIENOIC ACID, 2-PHENYL-1,3- DIOXAN-5-YL ESTER, CIS-	442	C28H42O4
15	605	Z,Z,Z-1,4,6,9-NONADECATETRAENE	260	C19H32
16	594	CIS-5,8,11-EICOSATRIENOIC ACID,	378	C23H42O2Si
17	592	TRIMETHYLSILYL ESTER BICYCLO[3.1.1]HEPTAN-ENDO-6-OL, SYN-7-	190	C7H11OBr
40	005	BROMO-	400	00011500
18 19	695 660	URS-12-EN-28-OL URS-12-EN-28-OIC ACID, 3-HYDROXY-, METHYL	426 470	C30H50O C31H50O3
19	000	ESTER, (3.BETA.)-	470	031110003
20	655	STIGMASTEROL TRIMETHYLSILYL ETHER	484	C32H56OSi
21	618	DOCOSA-8,14-DIYN-CIS-1,22-DIOL,	478	C28H54O2Si2
		BIS(TRIMETHYLSILYL) ETHER	-	
22	588	BICYCLO[10.1.0]TRIDECA-4,8-DIENE-13- CARBOXYLIC ACID (2-HYDROXY-4-NITROP	356	C20H24O4N2
23	575	3.BETAACETOXY-BISNOR-5-CHOLENAMIDE	387	C24H37O3N
24	570	URS-12-EN-28-AL	424	C30H48O
25	570	1-PROPYL-3-(PROPEN-1-YL)ADAMANTANE	218	C16H26
26	547	A-NORCHOLESTAN-2-ONE, (5.ALPHA.)-	372	C26H44O
27	546	.ALPHAAMYRIN	426	C30H50O
28	544	OLEANOLIC ACID	456	C30H48O3
29	700	PSEDUOSARSASAPOGENIN-5,20-DIEN METHYL ETHER	428	C28H44O3
30	692	BETA. CAROTENE	536	C40H56
31	689	STIGMASTERYL TOSYLATE	566	C36H54O3S
32 33	678 677	STIGMASTAN-6,22-DIEN, 3,5-DEDIHYDRO- VITAMIN A ALDEHYDE	394 284	C29H46 C20H28O
	011		- 07	02011200

Table 1. GCMS Analytical results of Calotropis gigantea

New Visions in Biological Science Vol. 1 Determining the Bioactive Constituents in Calotropis gigantea Leaves by GC-MS, HPLC and FTIR Techniques

SI.	RT	Compound name	Molecular	Molecular	
no	674		weight	formula	
34	674	26-HYDROXYCHOLESTEROL	402	C27H46O2	
35	674	CARYOPHYLLENE	204	C15H24	
36	674	KAUREN-18-OL, ACETATE, (4.BETA.)-	330	C22H34O2	
37	673	BICYCLO[7.2.0]UNDEC-4-ENE, 4,11,11-	204	C15H24	
		TRIMETHYL-8-METHYLENE-,[1R-(1R*,4Z,9S*)]			
38	668	ERGOSTA-7,22-DIEN-3-OL, ACETATE,	440	C30H48O2	
		(3.BETA.,5.ALPHA.)-			
39	664	ERGOSTA-7,22-DIEN-3-OL, (3.BETA.,22E)-	398	C28H46O	
40	663	(E,E,E)-3,7,11,15-TETRAMETHYLHEXADECA-	272	C20H32	
		1,3,6,10,14-PENTAENE			
41	660	ARACHIDONIC ACID, TRIMETHYLSILYL ESTER	376	C23H40O2Si	
42	660	26,26-DIMETHYL-5,23-ERGOSTADIEN-3.BETA	426	C30H50O	
		OL			
43	658	ALPHAFARNESENE	204	C15H24	
44	656	8(14),22-ERGOSTADIENOL ACETATE	440	C30H48O2	
45	653	7,22-ERGOSTADIENOL	398	C28H46O	
46	670	1.ALPHA.,2.ALPHAEPOXY-1.BETA	410	C28H42O2	
40	010	METHYLCHOLESTA-4,6-DIEN-3-ONE	410	020114202	
47	665	TRICYCLO[4.3.0.0(7,9)]NON-3-ENE, 2,2,5,5,8,8-	204	C15H24	
71	000	HEXAMETHYL-, (1.ALPHA.,6.BETA.,7.	207	0101124	
48	650	URS-12-EN-28-OIC ACID, 3-HYDROXY-, METHYL	470	C31H50O3	
40	050		470	03115005	
40	640	ESTER, (3.BETA.)-	202	C15H22O5	
49	040	AZULENO[5,6-C]FURAN-3(1H)-ONE,	282	01002200	
50	6 26	4,4A,5,6,7,7A,8,9-OCTAHYDRO-1,4,8-TRIHYDRO	000	045110400	
50	636	METHANOL, [6,8,9-TRIMETHYL-4-(1-	236	C15H24O2	
- 4		PROPENYL)-3-OXABICYCLO[3.3.1]NON-6-EN-1-		0.401.10.40	
51	630	BICYCLO[5.1.0]OCTAN-2-ONE, 4,6-	232	C16H24O	
		DIISOPROPYLIDENE-8,8-DIMETHYL-			
52	623	DIHYDROTACHYSTEROL	398	C28H46O	
53	623	8(14),22-ERGOSTADIENOL ACETATE	440	C30H48O2	
54	618	TETRACYCLO[6.1.0.0(2,4).0(5,7)]NONANE,	204	C15H24	
		3,3,6,6,9,9-HEXAMETHYL-, CIS,CIS,TRAN			
55	616	METHANOL, [6,8,9-TRIMETHYL-4-(2-FURYL)-3-	262	C16H22O3	
		OXABICYCLO[3.3.1]NON-6-EN-1-YL]-			
56	613	BICYCLO[7.2.0]UNDEC-4-ENE, 4,11,11-	204	C15H24	
		TRIMETHYL-8-METHYLENE-,[1R-(1R*,4Z,9S*)]			
57	611	DOCOSA-8,14-DIYN-CIS-1,22-DIOL,	478	C28H54O2Si2	
		BIS(TRIMETHYLSILYL) ETHER			
58	606	CARYOPHYLLENE	204	C15H24	
59	604	1-(3,3-DIMETHYL-BUT-1-YNYL)-2,2,3,3-	222	C14H22O2	
		TETRAMETHYLCYCLOPROPANECARBOXYLI			
60	598	TRICYCLO[4.1.0.0(2,4)]HEPTANE, 3,3,7,7-	204	C15H24	
		TETRAMETHYL-5-(2-METHYL-1-PROPENY			
61	598	ARACHIDONIC AMIDE, N-[5-HYDROXY-N-	389	C25H43O2N	
		PENTYL]-			
62	597	D-MANNITOL, 1-DECYLSULFONYL-	370	C16H34O7S	
63	719	3-O-ACETYL-6-METHOXY-CYCLOARTENOL	498	C33H54O3	
64	685	PSEDUOSARSASAPOGENIN-5,20-DIEN METHYL	428	C28H44O3	
		ETHER	-		
65	661	LUPEOL			
66	650	PSEDUOSARSASAPOGENIN-5-EN METHYL	460	C30H50O C29H48O4	
		ETHER		22011001	
67	649	CEDRAN-DIOL, 8S,14-	238	C15H26O2	
68	642	3-ISOPROPYL-6A, 10B-DIMETHYL-8-(2-OXO-2-	396	C26H36O3	
	~~~	PHENYL-ETHYL)-DODECAHYDRO-BE		52013003	

New Visions in Biological Science Vol. 1 Determining the Bioactive Constituents in Calotropis gigantea Leaves by GC-MS, HPLC and FTIR Techniques

SI.	RT	Compound name	Molecular	Molecular
no			weight	formula
69	633	1-MONOLINOLEOYLGLYCEROL	498	C27H54O4Si2
		TRIMETHYLSILYL ETHER		
70	609	URS-12-EN-28-OIC ACID, 3-HYDROXY-, METHYL	470	C31H50O3
		ESTER, (3.BETA.)-		
71	595	2-PHENANTHRENOL,	431	C25H41O3NSi
		1,2,3,4,4A,4B,5,6,8A,9,10,10A-DODECAHYDRO-		
		4A,7-DIMETHY		
72	591	1,3-BIS-T-BUTYLPEROXY-PHTHALAN	296	C16H24O5
73			387	C24H37O3N
	583	3.BETAACETOXY-BISNOR-5-CHOLENAMIDE		
74	576	9-OCTADECENOIC ACID, (2-PHENYL-1,3-	444	C28H44O4
		DIOXOLAN-4-YL)METHYL ESTER, CIS-		
75	575	ALPHAAMYRIN	426	C30H50O
76	571	TRICYCLO[4.1.0.0(2,4)]HEPTANE, 3,3,7,7-	204	C15H24
		TETRAMETHYL-5-(2-METHYL-1-PROPENY		
77	555	2,3-O-BENZAL-D-MANNOSAN	250	C13H14O5
78	540	1-HYDROXY-1,7-DIMETHYL-4-ISOPROPYL-2,7-	222	C15H26O
		CYCLODECADIENE		0.0
79	527	5-PREGNEN-3.BETA., 9.ALPHADIOL-20-ONE 3-	374	C23H34O4
13	JZI		574	020110404
		ACETATE		

## Table 2. HPLC analysis of Calotropis gigantean

PEAK	RT	AREA	HEIGHT
1	3.162	69862612	587132
2	9.683	6483142	24885
3	14.61	4473815	14367
4	24.19	5576357	260022
5	27.11	86721642	33834

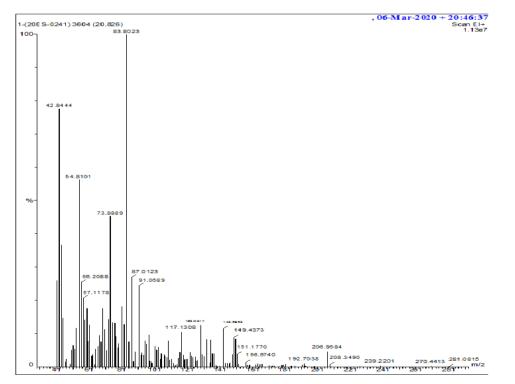



Fig. 1. GCMS Analysis of Calotropis gigantea

NO	PEAK	INTENSITY	CORR. INTENSITY	BASE(H)	BASE(L)	AREA	CORR. AREA
1	474.49	70.11	7.405	551.64	432.05	15.18	2.134
2	615.29	70.796	11.949	823.6	551.64	22.43	5.806
3	1099.43	62.058	2.908	1138	1083.99	10.178	0.465
4	1423.47	68.859	1.453	1431.18	1408.04	3.617	0.12
5	1620.21	47.907	5.717	1627.92	1570.06	13.894	0.846
6	3415.93	20.943	6.071	3444.87	2999.31	178.39	-10.195

Table 3. FTIR analysis of Calotropis gigantea

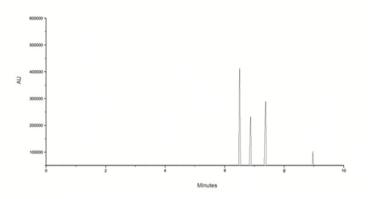



Fig. 2. HPLC Analysis of Calotropis gigantea

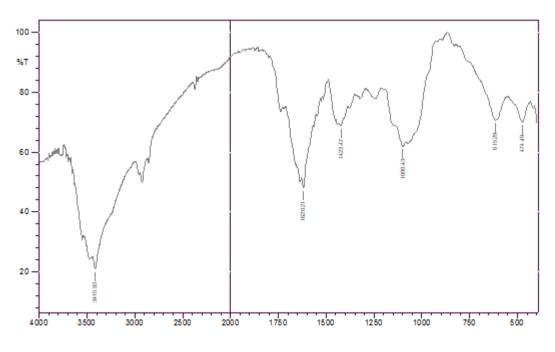



Fig. 3. FTIR analysis of Calotropis gigantea

# 4. CONCLUSION

The phytochemicals present in the methanolic extract of *Calotropis gigantea* leaves GC-MS chromatogram of methanolic extract of leaves showed nearly 79 compounds. Most of the compounds which were reported from leaves were contains Androstane-11,17-Dione, 3-[(Trimethylsilyl)Oxy]-, 17-

Determining the Bioactive Constituents in Calotropis gigantea Leaves by GC-MS, HPLC and FTIR Techniques

[O-(Phenylmethyl)Oxime], 3.Alpha.-(Trimethylsiloxy) Cholest-5-Ene, Urs-12-EN-28-Oic acid, 3-Hydroxy-, Methyl ester, (3.BETA.)-, Pseduosarsasapogenin-5, 20-Dien Methyl Ether, Beta. Carotene, 1.Alpha.,2.Alpha.-Epoxy-1.Beta.-Methylcholesta-4,6-Dien-3-One, 3-O-Acetyl-6-Methoxy-Cycloartenol. High- Performance Liquid Chromatography (HPLC) This peaks with retention times in methanolic extract is found to be 3.1, 9.6, 14.6,24.1 and 27.1 respectively Table 2. The peak impurities and peak purity is shown in Fig. 2. As per the data analysis of FTIR from using infrared spectroscopy correlation table for *Calotropis gigantea* methanolic extract, it was found that amines groups at the frequency 474.49 to 3415.93 frequency gave maximum peaks. Hence, we can conclude that the Caloptropis methanolic extract is rich in amines and C = O groups.

**Suggestion for further research:** The present study on *Calotropis gigantea* leaves proved *C. gigantea* leaves confirm the existence of various biologically active molecules with their possible functional groups. Moreover, these leaves are already in use for a wide range of treatments traditionally such as fever, indigestion, cough, cold, asthma, nausea, vomiting, diarrhea, etc. *The Calotropis gigantea* has various medicinal applications, but it is the need of the hour to explore its medicinal values at a molecular level with the help of various biotechnological tools and techniques. The present study may be an initiative for further and pharmacological investigations required to separate the novel active compounds from the leaves to formulate new drugs in order to treat incurable diseases.

# COMPETING INTERESTS

Authors have declared that no competing interests exist.

# REFERENCES

- 1. Abu-rabia A. Urinary diseases and ethnobotny among post oralnameds in the Middle East. Journal of Ethnobiology and Ethnomedicine; 2005.
- 2. Igoli JO, Igwue IC, Ioli NP. Traditional medicinal practices amongst the Igede People of Nigeria. J. Herb, Species and Medicinal Plants. 2003;10 (4):1-10.
- Sonia Angeline M, Sonali Bhattacharjee, Kikim Lotjem. Anti-proliferative activity of Calotropis gigantea (Flower Extract) on colorectal cancer cell line. Int J Life Sci Pharma Res. 2020;SP-11. Inclusive Development through Biotechnology; 2020. ISSN: 2250 – 0480.
- 4. Sharma S, Kumari A, Sharma M. Comparative GC-MS analysis of bioactive compounds in methanolic extract of Calotropis gigantea (L) WT Aiton leaf and latex. International Journal of Pharmacognosy and Phytochemical Research. 2016;8(11):1823-7.
- 5. Rajamohan S, Kalaivanan P, Sivangnanam H, Rajamanickam M. Antioxidant, Antimicrobial activities and GC-MS analysis of Calotropis gigantea white flowers. J. Phytopharmacol. 2014;3:405-9.
- 6. Rani R, Sharma D, Chaturvedi M, Yadav JP. Phytochemical analysis, antibacterial and antioxidant activity of Calotropis procera and Calotropis gigantea. The Natural Products Journal. 2019;9(1):47-60.
- Gyawali R, Bhattarai B, Bajracharya S, Bhandari S, Bhetwal P, Bogati K, Neupane S, Shrestha S, Shrestha AK, Joshi R, Paudel PN. α-amylase inhibition, antioxidant activity and phytochemical analysis of Calotropis gigantea (L.) Dryand. Journal of Health and Allied Sciences. 2020;10(1):77-81.
- 8. Kumar G, Karthik L, Bhaskara Rao KV. Antibacterial activity of aqueous extract of *Calotropis gigantean* leaves -an in vitro study. Int. J. of Pharma. Sci. Rev. and Res. 2010;4(2):141-144.
- 9. Habib MR, Karim MR. Antimicrobial and Cytotoxic Activity of Di-(2-ethylhexyl) Phthalate and Anhydrosophoradiol-3-acetate Isolated from *Calotropis gigantea*(Linn.) flower. Mycobiology. 2009;37(1):31-36.
- 10. Chitme HR, Chandra R, Kaushik S. Evaluation of antipyretic activity of *Calotropis gigantean* (Asclepiadaceae) in experimental animals. Phototherapy Research. 2005;19(5):454-456.
- 11. Manivannan R, Shopna R. Antidiabetic activity of gigantea white flower extracts in alloxan induced diabetic rats. Journal of Drug Delivery and Therapeutics. 2017;7(3):106-111.
- 12. Rajendra Gyawali, Bijay Bhattarai, Susan Bajracharya, Surakshya Bhandari, Puja Bhetwal, Kanchan Bogati, Sahana Shrestha, Ashwinee Kumar Shrestha, Shardul Neupane, Rajendra

Determining the Bioactive Constituents in Calotropis gigantea Leaves by GC-MS, HPLC and FTIR Techniques

Joshi, Prem Narayan Paudel. α- amylase inhibition, antioxidant activity and phytochemical analysis of *Calotropis gigantean* (L.) Dryand. JHAS. 2020;10(1):2020.

- 13. Damodaran B, Nagaraja P, Jain V, Manuja Viraj Wimalasiri MP, Sankolli GM, Kumar GV, et al. Phytochemical screening and evaluation of cytotoxic activity of Calotropis gigantea leaf extract on MCF7, HeLa and A549 cancer cell lines. J Nat Sc Biol Med. 2019;10:131-8.
- 14. Roberts JKM, Xia JH. High-resolution NMR methods for study of higher plants. Methods Cell Biol. 1995;49:245–258.6.
- 15. Chitme HR, Chandra R, Kaushik S. Studies on anti-diarrhoeal activity of Calotropis giganteain experimental animals. J. Pharm. Pharmaceut. Sci. 2004;7(1):70-75.
- 16. Srinivasan K, Sivasubramanian S, Kumaravel S. Phytochemical profiling and GC-MS study of Adhatoda vasica leaves. Int J Pharm Bio Sci 2013;5(1):714-720.
- 17. Azhagu Madhavan S, Vinotha P, Uma V, Mahadevi M. Anticancer activity of Pedalium murex linn methanolic leaves extract against A549 human lung cancer cell line. Asian Journal of Advances in Research. 2020;5(1): 33-40.
- 18. Harborne JB. Phytochemical Methods, A Guide to modern Techniques of Plant Analysis. Chapman and Hall London, 1973, 33-41
- 19. Weerasak Samee, Suwanna Vorarat. Simultaneous Determination of Gallic acid, Catechin, Rutin, Ellagic Acid and Quercetin in Flower Extracts of Michelia alba, Caesalpinia pulcherrima and Nelumbo nucifera by HPLC. Thai Pharm Health Sci J. 2007;2:131-137.

Biography of author(s)



#### S. Uthirasamy

Research Department of Zoology, Erode Arts and Science College, Erode-09, Tamil Nadu, India.

S.Uthirasamy is a Ph.D Research Scholar in the department of Zoology at Erode Arts and Science College (Autonomous), Erode, Tamilnadu, India. He is more interested in Research work. M.Phil Dissertation works the title of "A study on Physiochemical analysis and toxicity effect of Thevetia peruviana (pers) merr, against the filarial vector, Culex quinquefasciatus say". He published 14 papers in International Journals and 2 in National journals and acted as reviewer in Asian Journal of Advanced Research. He paper published as a book chapter in the book: Recent Research Advances in Biology (International Book). He presented Research articles in International conference and National level conferences. He awarded "Best user of Library" for the year 2016 and 2018.



#### Dr. T. Chitra Research Department of Zoology, Erode Arts and Science College, Erode-09, Tamil Nadu, India.

She is working as an Associate professor and Head of Zoology at Erode Arts and Science College(Autonomous), Erode, Tamilnadu, India. She has 24 years of teaching experience. She produced 18 M.Phil., 3 Ph.D., and guided 2 M.Phil., and 6 Ph.D., She completed 2 UGC projects and 1 Institutional project. She served as IQAC Coordinator, NSS Coordinator, Eco club and Biodiversity club Coordinator. She is a Chairman of board of study of the college and subject expert of board of study of various colleges. She is a member of various academic bodies like Academic council, Admission committee, standing committee. She is an editorial Board member of International Journal of Applied Chemistry and Biological Sciences (IJACBS). She presented many articles in International and National level Seminar and Conferences. She organized number of National level and state level Symposium and Workshop. She acted as Resource person in many programmes and also conducted Ph.D., Doctoral Committee in various colleges. She acted as subject expert in staff selection in many colleges. She acted as Selection committee member of staff in Erode Arts and Science College.



### A. Murugan

Research Department of Zoology, Erode Arts and Science College, Erode-09, Tamil Nadu, India.

He is a Ph.D Research Scholar in the department of Zoology at Erode Arts and Science College (Autonomous), Erode, Tamilnadu, India. He is more interested in Research work. M.Phil Dissertation works the title of "A study on water and soil analysis of kullampatti lake, Salem district, Tamilnadu". He published 2 papers in International Journals.



### G. Manjula

Research Department of Zoology, Erode Arts and Science College, Erode-09, Tamil Nadu, India.

She is a Ph.D Research Scholar in the department of Zoology at Erode Arts and Science College (Autonomous), Erode, Tamilnadu, India. She is more interested in Research work. She published 5 papers in International Journals. She presented Research articles in National level conferences.

### New Visions in Biological Science Vol. 1

Determining the Bioactive Constituents in Calotropis gigantea Leaves by GC-MS, HPLC and FTIR Techniques



#### P. Arulmanickam

Research Department of Zoology, Erode Arts and Science College, Erode-09, Tamil Nadu, India.

He is a Ph.D Research Scholar in the department of Zoology at Erode Arts and Science College (Autonomous), Erode, Tamilnadu, India. He is more interested in Research work. "Evaluation of bioactivity and toxicity of catica papaya. (caricaceae) against the red flour beetle Tribilium castaneum (coleoptera) (tenebrionidae)". He published 2 papers in International Journals.



#### T. Kavitha

Research Department of Zoology, Erode Arts and Science College, Erode-09, Tamil Nadu, India.

She is a Ph.D Research Scholar in the department of Zoology at Erode Arts and Science College (Autonomous), Erode, Tamilnadu, India. She is more interested in Research work. She published 2 papers in International Journals.



### M. Thinakaran

Research Department of Zoology, Erode Arts and Science College, Erode-09, Tamil Nadu, India.

He is a Ph.D Research Scholar in the department of Zoology at Erode Arts and Science College (Autonomous), Erode, Tamilnadu, India. He is more interested in Research work. He published 2 papers in International Journals.

© Copyright (2021): Author(s). The licensee is the publisher (B P International).

### DISCLAIMER

This chapter is an extended version of the article published by the same author(s) in the following journal. Asian Journal of Advances in Research, 7(1): 1-8, 2021..