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Transformations for Within-Subject Designs: A Monte Carlo Investigation

Lauren K. Bush, Ursula Hess, and George Wolford

We explored the use of transformations to improve power in within-subject designs in which
multiple observations are collected for each S in each condition, such as reaction time and psycho-
physiological experiments. Often, the multiple measures within a treatment are simply averaged to
yield a single number, but other transformations have been proposed. Monte Carlo simulations
were used to investigate the influence of those transformations on the probabilities of Type I and
Type II errors. With normally distributed data, Z and range correction transformations led to
substantial increases in power over simple averages. With highly skewed distributions, the optimal
transformation depended on several variables, but Z and range correction performed well across
conditions. Correction for outliers was useful in increasing power, and trimming was more effective
than eliminating all points beyond a criterion.

Psychologists are fond of transforming their data, occasion-
ally with good reason. The most common reason for transform-
ing data is either that the transformed measure more closely
reflects the psychological process of interest (Levey, 1980) or
that the data do not meet the assumptions for the desired analy-
sis (Winer, 1971). In the latter case, two assumptions that are
often violated are the homogeneity of variance across cells and
the degree to which the data are approximated by a normal
distribution. These two problems are related, and a transfor-
mation that addresses one often improves the other. The appro-
priate transformation depends on the shape of the underlying
distribution. Various transformations have been proposed for
specific cases, including log, reciprocal, square root, and arc-
sine transformations. Kruskal (1968) and Smith (1976) have
provided excellent overviews of these transformations and
when to use them.

A second, and related, reason for transforming data is to
lessen the impact of outliers. Two common techniques are
trimming and eliminating all points beyond a certain criterion.
Wilcox (1992) has provided a nice overview of trimming as a
technique for dealing with outliers.

A third reason for transforming data is to eliminate differ-
ences in reactivity or variability across subjects. These transfor-
mations apply only to designs in which each subject receives all
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levels of the independent variable and in which each subject
yields multiple observations at every level. The three types of
transformations are interrelated in their effects. For instance,
eliminating outliers tends to normalize the distributions and
equate variances. In the present investigation, we concentrated
on the third type of transformation (equating reactivity), but in
several situations we used these transformations in concert with
the other types of transformations.

Two examples illustrate the paradigms in which the reactiv-
ity transformations apply (both are somewhat simplified from
their usual implementation). In the first example, subjects view
two different videotapes, one depicting a humorous situation
and one depicting a neutral situation. During the showing of
each videotape, heart rate is recorded every few seconds. In the
second example, subjects participate in the cuing paradigm de-
veloped by Posner (1978). On each trial, subjects try to detect a
target as rapidly as possible. On some trials, the probable loca-
tion of the target is cued in advance; on other trials, it is not
cued. Latencies are recorded on numerous trials of each of the
two conditions, cued versus uncued.

In both paradigms, each subject contributes, several observa-
tions to each of the two conditions. Prior to analyzing the data,
most researchers collapse those several numbers into a single
number for each condition. The most common procedure is to
use the mean of all of the numbers within a condition as the
score for that condition. In the present article, we examined
several alternatives to the simple mean to determine whether
any are superior.

Most of the transformations performed to eliminate differ-
ences in reactivity scale the effect of an independent variable
for a given subject in terms of that subject's variability. The logic
behind such transformations is that subjects differ substantially
in variance or reactivity and that a change of n units from Con-
dition 1 to Condition 2 might imply more or less of an effect for
different subjects. Such transformations would be successful if
the transformed data more accurately reflected the influence
of the independent variable. Our measure of success was the
statistical power of the various transformations as determined
in Monte Carlo simulations.
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Before describing the transformations we examined, we want
to emphasize that there are situations in which it would be
inappropriate to use them (Townsend & Ashby, 1984). For ex-
ample, if the experimenter has reason to believe that the depen-
dent measure achieves a ratio-level scale of measurement and
that the ratios are of theoretical interest, then the only transfor-
mation that would be permissible is a multiplicative transfor-
mation, because that is the only one that preserves meaningful
ratios (Townsend, 1992). The transformations that we discuss
would be inappropriate because they would destroy the mean-
ingfulness of the ratios. If, however, the experimenter was inter-
ested in whether two treatments were significantly different
and not in the exact ratios, then our transformations would be
appropriate. A readable treatment of measurement theory has
been provided by Roberts (1979). We return to the issue of
meaningfulness in the Discussion section.

There are other reasons to be wary of transformations be-
sides loss of meaningfulness. It is essential to remember that
when data are transformed, some information is removed, and
a different question is addressed than was addressed with the
raw data.1 A transformation might make it more difficult to
communicate the results if it were contrary to normal conven-
tion. It might also make it difficult to compare the data with
previous data (Cacioppo, Tassinary, & Fridlund, 1990). In the
present analysis, we judged the success of our transformations
solely on the basis of statistical power. If a transformation im-
proved statistical power but was contrary to normal conven-
tion, it would be easy to report both the transformed and the
raw data.

The two paradigms illustrated earlier—psychophysiology
and information processing—diverge in their concern over ap-
propriate transformations. We discuss each paradigm in turn.

In psychophysiology, the recommended procedure varies
somewhat with the dependent measure. The transformations
that have been used with skin conductance include range-
corrected scores, ratio-corrected scores, within-subject stan-
dardization, and log and square root transformations. Range-
correction transformations (Lykken, 1972; Lykken, Rose,
Luther, & Maley, 1966) express an individual's response to a
particular stimulus as a proportion of his or her range of re-
sponsivity and presumably reduce variance due to individual
differences in basal level. Ratio-correction transformations
(Paintal, 1951) express a particular skin conductance measure
as the ratio of that response to the subject's maximal response.
The within-subject Z transformation expresses each individ-
ual's responses relative to his or her mean and standard devia-
tion (e.g., Ben-Shakhar, 1985,1987). Log and square root trans-
formations have been proposed specifically for the purpose of
normalizing the sample distribution (Venables & Christie,
1980).

The decision to represent data in a particular way depends
not only on the sensitivity of that representation to treatment
effects, but also on the specific process that one is trying to
study (for detailed discussions of the processes that underlie
skin conductance responses, see Edelberg, 1972; Fowles, 1986).
When the range correction and within-subject 7. transforma-
tion methods are used, information about individual differ-
ences is lost, and for this reason some researchers do not favor
their use (Stemmler, 1987a). Researchers who favor the use of

such transformations often justify the loss of basal-level infor-
mation by arguing that basal levels usually reflect individual
difference variance unrelated to the psychological process of
interest and that transformation enhances their analysis's sensi-
tivity to "real" treatment effects (e.g., within-subject Z transfor-
mation, Ben-Shakhar, 1985; range correction, Lykken & Ven-
ables, 1971).

Many researchers favor transformations that enhance sensi-
tivity to "real" effects (Levey, 1980), but not all agree that these
transformations enhance power (cf. Ben-Shakhar, 1985,1987;
Stemmler, 1987a, 1987b). Recently, Stemmler (1987a) suggested
that within-subject standardization could actually reduce an
analysis's sensitivity to "real" treatment effects by dispropor-
tionately reducing the contributions of the more reactive sub-
jects. He used an artificially constructed data set to illustrate
his concern. Our goal in the present investigation was to exam-
ine systematically the effect of these transformations on statis-
tical power.

Researchers who use reaction time paradigms (e.g., cognitive
psychologists) have worried less than psychophysiologists
about techniques for combining the multiple measures within a
condition into a single number. The vast majority of such re-
searchers take the mean of all the reaction times within a cell
for a subject and carry out subsequent analyses on those means.
On rare occasions, the reaction times are subjected to a log or
square root transformation, or medians are used rather than
means. Researchers who use reaction time paradigms do worry
about outliers, however, and often perform some procedure to
eliminate deviant reaction times. The most common procedure
is to eliminate all data points more than k standard deviations
from the mean of a subject's condition. We examined the effect
of outliers and the procedures for dealing with them in con-
junction with the various transformations.

Previous researchers (e.g., Ben-Shakar, 1985) have examined
the power of various transformations by taking an empirically
obtained data set, carrying out several different transforma-
tions, and determining which transformation yielded the high-
est F value for that data set. This method has advantages and
disadvantages. The advantage is that the data are guaranteed to
be realistic (the underlying distributions are correct, the values
are appropriate, etc.). The disadvantage is that because the true
outcome is necessarily unknown, the transformation that max-
imizes the F value may not be the best one; it may be yielding a
Type I error. In addition, it is difficult to draw conclusions from
a small number of data sets.

We examined the power of the various within-subject trans-
formations by using Monte Carlo simulations. We generated
hundreds of thousands of data sets with and without real ef-
fects, employed each of the recommended transformations,
and recorded the probabilities of Type I and Type II errors for
each transformation. We varied the shape of the underlying
distribution, the way in which effects were added, the number
of subjects, the number of observations per subject, the effect
size, and the presence or absence of outliers.

1 It should be pointed out that any procedure for reducing the multi-
ple observations to a single number per condition, including a simple
average, is a transformation and removes some of the information.
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Overview of the Approach

A description of the general flow of the Monte Carlo pro-
gram will allow a better appreciation of the procedures and
results. For purposes of description, we used heart rate as the
dependent measure. For a given set of parameters, we carried
out either 1,000 or 10,000 experiments. We used a two-stage
sampling procedure. In the first stage, we chose n subjects and
the sampling parameters for those subjects. We assumed that
each subject had his or her own heart rate distribution and that
those individual distributions differed in both mean and vari-
ance. For each subject, then, we chose that subject's mean heart
rate from a normal distribution and his or her standard devia-
tion of heart rate from a chi-square distribution.2 In the second
sampling stage, we chose m observations for each of two condi-
tions from a normal distribution using that subject's mean and
standard deviation. Next, we added an effect to each of the
observations in the second condition. This process was re-
peated for all n subjects. We reduced the m observations for
each subject in each condition to a single number for that con-
dition using each of the transformations. The resulting pairs of
numbers were analyzed with / tests, and the number of signifi-
cant results was recorded. We measured Type I errors by setting
the effect size to zero.

We generated data using both normal and positively skewed
distributions, because both have been reported in the psycho-
physiological and reaction time literature (Venables & Christie,
1980). Specific parameters for the distributions were chosen to
approximate the distributions that have been reported for skin
conductance and heart rate (Graham, 1980; Siddle & Turpin,
1980; Venables & Christie, 1980) and found in data from our
laboratory. We compared five different transformations in the
initial simulations: means of the raw scores, means of the logs of
the raw scores, Z scores, range-corrected scores, and ratio
scores for repeated measures data. All of these transformations
have been recommended for one situation or another. In later
simulations, we added medians and the Z transformation of log
scores to the set of transformations, and we examined the influ-
ence of outliers.

We had some concern about the procedures for choosing ef-
fects. Most Monte Carlo simulations set the effect size at some
fraction of the standard deviation. In our case, there were a
couple of different possibilities for the standard deviation. One
possibility was the mean of the chi-square distribution from
which each subject's standard deviation was chosen, and the
other was the particular subject's standard deviation. In the
former case, every subject would have the same absolute effect
size; in the latter case, every subject would have the same rela-
tive effect size. It also seemed possible that effects are not con-
stant but are random variables from a distribution. Because all
of these possibilities seemed reasonable, we carried out the
initial simulations adding effects in three different ways.

Simulation 1: Normally Distributed Data

Method

Design

Simulation 1 consisted of 1,000 experiments per cell. We varied the
effect size (0, Vt, '/2, or % of the standard deviation), the number of

subjects (10 vs. 20), the number of observations per subject (10 vs. 20),
and the procedure for generating effects. The individual responses
were drawn from normal distributions.

Computations

The simulations were carried out on two different computers: a Mac-
intosh II and a Convex super minicomputer. The simulations were
programmed in BASIC on the Macintosh and in FORTRAN on the
Convex. Both languages and machines make use of high-precision
numbers (10-byte representation on the Macintosh and 8-byte represen-
tation on the Convex). With identical parameters, the two machines
yielded highly similar results; the advantage of the Convex was a mani-
fold increase in speed.

Random numbers were generated using the built-in random-num-
ber generators with random seeds at the beginning of each run. We
then converted the random numbers to normal deviates using an algo-
rithm developed by Box and Muller (1958).

Raw Data Generation

For the first set of simulations, we used data from normal distribu-
tions. The parameters for the normal distributions were chosen to
reflect the type of distribution obtained for heart rate data (Siddle &
Turpin, 1980). Likewise, heart rate data from our laboratory have been
approximately normal in all studies (although a slight positive skew
was occasionally evident). The following parameters were derived
from several studies in our laboratory using college-age students. Each
subject's mean heart rate was chosen from a normal distribution with a
mean of 69 beats per minute (bpm) and a standard deviation of 12
bpm; each subject's standard deviation of heart rate was chosen from a
chi-square distribution with 4 degrees of freedom. (A chi-square distri-
bution with 4 degrees of freedom has a mean of 4 and a standard
deviation of 2.83.)

We chose the mean and standard deviation for each of the subjects
and then, using those parameters, chose the given number of observa-
tions from normal distributions. In the first simulation, the indepen-
dent variables were number of subjects (10 vs. 20), number of observa-
tions per condition (10 vs. 20), and the size and nature of the effect size.
For each subject in each cell, there were two sets of numbers: one
intended to serve as the control or neutral condition and the other as
the experimental condition.

We added an effect to the scores in the experimental condition in
one of three ways. In the absolute case, we added either 0, Vt, Vi, or % of
the mean of the chi-square distribution. In the relative case, we added
0, Vt, Vi, or % of that subject's standard deviation (which had been
chosen from the chi-square distribution). In the distributional case, we
added a number from a normal distribution that had a mean equal to
0, Vt, '/2, or % of the mean of the chi-square distribution. In the absolute
case, the same number was added to every score in the experimental
condition for every subject, but the number represented a different
fraction of each subject's standard deviation. In the relative case, dif-
ferent numbers were added to different subjects' scores in the experi-
mental condition, but those numbers represented the same fraction of
each subject's standard deviation. The distributional case was similar
to the absolute case, except that the effects were not a constant but were
drawn from a distribution with the same mean as the constant. The

2 Differences in mean heart rate did not affect any of our analyses,
because all of the statistics that we carried out were within-subject
analyses. We varied mean heart rate so that the numbers we generated
appeared reasonable. This was useful in debugging the simulations.
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expected value of the effects for a particular size effect (e.g., 'A of the
standard deviation) was the same in all three cases.

Transformations

Once the data for each of the subjects were generated, we applied
each of the transformations to those data. Each transformation re-
sulted in a single number for each condition. Those 10 or 20 pairs of
numbers were then analyzed with a t test for correlated scores, and the
number of significant outcomes using an apha of .05 was recorded.

Means of raw scores. This transformation was accomplished by
computing the mean of all the observations in each cell for each sub-
ject. Each subject was left with two scores: the mean of the observa-
tions in the neutral condition and the mean of the observations in the
experimental condition.

Means of log scores. This transformation was accomplished by
computing the mean of the logs of the observations in each condition
for each subject. Log transformations have been recommended to re-
duce the impact of deviant scores, particularly if the underlying distri-
bution is likely to be skewed.

Z scores. This transformation was accomplished by first finding
the mean and standard deviation of all of the scores for a given subject
across the two conditions. The raw scores were then transformed to Z
scores by subtracting the mean and dividing by the subject's standard
deviation. The mean of the Z scores within each condition was then
computed to represent the single number for each condition.3

Range-correction scores. This transformation involved finding the
minimum score in either condition and then subtracting that score
from each of the subject's responses; this difference was then divided
by the range of scores across the two conditions (maximum response
minus minimum response).4

Ratio scores. This transformation involved finding the maximum
score for each subject across the two conditions and then dividing all
the scores by that maximum. Finally, the mean of those ratios was
computed for each condition.

Simplified calculation. Using a t test for correlated measures, the
last three transformations are equivalent to computing the mean dif-
ference between conditions for a particular subject and then dividing
the mean difference by that subject's standard deviation, range, or
maximum.

Analysis

The result of each of the transformations was a pair of scores for each
subject. We analyzed those pairs (10 or 20, depending on the number of
subjects) using a / test for correlated observations (Winer, 1971). The
result was considered significant if the absolute value of the obtained t
value exceeded the critical value (i.e., a two-tailed decision rule) with a
pof.05.

Results and Discussion

The results of Simulation 1 are presented in Tables 1-3. The
numbers in the tables refer to the percentages of significant /
values from the 1,000 experiments in each cell. Table 1 contains
the results for absolute effect size, Table 2 the results for relative
effect size, and Table 3 the results for effects chosen from a
distribution. The pattern of results is clear. In all the condi-
tions, the Z transformation and the range-corrected transfor-
mation were superior in statistical power to the other transfor-
mations, often by 20% or more. Although the Z and range-
corrected transformations led to similar results, the Z
transformation was slightly superior when there was a differ-

ence. The log transformation was ineffective, as expected with
normally distributed data.

None of the transformations led to spurious Type 1 errors.
Notice, however, that the Type 1 errors were always less than .05
for the means of raw scores. The standard error of that cell was
about 0.7% when the binomial distribution was used. In several
cases, then, the probability of a Type 1 error was significantly
below .05 for the means of raw scores, and certainly in compos-
ite there were too few Type 1 errors with the simple means. This
implies that the t test was overly conservative for the untrans-
formed data in the paradigm that we used. The probabilities of
Type 1 errors occurred in approximately correct frequencies for
the most effective transformations, that is, Z and range correc-
tion.

We believe that within-subject transformations improve
power by scaling effects relative to a subject's own variability or
reactivity (see Simulation 2). The slight superiority of the Z
transformation over the range-corrected transformation was
probably due to the fact that the standard deviation is a more
stable estimate of dispersion than is the range. Estimates of the
minimum and the maximum are influenced strongly by out-
liers. Range-corrected scores, however, may have a more natu-
ral interpretation in some cases because the transformed cell
means represent a particular fraction of the available range.
The ratio transformation improved power over the simple aver-
age but did not fare as well as the Z and range transformations.

Reversals of Effect Direction

Several investigators have expressed concern that transfor-
mations of the type we examined might distort the pattern of
effects. For example, Cacioppo et al. (1990) illustrated how a
different pattern may be obtained with raw means than with Z
means. Such reversals occur when a small number of subjects
have both high variance and effects in the opposite direction
from the other subjects. Because of this possibility, Cacioppo et
al. recommended caution in using transformations and making
comparisons across studies in which different transformations
were used.

All the transformations that we considered are monotonic
within a single subject. That is, if the mean of Condition 2 is
larger than the mean of Condition 1 for a given subject, all the
transformations preserve that ordering. However, the transfor-
mations are not necessarily monotonic with respect to group
means. They change the relative weighting of a subject in the
group and can change the ordering of the group means. Is this

3 One reviewer suggested that it might be more appropriate to com-
pute the standard deviation within each condition and then pool those
estimates rather than compute the standard deviation across all scores.
We tried both methods in Simulation 1, but they led to similar results.
Whenever there was a difference, it was in favor of computing the
standard deviation across conditions, which is the method that we
report.

4 In developing the range correction transformation, Lykken (1972)
measured the range for a subject in a separate session and then used
that range to transform the scores from the experimental sessions. For
purposes of symmetry and convenience, we did not use a separate set
of scores to estimate the minimum and maximum.
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Table 1
Percentage of Significant Results With Normal Distribution and Constant Effect

Effect size

Transformation

10 observations per subject 20 observations per subject

1/4 1/2 3/4 Null 1/4 1/2 3/4 Null

10 subjects per sample

Mean raw
Z score
Ratio
Range
Mean log

34.2
56.2
36.7
54.8
33.1

78.5
92.4
81.0
91.2
77.3

93.6
99.3
95.1
98.4
92.8

3.0
4.9
3.4
5.0
2.8

53.2
75.0
56.8
72.2
52.7

93.3
98.9
94.6
97.5
92.5

99.0
100
99.4

100
98.7

3.8
5.0
4.6
5.0
4.0

20 subjects per sample

Mean raw
Z score
Ratio
Range
Mean log

57.4
89.6
60.6
88.9
55.3

95.2
100
96.9
100
94.0

99.5
100
99.6
100
98.8

4.0
4.9
3.5
5.0
3.1

79.0
98.2
82.3
97.9
76.7

99.6
100
99.9
100
99.2

100
100
100
100
100

4.2
5.8
4.3
5.4
4.1

really a problem? We addressed this question in two ways. First,
in all our simulations, we recorded the direction of every signifi-
cant result. In all the simulations reported herein (approxi-
mately 500,000 experiments), every significant finding was in
the correct direction (i.e., the mean of the experimental group
was greater than the mean of the control group.)5

Second, we further examined the direction of mean differ-
ences for the data in the first column of Table 1 (i.e., 10 subjects,
10 observations, V* of the standard deviation, and absolute ef-
fect). The data represent 1,000 experiments; the results of 342
were significant using raw means, and the results of 562 were
significant using the Z transformation. We examined the direc-
tion of the effect for those experiments without regard to signifi-
cance. The expanded results for the raw and Z means appear in
Table 4. In the vast majority of cases (927 of 1,000), the means
had the correct ordering (i.e., the experimental mean was
greater than the control mean) for both procedures. In 9 other
cases, both transformations yielded an incorrect ordering.
There were, however, 64 cases in which the raw means yielded
an ordering different from that yielded by the Z means. In 63 of
those cases, the Z means were in the correct direction and the
raw means were in the incorrect direction. In short, the trans-
formations that we considered occasionally reversed the pat-
tern of effects seen with raw means, but the reversal was almost
always advantageous in this situation where we knew the
correct answer. Furthermore, such reversals never occurred
with significant effects.

Numbers of Subjects and Observations

We varied the number of subjects and the number of observa-
tions in Simulation 1. Increasing either number increased
power as expected, with a slight advantage for number of sub-
jects. Although we found the same ordering of transformation
effectiveness when numbers of subjects and observations were
varied, a colleague expressed concern that the usefulness of
transformations might diminish if we used large numbers of

subjects or observations. In many reaction time experiments,
there are hundreds of observations per condition per subject.
To test this possibility, we carried out one simulation with 10
subjects and 100 observations and a second simulation with 100
subjects and 10 observations. With these larger numbers, we
used an effect size of 5/100 of the standard deviation to prevent
ceiling effects. In both cases, we found the same ordering of
transformations as shown in Tables 1-3. For example, with 10
subjects and 100 observations, 16.8% of the results were signifi-
cant with raw means, and 31.0% of the results were significant
with Z means. With 100 subjects and 10 observations, 13.5% of
the results were significant with raw means, and 44.9% of the
results were significant with Z means. The effectiveness of us-
ing the Z transformation, therefore, did not appear to diminish
with large numbers of subjects or observations provided that
ceiling effects were avoided.

Procedure for Choosing Effects

We used three procedures for adding effects to the experimen-
tal condition: absolute, relative, and distributional. The rank
ordering of the effectiveness of the different transformations
was identical in all three cases. The numerical results from the
absolute case and the distributional case were nearly identical,
although that similarity would probably diminish if we in-
creased the variance of the effect distribution for the distribu-
tional case. The relative case yielded lower power for small
effect sizes but higher power for larger effect sizes compared
with the other cases. The relative and distributional cases were
probably more realistic than the absolute case. Because the pro-
cedure for adding effects never influenced the ordering of the
effectiveness of the transformations and because most paramet-

5 This was not true for the null case, in which no effect was added to
either group. In this situation, there was no "correct" direction, and the
significant results split approximately equally in the two directions.
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Table 2
Percentage of Significant Results With Normal Distribution and Relative Effect

Effect size

10 observations per subject 20 observations per subject

Transformation 1/4 1/2 3/4 Null 1/4 1/2

20 subjects per sample

3/4 Null

Mean raw
Z score
Ratio
Range
Mean log

22.4
35.0
23.4
34.6
22.1

71.6
88.4
74.3
87.7
69.3

94.3
99.7
95.7
99.7
92.0

3.7
5.4
3.9
5.4
3.8

42.1
59.2
43.7
59.1
40.0

90.8
99.2
93.5
99.1
89.7

98.5
100
99.7

100
98.4

4.3
5.5
4.7
4.8
4.5

Mean raw
Z score
Ratio
Range
Mean log

48.7
64.0
51.2
63.7
47.3

96.2
99.6
97.0
99.2
95.9

99.9
100
99.9
100
99.9

4.6
4.5
5.1
4.4
5.3

79.8
92.7
81.8
91.6
77.7

100
100
100
100
99.8

100
100
100
100
100

4.2
5.8
4.3
5.4
4.1

ric tests assume the absolute case, we used it in all subsequent
simulations.

Simulation 2: Equal-Variance Case

Method

We hypothesized that the success of the Zand range-corrected trans-
formations resulted from scaling a subject's effect size in terms of that
subject's dispersion. As a check on this hypothesis, we repeated one
quadrant of Table 1 (i.e., 10 subjects and 10 observations), assigning
every subject the same standard deviation. All of the details were the
same as in Simulation 1, except that instead of choosing each subject's
standard deviation from a chi-square distribution, we assigned the
mean of that chi-square distribution to every subject. The individual
subject distributions thus differed in mean but not in variability. If the
Z and range-corrected transformations succeed by scaling effects in

terms of an individual's variability, then they should have little effect in
Simulation 2 because all subjects had the same expected variance. The
results of Simulation 2 appear in Table 5. As is shown, none of the
transformations was superior to taking a simple average when all sub-
jects had the same variability. This supports the conclusion that the Z
and range-corrected transformations achieved their additional power
in Simulation 1 by scaling effects in terms of each subject's variability.

Do real subjects differ in variability? Certainly. We based the param-
eters in Simulation 1 on the data of subjects from our previous research.
Those individual subjects differed substantially in the standard devia-
tion of their heart rate distributions, and our impression is that the
differences are also pronounced for reaction time and skin conduc-
tance. For example, in Hess, Kappas, McHugo, Lanzetta, and Kleck's
(1992) study, each subject's heart rate was measured 20 times, and the
standard deviation of heart rate within a subject ranged from a low of
1.76 bpm to a high of 6.66 bpm. Typical effect sizes were on the order
of 3 bpm. In a reaction time study involving speech recognition,

Table 3
Percentage of Significant Results With Normal Distribution and Distributional Effect

Effect size

10 observations per subject

Transformation

Mean raw
Z score
Ratio
Range
Mean log

1/4

35.3
55.0
35.9
54.8
34.9

1/2

75.1
89.4
76.2
89.8
75.5

3/4

10 subjects

92.2
97.8
92.8
97.8
91.8

Null

per sample

3.9
6.5
4.1
6.3
4.1

20 observations per subject

1/4

55.0
75.5
56.2
75.8
54.9

1/2

91.1
98.4
91.7
97.8
91.0

3/4

98.5
99.8
98.9
99.8
98.3

Null

3.0
4.9
3.2
4.6
3.1

20 subjects per sample

Mean raw
Z score
Ratio
Range
Mean log

56.2
87.1
57.7
86.9
55.9

94.0
99.8
94.7
99.8
93.8

99.3
100
99.3

100
99.3

5.2
5.5
5.3
5.8
5.1

80.2
97.6
82.2
97.3
80.4

98.9
100
99.3

100
98.8

100
100
100
100
100

5.2
5.4
5.3
5.1
5.1
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Table 4
Reversals in the Pattern of Effects With Transformations

Z transformation

Raw means

Experimental > control
Control > experimental

Experimental
> control

927
63

Control > experimental

1
9

in most statistics texts for dealing with skewed distributions.
The Z, range, and ratio transformations were modestly superior
to the mean of the raw scores. On the basis of the initial results
of Simulation 3, we tried several additional transformations.
Namely, we applied the Z, range, and ratio transformations to
the logs of the individual scores. Those transformations gener-
ally yielded a small but consistent improvement over the use of
logs alone. We found in Simulation 5 that these results with
skewed distributions were affected substantially by outliers.

Fowler, Treiman, and Gross (in press) had subjects contribute
hundreds of reaction times. The standard deviation of the reaction
times within a subject ranged from a low of 109 ms to a high of 729 ms.
Typical effect sizes were on the order of 125 ms.

Simulation 3: Skewed Distribution

Method

In Simulation 3, we examined the efficacy of the various transfor-
mations with a skewed distribution. Dependent variables such as reac-
tion time and skin conductance often yield skewed distributions. For
example, several investigators have suggested that reaction times are
well fit by a gamma distribution. The gamma distribution is equiva-
lent to the sum of r exponentials, each having the intensity parameter
lambda (X). Researchers have often modeled reaction times by assum-
ing that some number of synapses intervene between the stimulus and
the response and that the transmission time of any one synapse is
distributed as an exponential. The chi-square distribution is a special
case of the gamma distribution in which r= v/2 (where v represents the
degrees of freedom for the chi-square distribution) and X = 0.5. We
used the chi-square distribution in our simulations because it is
slightly easier to work with than the generalized gamma distribution.
A chi-square distribution can be generated as the sum of v squared
normal distributions.

Unlike the normal distribution, the mean, variance, and skew of a
chi-square distribution are interrelated (all three are functions of v). For
that reason, it is not possible to have those parameters vary indepen-
dently. Their interdependence is shown empirically in most reaction
time experiments by a positive correlation between the mean and vari-
ance.

In Simulation 3, then, we began each experiment by randomly
choosing a v for each of the n subjects from a uniform distribution
ranging from 3 to 14. We chose m observations for each condition from
a chi-square distribution with that subject's value of v. As in Simulation
1, we varied the number of subjects (10 vs. 20) and the number of
observations per condition (10 vs. 20). We added effect sizes of 0, lk, Vi,
or 3A of the average standard deviation to each of the observations in
the experimental condition. With v ranging from 3 to 14, the expected
value of standard deviation across subjects was 4.03.

Results

The results of Simulation 3 are presented in Table 6. For the
smallest effect size, the overall power was similar to that shown
for normally distributed data (see Table 1), but with larger effect
sizes more significant differences were found with the skewed
distributions. The log transformation led to a benefit over the
raw scores and was superior in every case to the other transfor-
mations as applied to the raw scores. The advantage of the log
transformation is consistent with the recommendation found

Simulation 4: Outliers, Corrections, and Medians With
Normal Distribution

Method

Both reaction time and psychophysiological measures occasionally
yield scores that appear to be outliers. These deviant data points result
from numerous sources: faulty equipment, shifting electrodes, inatten-
tive subjects, and so forth. Investigators often use some technique to
eliminate these outliers. We considered three common techniques: me-
dians, trimming, and the elimination of all points beyond some crite-
rion. Medians are sensitive only to the ordering of the data and are
therefore less affected than means by extreme outliers. Medians, how-
ever, are insufficient estimators because they do not use all of the data,
namely, the magnitude of the numbers. Miller (1988) has also criticized
medians as being biased, with the magnitude of the bias being a func-
tion of the number of subjects.

We considered two other techniques for dealing with outliers; both
consist of eliminating some of the data points. Winer (1971) described
the use of trimming for dealing with outliers (see also Wilcox, 1992). In
our version of trimming, we eliminated the highest and lowest score
for each subject in each condition. The final, and perhaps most popu-
lar, technique is to eliminate all data points beyond some criterion. In
an informal poll of several colleagues, the most common criterion was
±3 standard deviations from a subject's condition mean. In the same
informal poll, we asked colleagues what percentage of their data were
eliminated with this procedure. The modal response was "around 2%."

In Simulation 4, then, we generated the data as in the upper right
quadrant of Table 1 (i.e., 10 subjects, 20 observations, and normally
distributed data). There were two new variables in this simulation, and
their orthogonal combination yielded six cells. The first variable was
the presence or absence of outliers, and the second variable was the
procedure for dealing with outliers: doing nothing, trimming, or elimi-
nating scores exceeding 3 standard deviations. In the conditions with
outliers, we chose 4% of the data points at random and added±5 stan-
dard deviations to those data points. We chose the frequency and the

Table 5
Percentage of Significant Results With Normal Distribution,
Constant Effect, and Equal Variance Among Subjects

Effect size

Transformation 1/4 1/2 3/4 Null

Mean raw
Z score
Ratio
Range
Mean log

36.9
36.8
36.1
36.6
35.8

87.9
88.0
87.2
87.7
86.2

99.6
99.7
99.6
99.7
99.5

5.1
4.7
4.1
5.0
4.3

Note. Percentages are based on 10 observations per subject and 10
subjects per sample.
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Table 6
Percentage of Significant Results With Skewed Distribution

Effect size

10 observations per subject 20 observations per subject

Transformation 1/4 1/2 3/4 Null 1/4 1/2 3/4 Null

10 subjects per sample

Mean raw
Z score
Ratio
Range
Mean log
Z score log

35.9
40.4
40.3
39.6
44.9
45.3

87.1
89.9
89.3
88.7
93.2
93.3

98.8
99.6
99.7
99.5
99.9
99.9

4.6
5.2
5.2
5.3
5.4
5.7

61.7
65.9
66.0
65.7
72.7
73.9

98.8
99.4
99.1
99.2
99.7
99.7

100
100
100
100
100
100

5.0
5.2
5.1
5.1
5.1
5.3

20 subjects per sample

Mean raw
Z score
Ratio
Range
Mean log
Z score log

64.1
70.8
70.2
70.9
76.2
77.8

99.3
99.7
99.7
99.7
99.8
99.7

100
100
100
100
100
100

5.7
5.1
5.8
5.7
6.0
5.4

92.0
94.0
93.7
93.5
96.2
96.0

100
100
100
100
100
100

100
100
100
100
100
100

4.3
5.1
4.9
4.9
4.7
5.2

magnitude of the outliers to yield approximately 2% outliers as re-
vealed by the 3-standard-deviation (3-SD) elimination procedure. Be-
cause outliers affect the mean and standard deviation of the sample,
the 3-SD procedure does not identify all outliers. We also added me-
dians to the list of transformations.

Results

The results of Simulation 4 appear in Table 7. We expected
outliers to reduce the power of the various tests because they
add to the error variance. In this simulation with normally
distributed data, outliers did reduce the power of all the tests,
in some cases by as much as 10%-15%. Note that with outliers,
the probability of a Type 1 error is less than .05 in most cases.
The ordering of the effectiveness of the different transforma-
tions was the same as in the previous simulations with normally
distributed data. The Z transformation remained optimal,
yielding the highest number of significant results.

Medians

Medians were affected minimally by outliers, as expected,
but were quite low in power compared with the other transfor-
mations (with or without the presence of outliers). Given the
lack of power and the bias problems cited earlier, it is hard to
imagine a justification for using medians with normally distrib-
uted data.6

centages of outliers eliminated with the 3-SD technique are
listed at the bottom of Table 7.)

When 4% outliers were added to the data, the trimming pro-
cedure was clearly superior to doing nothing and to the 3-SD
technique. The 3-SD technique yielded little change from doing
nothing.7 Note that even though 4% outliers were added to the
data, the 3-SD technique generally eliminated fewer than 2%.
This is because the outliers influenced the mean and standard
deviation of a condition and therefore affected the criterion for
elimination.

Simulation 5: Outliers, Corrections, and Medians
With Skewed Distribution

Method

Simulation 5 was similar to Simulation 4 except that we generated
the raw data usinga skewed distribution, as in Simulation 3. The proce-
dure we used to add outliers also differed from that used in Simulation
4. If highly deviant points were added equidistantly above and below
the mean, the skew would change substantially. As a practical example,
consider reaction times. In a simple cuing experiment, the mean reac-
tion times might be around 300 ms, with a standard deviation of 75-
100 ms. Data points more than 5 standard deviations above the mean
can occur in such experiments, but data points more than 5 standard
deviations below the mean are physically impossible. In Simulation 5,

Corrections for Outliers

When no outliers were added to the data, neither technique
for correcting outliers had much effect on power compared
with not using a correction. Surprisingly, the trimming tech-
nique was slightly superior to 3-SD elimination, even though
trimming always eliminated 10% of the data points (2 of 20) and
the 3-SD correction eliminated very few data points. (The per-

6 In all the present simulations, we assumed that the level of measure-
ment of the dependent variable was at least interval. If the data were
ordinal, medians would be the appropriate transformation, and the
parametric tests and other transformations would be inappropriate.

7 In Simulation 4, the outliers were ±5 standard deviations from
the population mean of each condition. If more extreme outliers are
used, then the 3-SD technique is superior to doing nothing at all but is
still worse than trimming.
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Table 7
Percentage of Significant Results With Normal Distribution and Effect of Outliers

Effect size

No outliers Outliers

Transformation 1/4 1/2 3/4 Null 1/4 1/2 3/4 Null

No correction

Mean raw
Z score
Ratio
Range
Mean log
Medians

54.4
75.9
55.8
72.0
54.6
42.5

93.3
99.2
94.1
98.5
93.3
86.7

98.7
100
99.2
99.9
98.7
97.6

3.6
4.9
3.7
4.6
3.4
3.5

40.8
62.4
42.7
57.4
40.8
41.2

82.8
96.2
85.6
92.3
83.1
83.0

96.1
99.6
97.0
98.8
95.8
96.3

3.2
4.6
3.2
4.0
3.4
4.1

Trimming highest and lowest score

Mean raw
Z score
Ratio
Range
Mean log
Medians

56.2
78.0
57.3
75.9
56.3
45.7

90.9
98.8
91.6
98.5
91.0
83.6

99.0
100
99.1

100
99.0
97.7

4.1
6.5
4.5
6.2
4.1
4.2

46.2
68.2
47.9
66.4
46.4
42.1

84.5
96.5
86.2
95.2
84.4
82.2

97.6
100
98.0
99.6
97.1
96.5

3.1
5.5
3.5
5.3
3.4
3.6

Eliminating all scores beyond ±3 standard deviations

Mean raw
Z score
Ratio
Range
Mean log
Medians
% rejected

54.3
15.2
56.1
71.8
54.2
41.8

0.08

90.7
98.5
91.5
97.4
90.3
84.0
0.08

98.5
99.9
98.6
99.8
98.5
96.7
0.08

3.0
4.9
3.0
4.4
3.0
4.1
0.07

41.8
64.0
43.8
58.4
41.6
37.7

1.7

83.0
95.7
85.1
93.1
82.5
81.1

1.7

96.0
99.8
96.7
99.4
96.1
96.0

1.7

3.5
4.7
4.0
5.3
3.4
3.7
1.7

therefore, we added 2% outliers that were 3 standard deviations below
the mean and 1% outliers that were 6 standard deviations above the
mean. This procedure preserved the expected mean of the distribu-
tions, did not affect the skew too much, and led to just more than 2% of
the data points' being eliminated using the 3-S£> procedure.8

Results

The results of Simulation 5 appear in Table 8. The results
differed from those obtained with normally distributed data in
several ways. Outliers drastically reduced the power of the dif-
ferent procedures, especially the use of the raw means. With
outliers, the transformations were especially important, in
some cases leading to three- and fourfold improvement. The
rank ordering of the effectiveness of the different transforma-
tions varied with condition. For instance, the log transforma-
tion yielded better results than the Z transformation in the
absence of outliers or in the presence of outliers when no correc-
tion for outliers was used, but it yielded worse results than Z
when there were outliers and outlier correction was used. Out-
liers and the two corrections for outliers reduced the skew in the
distributions, rendering the log a less appropriate transforma-
tion. The range transformation was similar to Z, that is, slightly
better in some cases and slightly worse in others. The combina-
tion of the log and Z transformations performed quite well,
often yielding the highest power.

Medians

In the absence of outliers, medians were consistently low in
power, as with the normally distributed data in Simulation 4.
The presence of outliers did not affect the power of the me-
dians, but because it reduced the power of the other transfor-
mations, the medians fared relatively well. In several cases with
outliers, medians yielded more significant results than any
other transformation. Corrections for outliers had a limited ef-
fect on medians but large effects on other transformations. Any
advantage of medians over other transformations was reduced
or eliminated by the use of corrections for outliers.

Corrections for Outliers

Corrections for outliers were more important with skewed
data than with normal data, and the effect of the correction

8 We tried various procedures for adding outliers in both the normal
and the skewed case. With normally distributed data, the effectiveness
of the different analysis procedures was not affected by the procedure
for adding outliers. More frequent or more distant outliers reduced
overall power more, but the Z transformation was always best, trim-
ming always helped, and so on. With skewed data, the outcomes were
more sensitive to the technique for adding noise. In particular, the
relative effectiveness of medians and logs varied markedly with differ-
ent procedures. The procedure that we report met the overall proper-
ties that we wanted to satisfy and seemed reasonable to us based on the
data from our laboratory.
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Table 8
Percentage of Significant Results With Normal Distribution and Effect of Outliers

Effect size

No outliers Outliers

Transformation 1/4 1/2 3/4 Null 1/4 1/2 3/4 Null

No correction

Mean raw
Z score
Ratio
Range
Mean log
Medians
LogZ

58.3
62.2
61.5
60.8
69.1
47.2
69.5

98.8
99.1
99.2
99.2
99.6
94.8
99.4

100
100
100
100
100
99.7

100

5.9
5.0
5.1
5.5
5.3
5.5
5.3

13.5
21.5
21.4
21.6
34.9
43.5
40.5

35.1
54.8
52.9
54.7
84.8
93.2
89.2

65.2
82.2
79.4
79.8
99.5
99.8
99.7

4.9
4.8
4.7
4.9
4.5
4.5
5.0

Trimming highest and lowest score

Mean raw
Z score
Ratio
Range
Mean log
Medians
LogZ

60.8
65.4
65.0
64.6
69.3
50.9
70.2

98.5
99.0
99.0
98.8
99.6
96.3
99.7

100
100
100
100
100
100
100

5.0
5.3
5.0
5.2
5.4
5.7
5.4

13.7
44.4
41.4
45.5
41.5
48.3
52.7

29.4
84.1
78.2
86.2
83.1
92.5
94.9

43.8
96.5
93.6
96.9
97.3
99.7
99.5

1.7
4.6
4.4
4.6
3.2
3.7
4.8

Eliminating all scores beyond ±3 standard deviations

Mean raw
Z score
Ratio
Range
Mean log
Medians
LogZ
% rejected

56.6
60.0
60.6
60.8
65.9
44.5
67.9
0.59

98.4
98.9
98.9
98.9
99.3
93.5
99.3
0.59

100
100
100
100
100
99.8

100
0.57

5.0
5.0
5.2
5.2
5.1
5.8
5.0
0.59

8.7
37.9
32.9
38.8
33.1
41.5
47.7

2.22

23.1
77.5
66.8
78.6
69.8
92.8
91.9
2.22

37.7
93.3
86.9
94.0
92.3
99.8
99.0
2.23

1.5
5.4
5.0
5.3
4.4
5.9
5.3
2.20

interacted with the type of transformation. The corrections for
outliers decreased the power obtained with raw means, had
little effect on medians or logs, and considerably increased the
power of the other transformations. As with normally distrib-
uted data, trimming was superior to 3-SD elimination. We
strongly recommend that researchers interested in using the Z
or range transformation consider trimming. Trimming has lit-
tle effect in the absence of outliers but a beneficial effect in the
presence of outliers. In some case, trimming increased the
power of the Z and range transformations by a factor of 2.

Simulation 6: Baseline Measures

Method

The designs used in the first five simulations were somewhat simpli-
fied from their normal implementation. In psychophysiology, in partic-
ular, researchers are interested in changes in the baselines of the
various dependent measures. As a result, many experimenters take
baseline measures prior to each condition. The measures for each con-
dition are corrected for any change in baseline. Several procedures
have been used for those corrections. One procedure is to calculate
difference scores consisting of the value for a condition minus the
value for that condition's baseline. A second procedure is to test for

significant differences in the two baselines and apply a correction only
if there is a significant difference.

In Simulation 6, we looked at the effect of the various transforma-
tions in a design with four cells: two conditions (experimental and
control), each preceded by a baseline. In this simulation, we modeled
an experiment in which there was no difference in the expected values
of the two baselines. Except for the use of four cells rather than two, we
used the same parameters as in Simulation 1. After choosing each
subject's mean from a normal distribution and standard deviation
from a chi-square distribution, we chose m (10 vs. 20) observations for
each of the four cells. Effects were added only to the one cell, the
experimental condition. Effects were added as in the absolute case in
Simulation 1. The results were based on 10,000 rather than 1,000 exper-
iments per condition, and the simulation was executed on the Convex.

We used two sets of transformations. In both sets, the parameters
used in the calculation of the range, ratio, and Z transformations were
calculated by using all four cells. In other words, the mean and stan-
dard deviation for the Z transformation were calculated using the
scores from all four cells; likewise for the minimum, maximum, and
range used in the other transformations. In one set, we applied the
transformations only to the neutral and experimental conditions, ig-
noring the baseline conditions. In the other set, we applied the trans-
formations to the difference scores for the neutral and experimental
conditions from their respective baselines. We have omitted the log
transformation from the report of thissimulation. As in the other simu-
lations in which normal distributions were used, logs were slightly
worse than the simple mean of the raw scores.
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Table 9
Percentage of Significant Results With Normal Distribution and Baseline and Difference Scores

Effect size

Transformation

10 observations per subject 20 observations per subject

1/4 1/2 3/4 Null 1/4 1/2 3/4 Null

10 subjects per sample

Mean raw
Z score
Ratio
Range
Mean difference
Z score difference
Ratio difference
Range difference

29.1
41.4
31.3
40.1
19.7
29.5
19.2
28.1

73.3
85.8
74.0
84.4
50.4
67.1
52.3
66.5

93.5
98.3
94.7
98.1
78.7
90.1
79.2
89.0

5.0
5.1
5.4
5.0
5.1
6.2
4.9
5.0

48.3
64.5
51.4
63.4
30.9
45.7
32.5
44.9

92.3
97.8
93.4
97.8
74.9
87.3
76.4
87.1

99.0
100
100
100
94.5
98.1
96.3
98.7

4.8
5.0
4.6
5.1
3.8
5.0
4.6
5.2

20 subjects per sample

Mean raw
Z score
Ratio
Range
Mean difference
Z score difference
Ratio difference
Range difference

51.5
75.3
53.9
73.9
30.1
54.4
32.9
52.5

95.3
99.5
96.1
99.6
78.7
95.2
80.6
94.1

99.9
100
100
100
97.7

100
97.3

100

5.0
4.9
5.5
5.2
5.0
4.9
5.4
5.2

77.4
95.8
80.4
94.6
53.5
80.2
56.0
78.5

100
100
100
100
95.3

100
97.7
99.9

100
100
100
100
100
100
100
100

4.7
5.8
5.3
5.1
4.3
5.1
4.6
5.4

Results

The results of Simulation 6 are shown in Table 9. As in Simu-
lation 1, the use of the Z and range transformations led to sub-
stantial increases in power, with the Z transformation slightly
superior. The use of difference scores lowered power, but this
was expected because difference scores have a higher expected
standard error. The expected variance of a set of difference
scores is equal to the sum of the variances of the two sets of
scores used in computing the differences. Assuming that the
baseline and condition scores have the same variance, the dif-
ference scores will have twice the variance of either the baseline
or condition scores. The standard error of the difference scores
will be the square root of the variance (i.e., it will be 1.414 times
as large as the standard error of either condition). Notice that
the power for the difference scores was reduced by approxi-
mately that ratio for the smallest effect sizes.

Simulation 7: Baseline With Drift

Method

Judging only from the data in Table 9, it appears disadvantageous to
use difference scores. Most investigators who recommend against us-
ing difference scores either try to allow baselines to stabilize at prestim-
ulus levels (the closed-loop baseline procedure; see McHugo & Lan-
zetta, 1983) or begin by carrying out a significance test comparing the
two baseline measures. Only if this test fails to reach significance do
they carry out the test comparing the two conditions. We did not fol-
low that latter procedure in Simulation 6. If we had, 5% of the baseline
tests would have been significant. This follows from the fact that the
baselines were generated from the same distributions as the conditions
and that a test comparing the baselines is equivalent to the test com-
paring the conditions when the effect size is 0. In calculating the num-
ber of significant results obtained without using difference scores,

therefore, we would have to subtract those cases in which the baselines
were significantly different. That would be equivalent, on average, to
reducing the number of significant results by 5% for each of the cases
that did not involve difference scores. For cases with large effect sizes
(e.g., 20 subjects, 20 observations, and of the standard deviation 3A
effect), difference scores actually would yield higher power than the
baseline test technique because of the 5% artificial loss with the latter.

To illustrate the problem of not using difference scores, we simu-
lated a case in which the baseline drifted in the direction opposite the
effect. Simulation 7 was identical to Simulation 6 except that the base-
line was reduced by the appropriate effect size, and that effect size was
added back to the experimental condition.

The results are presented in Table 10. Because of the baseline drift,
comparisons of the conditions that do not use difference scores have
essentially zero power. The baseline drift causes only a small loss of
power with difference scores. This is obviously a contrived situation,
but it illustrates the danger of not taking difference scores. We did not
apply the baseline drift to the null condition. If we had, the failure to
take difference scores would have resulted in a substantial number of
Type I errors.

The question of how to interpret change scores from different base-
lines remains a controversial topic. Subjects who exhibit different base-
lines may be experiencing different psychological states, making it
impossible to interpret the effect of a treatment. We agree that the
situation is problematic and that change scores do not solve the prob-
lem. We feel that the use of change scores is superior to not using
change scores for the reasons just described, but the problem of the
changing baseline is probably best solved through experimental design
rather than data analysis. The closed-loop baseline procedure de-
scribed by McHugo and Lanzetta (1983) is one design procedure that
addresses the problem of unequal baselines.

Discussion
We examined the effect of various transformations in a par-

ticular paradigm, namely, one in which several observations are
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Table 10
Percentage of Significant Results With Normal Distribution and Baseline Drift

Effect size

Transformation

10 observations per subject 20 observations per subject

1/4 1/2 3/4 Null 1/4 1/2 3/4 Null

10 subjects per sample

Mean raw
Z score
Ratio
Range
Mean difference
Z score difference
Ratio difference
Range difference

4.6
5.0
4.0
5.5

16.3
23.1
17.3
22.6

5.8
5.6
5.1
4.9

46.5
58.2
48.0
57.9

4.6
5.7
4.0
5.4

73.1
83.5
75.4
83.2

5.0
5.1
4.9
5.0
5.1
4.9
4.7
5.0

5.6
5.4
4.7
5.3

28.2
38.0
29.4
37.9

4.7
5.6
5.5
5.3

70.3
82.3
73.9
82.0

5.3
5.8
5.1
4.4

92.1
97.0
93.3
97.1

4.4
5.9
4.6
5.9
4.3
5.0
4.8
5.2

20 subjects per sample

Mean raw
Z score
Ratio
Range
Mean difference
Z score difference
Ratio difference
Range difference

5.4
5.3
4.3
5.9

28.5
43.9
30.6
42.6

4.7
5.0
4.4
4.3

74.6
90.7
76.8
90.4

5.2
5.5
5.8
5.6

95.7
99.8
96.8
99.1

5.0
4.6
5.7
5.1
5.1
5.9
5.1
5.3

5.3
4.8
4.5
5.0

49.2
69.3
52.7
68.5

5.1
5.4
4.7
5.5

94.8
99.6
96.8
99.1

4.2
5.3
5.7
5.5

100
100
100
100

4.7
5.2
5.5
4.9
4.7
4.9
5.1
5.4

collected for each subject in each condition. Such designs are
common in psychophysiological and reaction time experi-
ments. Although several different transformations have been
suggested for these paradigms, most investigators compute a
simple mean for each subject in each condition and then ana-
lyze those means, often after performing some correction for
outliers, such as 3-SD elimination. Our simulations show that
the most common analysis procedures are far from the most
powerful. In almost every situation that we examined, there
were transformations that yielded higher power than simple
means. That increase in power was often substantial, in some
cases a three- to fourfold increase. In no case did those transfor-
mations adversely affect the probability of a Type I error. Cor-
rections for outliers were often quite influential, but, contrary
to popular practice, trimming was more effective than 3-SD
elimination.

In situations in which baselines might change over time, we
examined the effect of the transformations using difference
scores between baseline and treatments. The transformations
had the same effect with difference scores that they did with
raw scores. Logically, if baselines are likely to change, differ-
ence scores offer a more accurate picture of the effect of the
independent variable.

Number of Subjects and Observations

The rank ordering of the effectiveness of the various transfor-
mations did not differ as a function of the number of subjects or
the number of observations per subject, provided the effect size
did not yield ceiling effects. For instance, the Z transformation
was optimal with normally distributed data whether there were

10 subjects or 100 subjects or 10 observations per subject or 100
observations per subject.

In several of the simulations, we varied both the number of
subjects and the number of observations between 10 and 20. In
every case, power was increased more by increasing the number
of subjects than by increasing the number of observations, but
the difference between the two was not large. In most experi-
ments, it is easier and cheaper to increase the number of obser-
vations than the number of subjects. Of course, in the present
simulations we assumed that subjects were independent of one
another and that observations were independent of one an-
other. The latter assumption may be harder to justify in prac-
tice.

Types of Effect

We added three different types of effects to the experimental
conditions: absolute, relative, and distributional. The rank or-
dering of the effectiveness of the various transformations did
not differ as a function of effect type. Most parametric tests
assume that effects are absolute (i.e., a constant is added to every
score in a particular condition). We believe that some combina-
tion of relative and distributional effects is the most realistic,
but the distinction does not appear important for our present
purpose.

Why Transformations Help

Parametric tests, such as the t test, assume that the scores are
identically distributed random variables. One aspect of that
assumption is that each subject is assumed to have the same
variance. As long as each subject contributes only one observa-
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tion, or one observation per condition, there is no way of exam-
ining the equality of variance across subjects. In our simula-
tions, we explicitly manipulated the variance across subjects.
When variability differed across subjects, the transformations
had a positive and, often, large effect. When all subjects were
assigned the same variance, none of the transformations had
any effect (see Simulation 2 in Table 5). The Z, ratio- and range-
correction transformations scale each subject's effect in terms
of that subject's dispersion, thereby equating variance across
subjects. The log transformation tends to equate variance
across subjects and across conditions, but only if the data have a
particular underlying distribution. Thus, if the data are nor-
mally distributed, logs do not increase the homogeneity of vari-
ance, but if the data follow a gamma distribution, logs do in-
crease the homogeneity of variance.

On the basis of all the data that we have examined (from our
laboratory and elsewhere), subjects do differ in variability in
most tasks, often substantially. We believe that these differ-
ences are the rule rather than the exception.

Reasons for Not Transforming One's Data

Although in almost every case the appropriate transforma-
tion yields a substantial increase in power, there are several
reasons for not transforming the data.

Strong Scales and Strong Inference

Sometimes the experimenter has reason to believe that the
data represent an absolute, ratio, or interval scale and is inter-
ested in those absolute magnitudes, ratios, or intervals. There
are some experiments in which the absolute magnitudes of the
dependent measure are of interest for theoretical or logical rea-
sons. For instance, a researcher might be interested in estimat-
ing nerve conduction rates in humans using a reaction time
procedure. In that case, the investigator would wish to deter-
mine the absolute magnitude of the estimated time. Any trans-
formation would destroy those absolute magnitudes. In a simi-
lar fashion, Townsend (1992) argued that there are situations in
which reaction times can be demonstrated to lie on a ratio scale
and the ratios are of theoretical interest. Again, any transforma-
tion other than simple multiplication would destroy the mean-
ingful ratios.

In our opinion, though, many experimenters are primarily
interested in whether an independent variable produces a signif-
icant effect and not in the absolute magnitudes, ratios, or inter-
vals that were obtained. The values that are obtained are a
function of the measuring instrument that is chosen and there
often is not a compelling reason to choose one instrument over
another. For example, in a maze experiment, the experimenter
might measure motivation by measuring the time to reach the
goal. Those reaction times could be converted to speeds by
taking reciprocals. This is a nonlinear transformation and
would certainly change the magnitudes, ratios, and so on. How-
ever, the experimenter could have measured speed in the first
place with a radar gun. Because there might be no a priori basis
for choosing between reaction time and speed, it is hard to
know which one is correct.

Weak Scales

In some experiments, the data may not meet the assumptions
for an interval scale. Perhaps only the ordinal information is
valid. In that case, any monotonic transformation would pre-
serve the meaningfulness of the data, and the transformations
discussed herein are monotonic, at least within a subject. Unfor-
tunately, because it is inappropriate to use parametric tests with
such data, none of the results of the present simulations would
apply. Furthermore, there are only a few distribution-free tests
available for within-subject data, and our transformations
would not affect those tests. For example, a sign test is affected
only by the ordering of each subject's two scores. All the trans-
formations that we examined in the present simulations would
preserve the ordering of the two scores and leave the sign test
unchanged.

Convention

Another reason for not choosing some transformation is the
desire or need to compare the results with results in the litera-
ture. Differences in magnitude across similar studies might
signal important procedural differences that had been over-
looked. There is a danger, though, in choosing an analysis pro-
cedure solely on the basis of convention. It is possible that some
null results in the literature arose from a lack of power rather
than a lack of effect and that an appropriate transformation
might have uncovered those effects. An obvious solution to this
problem is for the researcher to analyze his or her data using
both the conventional procedure and the most powerful proce-
dure based on the results of our simulations. Both analyses
could be reported, and differences in outcomes could be high-
lighted. Differences between analyses could provide useful in-
formation about individual differences.

Distortion of Pattern

As we described earlier, many investigators shy away from
transformations, such as Z, because they worry that such trans-
formations might distort the pattern of results. It is true that
one can obtain a different ordering of conditions with raw
means versus the Z transformation. However, as shown in Ta-
ble 4, when there is a difference in ordering, the Z transforma-
tion is more likely than raw means to yield the correct ordering.
Finally, reversals of orderings never occurred for significant ef-
fects.

Recommendations

On occasion, theory or logic requires the preservation of ab-
solute magnitudes, and transformations should be avoided. On
other occasions, convention dictates a particular form of data
analysis (but see earlier section on convention). In the absence
of either of those circumstances, we recommend the following.

Normally Distributed Data

For normally distributed data, the Z transformation yielded
the highest power, followed closely by the range-correction
transformation. Winer's (1971) trimming procedure enhanced
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power in the presence of outliers and did not reduce power in
the absence of outliers. Therefore, we recommend the use of
trimming in the type of design that we employed. The 3-SD
elimination procedure was inferior to trimming in every way
and should be avoided. Logs and medians reduced power with
normally distributed data and should be avoided.

Skewed Data

For skewed data, the optimal transformation varies accord-
ing to circumstance in complex ways. For instance, medians
yielded the highest power with outliers but the lowest power
without outliers. Furthermore, it is impossible to determine
conclusively with real data whether extreme points are outliers
or not. Therefore, we recommend the use of trimming coupled
with the Z or range-correction transformation. This combina-
tion did not yield the highest power in many cases with skewed
data, but it worked well in every case, was far superior to raw
means, and is easy to employ and understand. We do not recom-
mend the use of the combination of log and Z, even though it
generally yielded the highest power, because the advantage over
the Z transformation alone (provided trimming was used) was
too small to justify the additional complexity. A final advantage
of our recommendation to use the Z transformation with
skewed data is that it is the same as our recommendation for
normally distributed data. This consideration is potentially im-
portant. For our simulations with skewed data, we chose distri-
butions that were highly skewed. As the degree of skew dimin-
ishes, the results converge on the results from the normally
distributed data.
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