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Abstract

Broadly neutralizing antibodies represent the major protective mechanism of vaccines targeting patho-
genic microbes in humans and animals. For HIV, broadly neutralizing antibodies have also been shown 
to be protective in experimental animal models. However, despite the identification of a respectable 
number of broadly neutralizing antibodies from chronically infected HIV-positive persons in recent 
years, attempts to induce such antibodies by vaccines have generally failed over the last decades. 
Though unsuccessful in view of achieving a protective vaccine against HIV, many of these studies have 
contributed significantly to the understanding of the generation of broadly neutralizing antibodies 
against HIV-1 as well as to the vulnerable sites they target on the surface of the virus. Here we review 
the most important features of patient-derived broadly neutralizing antibodies, the long and complex 
B-cell maturation pathways required for their production, and the resulting consequences for vaccine 
development. We further address characteristics of the epitopes targeted by broadly neutralizing anti-
bodies on the virus surface as well as mechanisms of viral escape. Taken together, the identification of 
vaccine candidates able to induce broadly neutralizing antibodies against HIV-1 is the major challenge 
in HIV vaccine development. Mutual coevolution of rationally designed HIV vaccine candidates, with 
affinity maturation pathways of antibodies they induce upon vaccination, may best mimic the natural 
situation of chronically HIV-infected patients who are able to generate broadly neutralizing antibodies. 
(AIDS Rev. 2015;17:107-13)
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Virus neutralizing antibodies prevent 
infections with extracellular pathogens 

The induction of neutralizing antibodies (nAb), which 
bind to the surface of pathogens and thereby block 

their infectivity, is the major mechanism of effective 
vaccine-mediated protection1. Immunogens eliciting 
such protective antibodies against viral infections com-
prise live-attenuated viruses (measles, yellow fever), 
whole inactivated viruses (polio), virus-like particles 
(most recently documented for papillomaviruses2), or 
subunit vaccines (hepatitis B). For a highly variable 
and integrating virus like HIV, these classical viral vac-
cine approaches are either too dangerous due to the 
high probability of emerging replication-competent 
HIV, or have failed to induce nAbs with sufficient 
breadth and potency to neutralize the entire spectrum 
of HIV types and subtypes differing in about 40-50% 
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in their envelope sequences. Nevertheless, also for 
HIV-1, broadly neutralizing antibodies (bnAb) have 
been identified from chronically infected HIV-positive 
persons during natural infection, which were shown to 
protect from infection in experimental animal models3-9, 
to reduce viremia in infected animals10,11, and to delay 
viral rebound after treatment interruptions12. Thus, 
despite the peculiar features of HIV envelope (Env) 
immunogens and the multiple antibody escape 
mechanisms that we will address in this review, bnAbs 
against HIV-1 can principally be induced in a subset 
of patients. It still remains to be understood how to 
transfer the mechanisms of natural generation of these 
bnAbs and their complex affinity maturation pathways 
into efficient vaccination approaches.

HIV-1 Env antigens, a highly  
flexible mobile target

In contrast to other enveloped viruses, HIV-1 particles 
only contain a limited number of Env spikes, about 14, 

integrated into its lipid membrane. This number is 
sufficient for infection of target cells, but minimizes the 
exposure to and crosslinking by nAbs13 as well as 
the activation of naive B-cells. Each native functional 
Env spike consists of three gp120 surface molecules 
responsible for receptor binding, which are non-cova-
lently linked to three gp41 transmembrane proteins 
mediating membrane fusion during virus entry. This 
non-covalent linkage allows a high degree of molecular 
flexibility of Env during the multistep virus entry pro-
cess: after binding to the primary receptor CD4, exten-
sive conformational rearrangements have to occur in 
the Env trimer to expose functional coreceptor binding 
epitopes. The comparison of crystal structures of unli-
ganded and CD4-bound gp120 nicely documents the 
conformational changes induced upon CD4 binding, 
which go along with changes in antigenicity14,15. 
The delayed exposure of the CD4-induced epitopes 
restricts nAb access to the highly conserved corecep-
tor binding epitopes as the virus particle is already 
attached closely to the cell surface at this time point16. 
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Figure 1. Env antigenic properties and escape mechanisms from broadly neutralizing antibodies. (a) Due to a low number of Env spikes, 
binding of bnAbs (center, light blue) is limited and crosslinking between Env protomers (purple) is prevented. (b) Gp120 (purple balls) 
shedding due to non-covalent association with gp41 after cleavage fools the immune response, as novel non-functional epitopes are exposed 
on shedded gp120 and gp41 stumps (purple lines). (c) BnAbs access to functionally relevant entry epitopes is restricted by a glycan shield 
(gray), which masks the Env spike. (d) Antigenic Env variants (light blue, green) escape from neutralizing antibody response. (e) Env 
antigens (light blue) recognized by highly affinity matured bnAbs (light blue) are generally not able to bind and stimulate unmutated B-cell 
receptors (dark blue) on naive B-cells (B). bnAbs: broadly neutralizing antibodies.
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Further conformational changes occur after coreceptor 
binding, in particular in gp41, which folds into a six 
helix bundle to mediate membrane fusion between the 
virus and the cell17-19. 

Besides protection of epitopes relevant for HIV-1 
entry through consecutive receptor-induced exposure, 
HIV-1 has evolved several other immune-evading 
mechanisms to minimize induction of as well as recog-
nition by nAbs (Fig. 1). Non-covalent linkage of gp120 
and gp41 renders the native spike unstable due to 
shedding of gp120 subunits into the circulation. These 
non-functional monomeric gp120 molecules as well as 
the remaining membrane-associated gp41 stumps 
fool the immune system by being immunodominant in 
terms of antibody induction. However, these antibodies 
are non-neutralizing. 

The high variability of HIV per se is another factor 
contributing essentially to evade antibody responses 
mounted against the virus. Due to the high error rate 
of the reverse transcriptase (1-10 mutations per ge-
nome per replication cycle) as well as the recombi-
nation events, the transmitted virus evolves into a 
“quasispecies” shortly after infection, from which 
variants able to evade nAb responses can be se-
lected. Thus, a few HIV variants able to escape the 
initial antibody response initiate new infection cycles 

despite the presence of nAbs against the infecting 
virus. Further, the variable loops in the gp120 molecules 
cover the trimeric spike to protect the more conserved 
functional epitopes necessary for infection from an anti-
body attack and therefore are particularly prone to ac-
cumulation of mutations. A peculiar feature of HIV-1 Env 
proteins is also their extreme degree of glycosylation, 
whereby N-glycans contribute about 50% of the mo-
lecular mass of Env. The composition of the Env gly-
cans is cell-type dependent, and glycosylation affects 
antibody binding by masking neutralizing epitopes 
through steric hindrance, by conformational alterations, 
or by contributing itself to antibody binding20,21. The 
evolving glycan shield21,22 is driving viral evolution as 
variable N-linked glycosylation sites shift in position 
over time, in particular in the variable regions, thus 
evading nAbs. 

Elicitation of broadly neutralizing 
antibodies during natural infection

Despite the evasion mechanisms described above, 
in recent years very potent and broadly neutralizing 
Abs have been identified from a subset of patients 
chronically infected by HIV-123-27. The best bnAbs neu-
tralize more than 90% of the circulating HIV strains 
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Figure 2. Evolving broadly neutralizing antibody responses to HIV during the course of infection. Broadly neutralizing antibodies (bnAbs) 
need years to develop (right). The first antibody response after a few weeks is non-neutralizing, followed by antibodies neutralizing the 
autologous strain. After about a year first cross-neutralizing antibodies with restricted breadth appear and finally bnAbs are generated in 
about 20% of the patients.
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tested with IC50 (inhibitory concentration resulting in 
50% neutralization) between 10 and 100 ng/ml28. Gen-
erally, the development of bnAbs takes time, the first 
ones appearing 2-4 years after infection29 (Fig. 2). The 
initial antibody response against the infecting virus is 
generated a few weeks after infection and often targets 
gp41. These antibodies are followed a few weeks later 
by gp120-directed antibodies; however, these initial 
antibodies are strain-specific and non-neutralizing30. 
After only a few years, antibodies able to neutralize 
heterologous HIV-1 strains are detectable in about 
20% of chronically infected patients. About 1% are 
termed “elite neutralizers” as their plasma is able to 
neutralize the majority of circulating HIV-1 strains31.

The discovery of potent bnAbs in selected patient 
sera initiated a global effort to characterize these anti-
bodies as well as the epitopes they target on the viral 
spike, with the final aim to rationally guide the design 
of new immunogens able to induce such antibodies 
upon vaccination32-36. Over the last years numerous 
studies in this field led to the recognition that only a 
few conserved regions on the viral spike are targeted 
by bnAbs28,37. These include in gp120 the CD4 binding 
site, glycan-dependent conformational epitopes in the 
V1/V2 loop, a glycan-dependent site at the base of the 
V3 loop, and in gp41 the membrane proximal external 
region (MPER) (Fig. 3). In fact, the first generation nAbs 
(b12, 2G12, 2F5 and 4E10) identified from patients 

based on the phage display technology or B-cell im-
mortalization38,39 target the CD4 binding site, a glycan, 
and the MPER region, respectively. 

More recently, new screening technologies involving 
antigen-specific single B-cell sorting, followed by the 
cloning of the respective antibody genes40-45, ad-
vanced the field rapidly, resulting in a plethora of new, 
much more potent and bnAbs (www.bnAber.org). Very 
potent and bnAbs identified recently in these screen-
ings target the gp120/gp41 interface, probably interfer-
ing with the conformational rearrangements in Env re-
quired during virus entry46,47. Interestingly, although 
sugars usually are not recognized as foreign by the 
immune system, some antibodies are able to target 
HIV-1 Env glycans as these are often of the oligoman-
nose type in contrast to complex glycans usually pre-
dominating on cellular proteins48,49. Among them are, 
besides the first-generation monoclonal antibody 2G12 
recognizing a cluster of α1-2 mannose residues on 
gp12050, PGT 125-128, and PGT 130-131 binding spe-
cifically to the Man8/9 glycans on gp120 and potently 
neutralizing across clades51,52.

Furthermore, bnAbs share unusual properties ham-
pering their induction. The bnAbs are often polyspe-
cific, i.e. they cross-react with cellular proteins or phos-
pholipids53. Thus, they may be subjected to tolerance 
mechanisms, resulting in potential elimination of the 
respective autoreactive B-cells. Many of the bnAbs are 

Viral membrane

V1/V2
conformational

Gp120 carbohydrates

Gp120/gp41 interface
MPER

CD4 binding site

V3

Figure 3. Location of epitopes for broadly neutralizing antibodies on the Env spike. The trimeric Env spike is shown schematically. Gp120 
is in light gray, gp41 in dark gray, and the viral membrane is striped. Broadly neutralizing antibodies can be classified according to their 
target region on the Env spike. MPER: membrane proximal external region.

N
o

 p
ar

t 
o

f 
th

is
 p

u
b

lic
at

io
n

 m
ay

 b
e 

re
p

ro
d

u
ce

d
 o

r 
p

h
o

to
co

p
yi

n
g

 w
it

h
o

u
t 

th
e 

p
ri

o
r 

w
ri

tt
en

 p
er

m
is

si
o

n
  o

f 
th

e 
p

u
b

lis
h

er
. 

 
©

 P
er

m
an

ye
r 

Pu
b

lic
at

io
n

s 
20

14



Yvonne Geiß and Ursula Dietrich: HIV Neutralizing Antibodies

111

characterized by long CDR3 regions in their immuno-
globulin heavy chains54-56, which can form a “hammer-
head-like” structure, enabling the interaction with 
the HIV-1 envelope protein. Another unusual feature of 
HIV-1 bnAbs is the high degree of somatic hypermuta-
tions, in particular within the HCDR3 region, reaching 
up to 32% in some of the known bnAbs43,57,58. This 
reflects the complexity of the mutational maturation 
pathways required for the generation of such high-af-
finity bnAbs. 

The dilemma: How to design Env 
immunogens able to induce  
broadly neutralizing antibodies  
upon vaccination?

As outlined above, bnAbs can be generated in pa-
tients chronically infected by HIV-1; however, no Env 
immunogen designed so far was able to induce such 
bnAbs upon vaccination. One reason for this may be 
the extensive B-cell maturation pathways required to 
generate these special antibodies with highly mutated 
and extra long HCDR3 regions, which ultimately en-
able high-affinity binding to the rapidly evolving Env 
antigens. Thus, structural analyses performed on 
bnAbs and their cognate epitopes do not necessarily 
reflect the original Env epitope, which was able to 
stimulate a naive B-cell having complementary B-cell 
receptors. Env immunogens as components of a vaccine 
have to recognize B-cell receptors on naive B-cells. 
This is the initial stimulation for B-cell differentiation 
and maturation pathways required for high-affinity 
binding antibodies finally secreted from differentiated 
plasma cells. Furthermore, these maturation pathways 
are complex as they have to lead to highly mutated 
and structurally peculiar antibodies by avoiding, at the 
same time, autoreactivity, which would lead to the 
elimination of the corresponding B-cells. In line with 
this, next-generation sequencing approaches led to 
the recognition that the inferred germline precursors 
of bnAbs often do not bind the Env antigens recog-
nized by the mature bnAbs, further proving the dis-
crepancy between known epitope structures for bnAbs 
and suited Env immunogens able to induce such 
antibodies55. Further studies on longitudinal samples 
from patients with bnAbs are needed to better under-
stand the relationships between Env antigens and co-
evolving antibody affinity maturation. It may well be 
that only a mutual coevolution of Env antigens and the 
respective matching B-cell receptors will be able to 

drive antibody affinity maturation to a degree needed 
for broad neutralization of primary HIV-1 strains across 
clades.

Optimization of broadly neutralizing 
antibodies in view of their application  
as therapeutic vaccines

As long as bnAbs cannot be induced through vac-
cination, the large collection of bnAbs may have 
potential for preventive and therapeutic applications, 
in particular, as for some bnAbs, protection from 
infection has been shown in the SHIV/macaque mod-
el or in humanized mice6,59. However, high produc-
tion costs and limited half-life restrict the applica-
tions to special cases. For instance, bnAbs may 
serve as postexposure prophylaxis under certain 
circumstances or they may prevent a rise in viremia 
during antiviral treatment interruptions. There is also 
room for further optimization of bnAbs, which may 
result in reduced quantities needed. Further optimi-
zation could potentially be achieved by (i) increasing 
antibody affinity through genetic engineering, (ii) 
combining various bnAbs targeting different epi-
topes, (iii) combining different paratopes (heteroliga-
tion) in one molecule60, (iv) optimizing the antibody 
size depending on the targeted epitope, i.e. smaller 
antibody formats like single domain antibodies may 
preferentially enter the glycan shield to get access 
to receptor-binding pockets61, (v) expressing and 
continuously secreting bnAb constructs from repli-
cating vectors preferentially at mucosal sites62, (vi) 
providing additional Fc-mediated functions like anti-
body dependent cell-mediated cytotoxicity (ADCC) 
that also target infected cells, and (vii) engineering 
antibodies to target cytotoxic immune cells towards 
HIV-infected cells63. 

Conclusions

The final goal in HIV vaccine development would still 
be the development of a prophylactic vaccine able to 
reduce the number of new HIV infections worldwide 
through active immunization of the healthy population. 
Clearly, the induction of bnAbs by this vaccine is a 
major aim, but this is a very ambitious aim due to the 
difficulties described above. On the other hand, there 
have been some promising results from the last large 
HIV vaccine efficacy trial, RV144, which was the first 
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to show efficacy against sexual HIV-1 acquisition, with 
roughly 30% efficacy at 42 months64. Extensive follow-up 
analyses showed that the major immune correlates 
of protection were antibodies directed against the 
V1V2 region of gp120; however, interestingly, these 
antibodies of the IgG1 and IgG3 subclass were not 
broadly neutralizing but preferentially mediated ADCC, 
an effect which was abrogated by high titers of IgA 
against Env65. Thus, besides bnAbs, additional anti-
body mediated mechanisms may also contribute to 
vaccine-induced protection. Further studies on infect-
ed and uninfected individuals have to show the con-
tributions of the different antibody mediated protective 
mechanisms66.
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