About
306
Publications
82,668
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
23,282
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (306)
Individuals with autism spectrum disorders and those with Williams syndrome often have impairments in social behaviors. These two neurodevelopmental disorders are often reputed to be on the opposite ends of the social spectrum, with autistic individuals being socially avoidant and those with Williams syndrome highly social. Most research on childre...
The majority of the research examining children with Autism Spectrum Disorder (ASD) and Williams Syndrome (WS) focus on the social domain while few have examined cognitive style and emotionality. Accordingly, this current study assessed the day-to-day cognitive and behavioral functioning of school-age children with ASD, WS, and neurotypical develop...
The study of deaf users of signed languages, who often experience delays in primary language (L1) acquisition, permits a unique opportunity to examine the effects of aging on the processing of an L1 acquired under delayed or protracted development. A cohort of 107 congenitally deaf adult signers ages 45-85 years who were exposed to American Sign La...
Williams syndrome (WS) is a rare neurodevelopmental disorder caused by the hemideletion of approximately 25–28 genes at 7q11.23. Its unusual social and cognitive phenotype is most strikingly characterized by the disinhibition of social behavior, in addition to reduced global IQ, with a relative sparing of language ability. Hypersociality and increa...
Background:
Williams syndrome (WS) and autism spectrum disorder (ASD) are neurodevelopmental disorders that demonstrate overlapping genetic associations, dichotomous sociobehavioral phenotypes, and dichotomous pathological differences in neuronal distribution in key social brain areas, including the prefrontal cortex and the amygdala. The serotone...
Williams Syndrome (WS) is a neurodevelopmental disorder caused by a deletion of 25–28 genes on chromosome 7 and characterized by a specific behavioral phenotype, which includes hypersociability and anxiety. Here, we examined the density of neurons and glia in fourteen human brains in Brodmann area 25 (BA 25), in the ventromedial prefrontal cortex (...
Perturbations to the amygdala have been observed in neurological disorders characterized by abnormalities in social behavior, such as autism and schizophrenia. Here, we quantitatively examined the amygdala in the postmortem human brains of male and female individuals diagnosed with Williams Syndrome (WS), a neurodevelopmental disorder caused by a w...
Williams syndrome (WS) is a rare neurodevelopmental disorder caused by the hemideletion of approximately 25–28 genes at 7q11.23. Its unusual social and cognitive phenotype is most strikingly characterized by the disinhibition of social behavior, in addition to reduced global IQ, with a relative sparing of language ability. Hypersociality and increa...
In this study, MRI and DTI were employed to examine subcortical volume and microstructural properties (FA, MD) of the limbic network, and their relationships with affect discrimination in 13 FL (6 right FL, M = 10.17 years; 7 left FL; M = 10.09) and 13 typically-developing children (TD; M = 10.16). Subcortical volume of the amygdala, hippocampus an...
Williams syndrome (WS) is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we exa...
Williams syndrome (WS) is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we exa...
Accurate assessment of trustworthiness is fundamental to successful and adaptive social behavior. Initially, people assess trustworthiness from facial appearance alone. These assessments then inform critical approach or avoid decisions. Individuals with Williams syndrome (WS) exhibit a heightened social drive, especially toward strangers. This stud...
Williams Syndrome (WS) is a rare genetic disorder with unique behavioral features. Yet the rareness of WS has limited the number and type of studies that can be conducted in which inferences are made about how neuroanatomical abnormalities mediate behaviors. In this study, we extracted a WS-specific neuroanatomical profile from structural magnetic...
Background:
Williams syndrome (WS) is a genetic condition characterized by an unusual "hypersocial" personality juxtaposed by high anxiety. Recent evidence suggests that autonomic reactivity to affective face stimuli is disorganised in WS, which may contribute to emotion dysregulation and/or social disinhibition.
Methods:
Electrodermal activity...
Williams syndrome is a genetic neurodevelopmental disorder characterized by an uncommon hypersociability and a mosaic of retained and compromised linguistic and cognitive abilities. Nearly all clinically diagnosed individuals with Williams syndrome lack precisely the same set of genes, with breakpoints in chromosome band 7q11.23 (refs 1, 2, 3, 4, 5...
Williams Syndrome (WS) is a rare neurodevelopmental disorder associated with a hemideletion in chromosome 7, which manifests a distinct behavioral phenotype characterized by a hyperaffiliative social drive, in striking contrast to the social avoidance behaviors that are common in Autism Spectrum Disorder (ASD). MRI studies have observed structural...
Since the discovery of mirror neurons, there has been a great deal of interest in. understanding the relationship between perception and action, and the role of the human mirror system in. language comprehension and production. Two questions have dominated research. One concerns the role of Broca's area in. speech perception. The other concerns the...
What would language be like if its transmission were not based on the vocal tract and the ear? How is language organized when it is based instead on the hands moving in space, and the eyes? Do these transmission channel differences result in any deeper differences? The existence of primary signed languages allow us to inquire about the determinants...
The present study examines whether individuals with Williams syndrome (WS) might indiscriminately trust in others, as is suggested by their strong tendency to approach and interact with strangers. To assess this possibility, adults with WS (N = 22) and typical development (N = 25) were asked to reason about the trustworthiness of people who lie to...
Both Williams syndrome (WS) and autism spectrum disorders (ASD) are associated with unusual auditory phenotypes with respect to processing vocal and musical stimuli, which may be shaped by the atypical social profiles that characterize the syndromes. Autonomic nervous system (ANS) reactivity to vocal and musical emotional stimuli was examined in 12...
Williams syndrome (WS) is a genetic condition characterized by an overly gregarious personality, including high empathetic concern for others. Although seemingly disparate from the profile of autism spectrum disorder (ASD), both are associated with deficits in social communication/cognition. Notably, the mirror neuron system (MNS) has been implicat...
Williams syndrome (WS) is a genetic condition characterized by a hypersocial personality and desire to form close relationships, juxtaposed with significant anxieties of nonsocial events. The neural underpinnings of anxiety in individuals with WS are currently unknown. Aberrations in the anatomical and microstructural integrity of the uncinate fasc...
Williams syndrome (WS) is associated with deficits in adaptive behavior and an uneven adaptive profile. This study investigated the association of intelligence, visual-motor functioning, and personality characteristics with the adaptive behavior in individuals with WS. One hundred individuals with WS and 25 individuals with developmental disabiliti...
Compromised social-perceptual ability has been proposed to contribute to social dysfunction in neurodevelopmental disorders. While such impairments have been identified in Williams syndrome (WS), little is known about emotion processing in auditory and multisensory contexts. Employing a multidimensional approach, individuals with WS and typical dev...
Williams syndrome (WS) and autism spectrum disorder (ASD) are associated with atypical social-emotional functioning. Affective visual stimuli were used to assess autonomic reactivity and emotion identification, and the social responsiveness scale was used to determine the level social functioning in children with WS and ASD contrasted with typical...
Asymmetrical frontal electroencephalography (EEG) activity is associated with motivational neural systems of approach/withdrawal behaviors. Greater left frontal EEG has been linked to increased appetitive tendencies whereas increased right frontal activity is related to the activation of avoidance mechanisms. Williams syndrome (WS) is a genetic con...
In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD) individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognitio...
In Williams Syndrome (WS), a known genetic deletion results in atypical brain function with strengths in face and language processing. We examined how genetic influences on brain activity change with development. In three studies, event-related potentials (ERPs) from large samples of children, adolescents, and adults with the full genetic deletion...
Williams Syndrome (WS) is a neurogenetic developmental disorder characterized by peaks and valleys of cognitive abilities. One peak that has been understudied is the affinity that many individuals with WS have toward music. It remains unknown whether their high levels of musical interest, skill and expressivity are related to their sociable persona...
The neural basis of action understanding is a hotly debated issue. The mirror neuron account holds that motor simulation in fronto-parietal circuits is critical to action understanding including speech comprehension, while others emphasize the ventral stream in the temporal lobe. Evidence from speech strongly supports the ventral stream account, bu...
The study of sign languages provides a promising vehicle for investigating language production because the movements of the articulators in sign are directly observable. Movement of the hands and arms is an essential element not only in the lexical structure of American Sign Language (ASL), but most strikingly, in the grammatical structure of ASL:...
Growing evidence on autonomic nervous system (ANS) function in individuals with Williams syndrome (WS) has begun to highlight aberrancies that may have important implications for the social profile characterized by enhanced social motivation and approach. In parallel, neurobiological investigations have identified alterations in the structure, func...
Although individuals with Williams syndrome (WS) typically demonstrate an increased appetitive social drive, their social profile is characterized by dissociations, including socially fearless behavior coupled with anxiousness, and distinct patterns of “peaks and valleys” of ability. The aim of this study was to compare the processing of social and...
The molecular and neural mechanisms regulating human social-emotional behaviors are fundamentally important but largely unknown; unraveling these requires a genetic systems neuroscience analysis of human models. Williams Syndrome (WS), a condition caused by deletion of ~28 genes, is associated with a gregarious personality, strong drive to approach...
Demographic characteristics and medications for WS subjects (A) and typical controls (B) in this study.
(DOCX)
Shown are the mean systolic (A) and diastolic (B) blood pressure and heart rate (C) in WS and TC at all time points, including baseline (−30 and −5 min), 1, 20 and 45 min. There is a decreasing trend (not reaching statistical significance between WS and TC) in systolic blood pressure and heart rate response to music in WS but not TC.
(TIF)
Williams syndrome (WS) is a genetic condition with a distinctive social phenotype characterized by excessive sociability accompanied by a relative proficiency in face recognition, despite severe deficits in the visuospatial domain of cognition. This consistent phenotypic characteristic and the relative homogeneity of the WS genotype make WS a compe...
Two neurodevelopmental disorders, Williams syndrome (WS) and autism, are both commonly described as having opposite social
profiles: social avoidance in autism vs hypersociability in individuals with WS. The goal of this study was to contrast the brain activity associated with language
processing in these two populations, in order to understand the...
Williams syndrome (WS) is a genetic condition caused by a hemizygous microdeletion on chromosome 7q11.23. WS is characterized by a distinctive social phenotype composed of increased drive toward social engagement and attention toward faces. In addition, individuals with WS exhibit abnormal structure and function of brain regions important for the p...
One of the most compelling features of Williams syndrome (WS) is the widely reported excessive sociability, accompanied by a relative proficiency in expressive language, which stands in stark contrast with significant intellectual and nonverbal impairments. It has been proposed that the unique language skills observed in WS are implicated in the st...
The personality trait of extraversion has been linked to the network of brain systems controlling sensitivity to cues of reward and generating approach behavior in response, but little is known about whether extraverts' neural circuits are especially sensitive to social stimuli, given their preference for social engagement. Utilizing event-related...
Research investigating the neural organization of signed language and spatial cognition in deaf individuals has demonstrated the same hemispheric asymmetries found in hearing/speaking individuals: the processing of grammatical aspects of signed language (i.e., individual sign and sentence structure) is predominantly the domain of the left hemispher...
Introduction. From results of our previous studies on motion and form coherence thresholds, and on a modification of the Goodale post box task, we have put forward a general hypothesis of 'dorsal stream vulnerability', where certain brain circuits, within the parietal and frontal lobes together with the cerebellum, develop differently to normal in...
Individuals with autism spectrum disorders (ASD) are impaired in understanding the emotional undertones of speech, many of which are communicated through prosody. Musical performance also employs a form of prosody to communicate emotion, and the goal of this study was to examine the ability of adolescents with ASD to understand musical emotion. We...
Individuals with Williams syndrome (WS) demonstrate an abnormally positive social bias. However, the neural substrates of this hypersociability, i.e., positive attribution bias and increased drive toward social interaction, have not fully been elucidated. METHODS: We performed an event-related functional magnetic resonance imaging study while indiv...
Williams syndrome (WS) is a genetic condition characterized by atypical brain structure, cognitive deficits, and a life-long fascination with faces. Face recognition is relatively spared in WS, despite abnormalities in aspects of face processing and structural alterations in the fusiform gyrus, part of the ventral visual stream. Thus, face recognit...
Gene expression level measured by quantitative RT-PCR [14] in WS subjects and normal controls. Expression levels measured by quantitative RT-PCR of lymphoblast cDNA of genes FZD9 (n = 65 WS subjects), BAZ1B (65), STX1A (62), CLDN3 (65), CLDN4 (65), RFC2 (65), CLIP2 (65), GTF2IRD1 (exon 2-3) (65), GTF2IRD1 (exon 10-11) (65), and GTF2I (65) in WS sub...
Proportion of variance in WAIS-R subtests explained by PCA Components 1-11 in our WS cohort. Component 1 alone explains 57.6% of the variance in WAIS-R subtests.
(0.04 MB DOC)
Correlation between quantitative expression of WS genes and WAIS-R VIQ, PIQ, and FSIQ in WS cases. For each gene and test, the top number is the Pearson correlation coefficient (r) and the bottom number is the one-tailed p-value (uncorrected for multiple tests).
(0.05 MB DOC)
WAIS-R subtest descriptions [5, S2].
(0.04 MB DOC)
Syntaxin 1A binds to and regulates multiple ion channels and neurotransmitter transporters. STX1A performs this function in addition to its role in presynaptic vesicle processing.
(0.04 MB DOC)
The deletion of STX1A was confirmed by quantitative PCR in 65 WS subjects and 10 normal controls. A custom TaqMan assay for STX1A was used with standardized TaqMan RNase P Control (VIC) reagents as the endogenous reference. The mean relative copy number of STX1A is 1.05±0.15 in WS (n = 65, solid diamonds) and 1.96±0.14 in normal controls (n = 10, s...
WAIS-R subtest correlation matrix (R2 values) in WS cases (n = 65) and in normal controls. Lower triangle (italics) represents correlations in WS cases; upper triangle represents correlations in normal controls [5]. Performance subtests are listed in bold; verbal subtests in plain font.
(0.05 MB DOC)
WAIS-R subtest loadings on the first principal component in WS cases and in normal controls. Performance subtests are listed in bold; verbal subtests in plain font. Loadings for normal controls are derived from Enns and Reddon [27].
(0.03 MB DOC)
Correlation between quantitative expression of WS genes and WAIS-R subtest scores in WS cases. For each gene and test, the top number is the Pearson correlation coefficient (r) and the bottom number is the one-tailed p-value (uncorrected for multiple tests).
(0.09 MB DOC)
Although genetics is the most significant known determinant of human intelligence, specific gene contributions remain largely unknown. To accelerate understanding in this area, we have taken a new approach by studying the relationship between quantitative gene expression and intelligence in a cohort of 65 patients with Williams Syndrome (WS), a neu...
Williams syndrome (WS) is a genetic condition often paired with abnormal social functioning and behavior. In particular, those with WS are characterized as being relatively hypersocial, overly emotional/empathic, and socially uninhibited or fearless. In addition, WS is associated with abnormal amygdala structure and function. Very little is known h...
A frequently noted but largely anecdotal behavioral observation in Williams syndrome (WS) is an increased tendency to approach strangers, yet the basis for this behavior remains unknown. We examined the relationship between affect identification ability and affiliative behavior in participants with WS relative to a neurotypical comparison group. We...
Williams syndrome is a neurological condition associated with high levels of auditory reactivity and emotional expression combined with impaired perception of prosody. Yet, little is currently known about the neural organization of affective auditory processing in individuals with this disorder. The current study examines auditory emotion processin...
The Williams syndrome (WS) cognitive profile is characterized by relative strengths in face processing, an attentional bias towards social stimuli, and an increased affinity and emotional reactivity to music. An audio-visual integration study examined the effects of auditory emotion on visual (social/non-social) affect identification in individuals...
Individuals with Williams syndrome (WS), a genetically determined disorder, show relatively strong face-processing abilities despite poor visuospatial skills and depressed intellectual function. Interestingly, beginning early in childhood they also show an unusually high level of interest in face-to-face social interaction. We employed functional m...
Functional imaging in humans and anatomical data in monkeys have implicated the insula as a multimodal sensory integrative brain region. The topography of insular connections is organized by its cytoarchitectonic regions. Previous attempts to measure the insula have utilized either indirect or automated methods. This study was designed to develop a...
William's syndrome (WS) features a spectrum of neurocognitive and behavioral abnormalities due to a rare 1.5 MB deletion that includes about 24-28 genes on chromosome band 7q11.23. Study of the expression of these genes from the single normal copy provides an opportunity to elucidate the genetic and epigenetic controls on these genes as well as the...
Genetic contributions to human cognition and behavior are clear but difficult to define. Williams syndrome (WS) provides a unique model for relating single genes to visual-spatial cognition and social behavior. We defined a approximately 1.5 Mb region of approximately 25 genes deleted in >98% of typical WS and then rare small deletions, showing tha...
Williams syndrome (WS) is a genetic disorder caused by a hemizygous microdeletion on chromosome 7q11.23. WS is associated with a compelling neurocognitive profile characterized by relative deficits in visuospatial function, relative strengths in face and language processing, and enhanced drive toward social engagement. We used a combined functional...
Williams syndrome (WS) is characterized by profound impairments in visuo-spatial abilities, but relatively spared face recognition skills. Individuals with WS tend to display “hyper-social’ behavior, the hallmark of which is a preference for, and increased attention to, human faces relative to other visual stimuli. While previous studies have asses...
The drive towards social engagement is a fundamental characteristic of the human species. Scientific pursuits have not yet fully determined the neural and genetic basis of social drive in humans. Williams syndrome (WS) is a genetic disorder caused by a hemizygous microdeletion on chromosome 7q11.23. WS is associated with a compelling symptom profil...
Williams syndrome (WS) is a neurogenetic disorder resulting from a hemizygous microdeletion at band 7q11.23. It is characterized by aberrant development of the brain and a unique profile of cognitive and behavioral features. We sought to identify the neuroanatomical abnormalities that are most strongly associated with WS employing signal detection...
We examine the hemispheric organization for the production of two classes of ASL signs, lexical signs and classifier signs. Previous work has found strong left hemisphere dominance for the production of lexical signs, but several authors have speculated that classifier signs may involve the right hemisphere to a greater degree because they can repr...
Nearly 50 years after the original two articles describing a few individuals with a particular disorder (Williams et al, 1961, and Beuren et al, 1962) followed by the discovery of its genetic basis in 1993 by Morris et al., the field of research on Williams Syndrome is clearly dynamic and expanding rapidly. It attracts growing numbers of researcher...
Despite decades of research, there is still disagreement regarding the nature of the information that is maintained in linguistic short-term memory (STM). Some authors argue for abstract phonological codes, whereas others argue for more general sensory traces. We assess these possibilities by investigating linguistic STM in two distinct sensory–mot...
Inborn Errors of Development is the definitive work on genetically caused abnormalities of human development. Despite the explosion in genetic advances, the causes of two-thirds of all birth defects remain unknown. However, we are on the brink of a revolution in this area, and this book is at the forefront. It is the first book to connect the disea...
Research into phenotype-genotype correlations in neurodevelopmental disorders has greatly elucidated the contribution of genetic and neurobiological factors to variations in typical and atypical development. Etiologically relatively homogeneous disorders, such as Williams syndrome (WS), provide unique opportunities for elucidating gene-brain-behavi...
This study is concerned with ways in which children with Williams syndrome (WS), a rare neurodevelopmental disorder arising from a hemizygous deletion in chromosome band 7q11.23 including the gene for elastin (ELN) and approximately 20 surrounding genes, are affected by social mores of vastly differing cultures: the United States and Japan. WS pres...
We used diffusion tensor imaging to examine white matter integrity in the dorsal and ventral streams among individuals with Williams syndrome (WS) compared with two control groups (typically developing and developmentally delayed) and using three separate analysis methods (whole brain, region of interest, and fiber tractography). All analysis metho...
Williams syndrome (WS) has provided researchers with an exciting opportunity to understand the complex interplay among genes, neurobiological and cognitive functions. However, despite a well-characterized cognitive and behavioral phenotype, little attention has been paid to the marked deficits in social and behavioral inhibition. Here we explore th...
Several lines of investigation suggest that individuals with Williams syndrome (WS), a neurodevelopmental disorder of well-characterized genetic etiology, have selective impairments in integrating local image elements into global configurations. We compared global processing abilities in 10 clinically and genetically diagnosed participants with WS...
Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of approximately 20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the comp...
We propose in this paper a novel approach for the automatic detection of sulcal lines on cortical surfaces as the skeleton of sulcal regions. As a first step, we partition a cortical surface into sulcal and gyral regions by using graph cuts to guarantee a global minimum for an associated variational optimization problem. The Hamilton-Jacobi skeleto...