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We analyze the effects of partial coherence in the image formation of a digital in-line holographic microscope
(DIHM). The impulse response is described as a function of cross-spectral density of the light used in the space-
frequency domain. Numerical simulation based on the applied model shows that a reduction in coherence of
light leads to broadening of the impulse response. This is also validated by results from experiments wherein
a DIHM is used to image latex beads using light with different spatial and temporal coherence. © 2008 Op-

tical Society of America
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1. INTRODUCTION

In-line holography with spherical waves using a lensless
configuration was originally proposed by Gabor [1] while
attempting to address the problem of lens aberrations in
electron microscopy. To address the practical issues asso-
ciated with the hologram reconstruction in the original
method, one of the approaches was to record the hologram
digitally and use numerical techniques for reconstruction.
These methods have been generically referred to as digi-
tal in-line holography (DIH) [2]. Many novel recording
and reconstruction methods have been proposed to ex-
tract information regarding three-dimensional complex
amplitude distribution [3-5] uncorrupted by twin image
and three-dimensional complex spatial coherence distri-
bution [6].

Over the years, DIH has been successfully applied to
imaging microscopic objects with electrons [7,8] and pho-
tons [9-14]. Most of these works use configurations with-
out a lens. In addition to eliminating aberrations, the
lensless configuration is well suited for a wide range of
sources including x rays and deep ultraviolet for improved
resolution [15-17].

In many applications using DIH, it is common to treat
the source as completely coherent, both spatially and tem-
porally. This assumption, though valid in many cases, will
not hold for all. For instance, x-ray sources are partially
coherent. Partially coherent light is also used for many
applications in optical microscopy [18—20]. These applica-
tions would benefit from a generalized treatment that
takes into account the state of coherence of light. Effects
of spatial coherence in lensless Fresnel holography
[21,22] and in-line Gabor holography [23] have been stud-
ied earlier. However these works have mainly dealt with
the spatial coherence effects for the case of quasi-
monochromatic light.

In this paper we provide a theoretical framework for
analyzing the partial coherence effects in the image for-
mation of a digital in-line holographic microscope

1084-7529/08/102459-8/$15.00

(DIHM). The analysis presented is valid for primary or
secondary sources of any state of coherence. The state of
coherence of the source is characterized by the cross-
spectral density (CSD) [24—26] in the space-frequency do-
main. The analysis in the space-frequency domain allows
us to account for any dispersive effect of the object. We
provide an expression for the impulse response in terms
of CSD of the source. The impulse response for the case of
a Gaussian Schell source is simulated. It is seen that a re-
duction in coherence of the light leads to broadening of
the impulse response. This is also validated by results
from experiments wherein a DIHM is used to image latex
beads using light with different spatial and temporal co-
herence.

2. IMPULSE RESPONSE FOR PARTIALLY
COHERENT LIGHT

A. Hologram Formation

The geometry of the system discussed is shown in Fig. 1.
Let o denote the illumination pupil of a planar secondary
source illuminated by a primary source directly or indi-
rectly (through an optical system) with a coherence state
characterized by the CSD function W(p;,ps,w) of the
fluctuating field U(p,,t) and U(ps,t) at two points P; and
Py in the secondary source illumination pupil ; p; and ps
are the position vectors of two points P; and P,. If the
fluctuations U(py,t) and U(psy,t) are members of the sta-
tistical ensemble {U(p,t)=U(p,w)e 7'} that is stationary
at least in the wide sense, Wolf [26] has shown that
W(p1,p2,®) may be expressed as a correlation function in
the space-frequency domain as

W(p1,p2,w) = (U*(p1, 0) U(pg, w)),,. (1)

To find out the impulse response of the system, we con-
sider the interference between the light emanating from
the source and the light scattered from a point object lo-
cated at the point @ with a position vector r;. The scat-
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Fig. 1. Schematic illustrating the notations used in the text. SF
denotes spatial filter (see Fig. 4).

tered wave from the object may be considered to be a
spherical wave emanating from the point @ with an am-
plitude O(r;,w). The scattered and unscattered compo-
nent of the light from the point P; reaches the point P fol-
lowing two paths P;@P and PP given by

ki1 gkl

Ir; = pyf [r -

o/klr-p1
+U(Pp,0)——
Ir - py

(2)

If the distance of the scatterer r; from the source is quite
large compared to the source dimension, the term |r;
-p;| may be approximated as r;—s;-p; in the numerator
and as r; in the denominator; s; is the unit vector along
the vector r;. In the numerator, |r;—p;| appears in the ex-
ponential term multiplied by the factor k. Hence, the ap-
proximation to |r;—p;| used is different in the numerator
and the denominator. Similarly, if the point P lies suffi-
ciently far away from the source, the terms |[r—r;| and |r
-pi| may be approximated as r—s-r; and r—s-p; in the
numerator and as r in the denominator, respectively; s is
the unit vector along the vector r. Using the far field ap-
proximations given above we may write Eq. (2) as

Vl(r (1)) ®(r17 U)) U(pl’ (1))

ejkri ejkr
V1(r8,) = O(0r;,0)U(py, 0) — —e I rpasamy
ri r
ejkr
+ U(py, 0)—e7*P1, 3)
r

A similar expression may be written for the light from the
point Py reaching the point P following two paths P,@QP
and PyP given by
jkr; ejkr
Vy(rs,w) = O(r;, ) U(pe, w)—Te‘jk(si'P2+s'ri)
ejkr
+ U(pz,w)Te‘jks'pZ. (4)

The spectral density at the point P is given by
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S(rs,a)) = f f <Vi(rs,w)V2(rs, w)>d2p1d2P2- (5)

The integration in Eq. (5) is over the source domain o. All
integrals in the following discussion unless otherwise
stated run from —« to +. Substituting Egs. (3)—(5) we ob-
tain

0(r;, w)|?
S(s,w) = JJW(P1,P2,w) —z

i

e~/ksi'(P2-P1)

jkr;
+ e ks (P2-P1) 4 —G)(ri,w)e_jk(si'P2+S"'i‘s'P1)
i

e—jkri

@*(ri,w)ef’“‘s""”s"*‘s"’z)}dZPIdeQ. )

r

If we interchange p; and py in the fourth term and use
the relation W(pg,p1,w)=W#(py,ps,w) (valid for any CSD
function [24,25]), it may be noted that the fourth term in
Eq. (6) is the complex conjugate of the third term. It may
be seen that S(.) is a function of only s and not r since P is
a point in the far field. The first term in Eq. (6) represents
the light reaching P after scattering at @, whereas the
second term represents light reaching the point P directly
from the source without any scattering. The last two
terms represent the interference of the scattered light
with the unscattered light.

The CSD of a statistically stationary source of any state
of coherence may be expanded as a linear combination of
orthonormal functions ¢, (p,w) [26]:

W(p11p2’w) = Z an(w)d);(pl’w)d)n(pZ,w), (7)

where the functions ¢,(p,w®) are the eigenfunctions and
a,(w) are the eigenvalues of the homogeneous Fredholm
integral equation

f W(pl,pz,w)¢n(p1,w)d2p1 = a,(0) $,(pe, ). (8)

In other words, Eq. (7) states that CSD may be expressed
as the sum of contributions from spatially completely co-
herent elementary sources if it is a continuous function
and bounded throughout the source volume [26]. Substi-
tuting Eq. (7) into Eq. (6) we obtain an expression for the
spectral density at a point P in the far field,

|®(ri’w)|2 _
2 (o) by ks o)

i n

S(s,w) =

+ > ()| dy(ks o)

kr;

i

+ ——0O(r;, 0)e Y @, (0) ks L, 0) (ks |, o)
r

i n

e—jkri

9*(ri, a))ejks’riE

i n

a:(w) &:(ksil, (1)) (‘r{;n(ksL, (1)) s

9)

where s, and s;, are the projections of the vectors s and
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s; onto the z=0 plane and &,(.) is the spatial Fourier
transform of ¢,(.) defined as

Gul- ) = f bu(p,w)e 7PV, (10)

Taking a temporal Fourier transform of the spectral
density gives us the intensity at the point P recorded as a
hologram denoted by the function H(.) and given by

H(s, .)=fS(s,w)e‘j""dw. (11)

The first term in the expression for the hologram, ob-
tained by substituting Eq. (9) into Eq. (11), is proportional
to the intensity of the scattered light from the particle,
and the second term is proportional to the reference beam
without contribution from the object. Often the reference
beam is recorded separately and subtracted from the ho-
logram [7,9] to minimize the effects of the zero-order
term. The third and the fourth terms result in the object
image and a twin image of the object during reconstruc-
tion.

B. Numerical Reconstruction

The image of the object is formed by reconstructing the
hologram numerically using the Helmholtz—Kirchhoff in-
tegral [7,9]. The reconstructed intensity at the point r, in
the reconstructed volume is given by

Ur,,7) = f H(s, e/t Ted?s | . (12)
A

The integral in the above equation runs over the area A of
the detector plane. Hereafter, we focus our attention on
the contribution of the third term in the expression for
the hologram given by Eq. (11) [in conjunction with Eq.
(9)]. This term results in the formation of an image of a
point object located at r; denoted as U; and obtained by
substituting the expression for the hologram in Eq. (12):

ejkri
Ui(rC’ T) = f ®(riaw)_2 an(w) J)n(ksiL’w)

i n

Xf $n*(ksl,w)ejks.(rciri)dzsleijm'dw' (13)
A

Equation (13) describes the image formation in a DIHM
with light of any state of coherence. It may be seen that
the image formation for partially coherent light may be
described in terms of the sum of contributions from com-
pletely spatially coherent modes,

Ui(rc’ T) = 2 U?(rc’ T) ) (14)

where
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jkr;

W(rc’T) = f ®(riaw)_an(w)an(ksiL,w)
r

l
[ B werneridts s s
A

is the contribution of the nth spatially coherent mode to
the image formed. If the object is considered to be consti-
tuted of a collection of point objects in a volume () the im-
age of such an object may be obtained by integrating Eq.
(13) over all the object points in the volume :

e/'kri
U(rc’T) = f f ®(ri’w)_2 an(w)(}n(ksiL’w)
Q i n

Xf (Zn*(ksl,a))e"ks"(rC"i)dZSLe‘j“”dwd?’ri.
A

(16)
We may write Eq. (16) as

ejkri _
U(rca T) = f J ®(ri, a))_hi(rc - Iy w)e_]wwadBri’
Q Ti

17

where A;(., ) is the impulse response of the system given
by

hil,) = ) 0, (0) b, (ks; 1, 0) f b, (ks ,0)e*Vd% .
n A

(18)

It may be seen that the impulse response is a function of

the position of the object through the term ¢, (ks;, ,w),
which makes the system shift variant for partially coher-
ent light. We now proceed to discuss a few special cases.

C. Spatially Coherent Light

When the light is completely spatially coherent then the
CSD may be represented by the lowest order mode (n
=0). For this case, the impulse response is given by

h§0h(' ) w) = a()((,()) aO(kSiL’ w)J aO*(kSL’ w)ejks.(.)d2sL .
A

(19)

D. Narrowband Light

For narrowband light the bandwidth Aw is very small
compared to center frequency wy. If the assumption that
the modulus and the phase of the CSD function W(.) is
constant over Aw is valid, then the CSD function may be
approximated as T(w)W(py,P2,wq), T(w) being the spec-
tral density of light. For this case the impulse response
may be written as

R (. 0) = T(0) D) a,(wo) by(kos; 1, wo)

Xf an*(kosbwo)ejkos'(')dzsl. (20)
A
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E. Gaussian Schell Sources
A Schell model source is characterized by CSD of the
form [25]

W(plap2’ w) = \’S(Pl, w) \'S(p27 w),“«(pl - P2, C()) ) (21)

where S(p,w) is the spectral intensity at p and w(p;
— P2, ) is the complex degree of spatial coherence. For the
Gaussian Schell model sources the spectral intensity dis-
tribution and degree of coherence are Gaussian functions
given by

S(p, ) = A(w)e P25 (22)

1Py - Pa, ©) = e P1~ Pl 2(0) (23)

For the Gaussian Schell model sources, the eigenfunc-
tions and eigenvalues, ¢,(p,w) and \,(w), that solve the
Fredholm integral equation [Eq. (8)] are given by [27]

2 1/4 1 _ )
b,x)=| — —=H, (x\2c)e™*", (24)
™ y2'n!
T b n
a,=A s (25)
a+b+c/\a+b+c

where H,(.) is a hermite polynomial of order n, ¢
=\a%+2ab, a=1/40%(w), and b=1/20"(w). In the above
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equations the dependence of a, b, and ¢ on w is dropped
for convenience. The parameter B [27], defined as the ra-
tio of o, to oy, is the measure of degree of global coherence
[27] of the source. When B> 1, the source may be said to
be globally coherent and is well approximated by the low-
est order mode. When 8<1 the source may be considered
to be globally incoherent, and a larger number of modes of
the order of 1/ are necessary to represent the source
properly. The Fourier transform of ¢,(x) in Eq. (24) is
given by

B 2\Y 1 _ [ » » (
b,(v)=| — ——H, | — |e7""*. 26)
" T V2”n! " \,’%

Substituting Eq. (26) into Eq. (20) we get the impulse re-
sponse when a Gaussian Schell source with narrow tem-
poral bandwidth centered at frequency w, is used,

hiSchell(' ,w) = T(w)E (2_0) v an(wo)ﬁn*(ﬁsil>
A\

_ [k
XJ i, ;SL e—k§(|sL\2+|SOL|2)/4cejkOs-(.)d28L.
A V2e

(27)

One could express the impulse response in the time
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Fig. 2. Impulse response evaluated at r,=r,=0 for r, ranging from 0.1 to 0.1 mm for a Gaussian Schell source with (a) =5, 8=0.2 and
temporal FWHM bandwidth equal to 7 nm, (b) 8=5, 8=0.2 and temporal FWHM bandwidth equal to 14 nm, (¢) temporal FWHM band-
width equal to 7 and 14 nm with 8=5, and (d) temporal FWHM bandwidth equal to 7 and 14 nm with 8=0.2. The X axis in all four plots
indicates distance A,, in millimeters. The Y axis shows normalized amplitude.
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domain by taking the temporal Fourier transform of
Eq. (27).

2 1/2 . 5 k
RSl o = g (_C) a (wO)Hn*<_iSn>
—“\ 7

2™"n! \“‘”ZC

_ [ ko A
X f H, —s, e_kg(‘siler‘SOi‘2)/468]k05'(')d28J_ ,
A \2¢

(28)

where

t//(T)sz(w)ef“’wa. (29)

We simulate the impulse response of a DIHM as given in
Eq. (28) (for s;, =0) when a narrowband Gaussian Schell
model source is used. The distance D between the source
and CCD was assumed to be 15 mm. The CCD was as-
sumed to have a square pixel of width 6.7 um. The tem-
poral frequency distribution of the light T(w) was as-
sumed to have a Gaussian distribution with a center
wavelength of 670 nm. The temporal coherence of the
light is varied by varying the temporal bandwidth mea-
sured as full bandwidth at half wavelength (FBHW) of
the Gaussian distribution. Figure 2 shows the plots of the
absolute value of the impulse response A(r) with the x
and y the components of r, ,, and r, equal to zero and r,
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ranging from -0.1to 0.1 mm in steps of 5 um. In the
plots shown in Figs. 2(a) and 2(b) the value of B is
changed keeping the temporal coherence constant. As the
value of B decreases from 5 to 0.2 (decreasing spatial co-
herence), the impulse response broadens in the Z direc-
tion. For B=5, the lowest order mode, n=0, was used to
calculate the impulse response. For the other values of g,
the first 21 modes (n=0 to 20) were used. In the plots
shown in Figs. 2(c) and 2(d) the value of B is kept con-
stant, and the temporal bandwidth of the light is
changed. It may be observed that an increase in temporal
bandwidth of the light (decreasing temporal coherence)
results in the broadening of the impulse response. Fig-
ures 3(a)-3(d) show the corresponding plots of the abso-
lute value of impulse response i(r) when r,=0. Again one
observes a broadening of the impulse response in the X-Y
plane as the spatial and temporal coherence of light de-
creases.

3. EXPERIMENTS

A. System Description

The schematic of the setup used to study the effects of
temporal and spatial coherence in a lensless digital in-
line holographic is shown in Fig. 4. Light from a primary
source illuminates a spatial filter (SF) that serves as a
secondary source. The objects used in this paper are
spherical latex beads of 6 um in diameter mounted onto a

Normalized Amplitude

Normalized Amplitude

(d)

(Color online) Impulse response evaluated in the plane r,=0 for a Gaussian Schell source with (a) =5, f=0.2 and temporal

FWHM bandwidth equal to 7 nm, (b) 8=5, =0.2 and temporal FWHM bandwidth equal to 14 nm, (c¢) temporal FWHM bandwidth equal
to 7 and 14 nm with B=5, and (d) temporal FWHM bandwidth equal to 7 and 14 nm with 8=0.2. The X and Y axes in all four plots
indicate r, and r, in pixels. Each pixel translates to a physical distance 3 um. The Z axis shows normalized amplitude.
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OB]

D

z=0 L
CCD
Fig. 4. Schematic of a lensless DIH setup. An SF, which acts as
a secondary source, is illuminated via an imaging system by a
primary source (S). The light scattered by the micro-object and
the unscattered light forms an in-line hologram at the CCD
plane.

microscopic slide. The light emanating from the pinhole is
scattered by the object. The object beam interferes with
the unscattered reference beam, and the hologram is re-
corded by a CCD (1000 pixels X 1000 pixels, pixel size
6.7 um X 6.7 um) placed at a distance 15 mm from the
source. From each object hologram the zero-order term is
removed by subtracting the reference wave intensity (re-
corded separately). The holograms are then used for the
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numerical reconstruction performed using Eq. (12) over
volume A, X A, XA, centered on the position of the object.
The reconstruction space coordinates are given by Ar
=r,-ro and has an origin at r,=r,. The resolution in the
reconstructed volume is AD/N, 5, in the X direction and
ND/N, 8y, in the Y direction, where D is the distance be-
tween the source and the CCD, §;, and &, are the pixel
pitches of the CCD in the X and the Y directions, and N,
and N, are the number of hologram pixels in the X and
the Y directions.

B. Results and Discussion

Two light sources with different temporal coherence were
used in the experiment. (1) LD1, a laser diode with center
wavelength 670 nm and temporal full width at half-
maximum (FWHM) bandwidth of 2 nm. (2) LD2, a laser
diode with center wavelength 635 nm and FWHM band-
width of 12 nm. The spatial coherence was varied by us-
ing spatial filters of two different diameters, 1 and 5 um.
As the diameter of the pinhole increases, the spatial co-
herence of light decreases. The light emanating from the
pinhole can be considered to be spatially coherent if the
absolute value of degree of coherence of light stays close
to unity within the pinhole. If the degree of coherence of
light drops considerably from the unity value within the
pinhole, then the light is spatially incoherent. In light of
the discussion in Section 2, partially spatially coherent
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Fig. 5. Experimental result showing the reconstructed amplitude at A,,=A,,=0 for A,, ranging from —0.1 to 0.1 mm for (a) source LD1
(FWHM=2 nm) with spatial filters of 1 and 5 um in diameter, (b) source LD2 (FWHM=12 nm) with spatial filters of 1 and 5 um in
diameter, (c) source LD1 and LD2 with spatial filter of 1 um in diameter, and (d) source LD1 and LD2 with spatial filter of 5 um in
diameter. The X axis in all the four plots indicates distance A,, in millimeters. The Y axis shows normalized amplitude.
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Normalized Amplitude

Normalized Amplitude
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Normalized Amplitude

Normalized Amplitude

Fig. 6. (Color online) Experimental result showing the reconstructed amplitude in the plane A,,=0 for (a) source LD1 with spatial filter
of 1 um in diameter, (b) source LD1 with spatial filter of 5 um in diameter, (¢) source LD2 with spatial filter of 1 um in diameter, and (d)
source LD2 with spatial filter of 5 um in diameter. The X and Y axes in all four plots indicate A,, and A, in pixels. Each pixel corresponds
to a distance of 3 um in the reconstruction space. The Z axis shows normalized amplitude.

light can be described as the summation of a large num-
ber of spatially coherent modes. Shown in Figs. 5(a)-5(d)
are plots of the reconstructed amplitude at A,,=A,, =0 for
A,, varying from -0.1 to 0.1 mm at intervals of 10 um in
the reconstruction space. Figure 5(a) shows plots when
two different spatial filters of 1 and 5 um in diameter are
used with light source LD1. Figure 5(b) shows the corre-
sponding plots for light source LD2. Figure 5(c) shows the
plots when two light sources LD1 and LD2 are used with
the spatial filter of 1 um in diameter. Figure 5(d) shows
the corresponding plots for the spatial filter of 5 um in di-
ameter. For a given temporal coherence of the light, as the
spatial coherence decreases, the image of the bead is
broader along the Z direction. Shown in Figs. 6(a)-6(d)
are three-dimensional plots of the reconstructed ampli-
tude in the plane A,,=0 of the reconstruction space. Given
in Figs. 6(a) and 6(b) are the plots when the light source
LD1 is used with spatial filters of 1 and 5 um in diameter,
respectively. Figures 6(c) and 6(d) are the corresponding
plots for the light source LD2. It may be observed that a
decrease in the spatial and temporal coherence of light
leads to a broadening of the reconstructed image of beads.

4. CONCLUSION

We have theoretically analyzed the effects of partial co-
herence in a lensless DIH system. Our analysis is valid

for primary or secondary sources of any state of coher-
ence, though in this paper we have considered a planar
secondary source. It was found that the impulse response
of the system for light of any state of coherence is a func-
tion of the cross-spectral density of the light. The impulse
response was simulated for the case of a Gaussian Schell
model source. We have provided results from experiments
used to image a spherical latex bead using a lensless DIH
microscope using light from two different sources with
varying temporal bandwidth in conjunction with spatial
filters of two different sizes. The experimental results
were found to be in general agreement with the predic-
tions of theory and simulation.
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