Umar Iqbal

Umar Iqbal
  • Research Assistant at University of Bonn

About

61
Publications
9,284
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,614
Citations
Current institution
University of Bonn
Current position
  • Research Assistant
Additional affiliations
August 2010 - August 2011
COMSATS University Islamabad
Position
  • Research Associate

Publications

Publications (61)
Conference Paper
Full-text available
In this work, we introduce the challenging problem of joint multi-person pose estimation and tracking of an unknown number of persons in unconstrained videos. Existing methods for multi-person pose estimation in images cannot be applied directly to this problem, since it also requires to solve the problem of person association over time in addition...
Conference Paper
Full-text available
Despite of the recent success of neural networks for human pose estimation, current approaches are limited to pose estimation of a single person and cannot handle humans in groups or crowds. In this work, we propose a method that estimates the poses of multiple persons in an image in which a person can be occluded by another person or might be trun...
Conference Paper
Full-text available
In this work we propose to utilize information about human actions to improve pose estimation in monocular videos. To this end, we present a pictorial structure model that exploits high-level information about activities to incorporate higher-order part dependencies by modeling action specific appearance models and pose priors. However, instead of...
Preprint
We introduce SimAvatar, a framework designed to generate simulation-ready clothed 3D human avatars from a text prompt. Current text-driven human avatar generation methods either model hair, clothing, and the human body using a unified geometry or produce hair and garments that are not easily adaptable for simulation within existing simulation pipel...
Preprint
Estimating global human motion from moving cameras is challenging due to the entanglement of human and camera motions. To mitigate the ambiguity, existing methods leverage learned human motion priors, which however often result in oversmoothed motions with misaligned 2D projections. To tackle this problem, we propose COIN, a control-inpainting moti...
Preprint
Full-text available
We present a method that reconstructs and animates a 3D head avatar from a single-view portrait image. Existing methods either involve time-consuming optimization for a specific person with multiple images, or they struggle to synthesize intricate appearance details beyond the facial region. To address these limitations, we propose a framework that...
Preprint
Full-text available
There is a growing demand for the accessible creation of high-quality 3D avatars that are animatable and customizable. Although 3D morphable models provide intuitive control for editing and animation, and robustness for single-view face reconstruction, they cannot easily capture geometric and appearance details. Methods based on neural implicit rep...
Preprint
Full-text available
We propose RANA, a relightable and articulated neural avatar for the photorealistic synthesis of humans under arbitrary viewpoints, body poses, and lighting. We only require a short video clip of the person to create the avatar and assume no knowledge about the lighting environment. We present a novel framework to model humans while disentangling t...
Preprint
Denoising diffusion models hold great promise for generating diverse and realistic human motions. However, existing motion diffusion models largely disregard the laws of physics in the diffusion process and often generate physically-implausible motions with pronounced artifacts such as floating, foot sliding, and ground penetration. This seriously...
Preprint
Full-text available
Acquisition and creation of digital human avatars is an important problem with applications to virtual telepresence, gaming, and human modeling. Most contemporary approaches for avatar generation can be viewed either as 3D-based methods, which use multi-view data to learn a 3D representation with appearance (such as a mesh, implicit surface, or vol...
Preprint
We present an approach for 3D global human mesh recovery from monocular videos recorded with dynamic cameras. Our approach is robust to severe and long-term occlusions and tracks human bodies even when they go outside the camera's field of view. To achieve this, we first propose a deep generative motion infiller, which autoregressively infills the...
Preprint
Full-text available
We present SSOD, the first end-to-end analysis-by synthesis framework with controllable GANs for the task of self-supervised object detection. We use collections of real world images without bounding box annotations to learn to synthesize and detect objects. We leverage controllable GANs to synthesize images with pre-defined object properties and u...
Preprint
Human motion synthesis is an important problem with applications in graphics, gaming and simulation environments for robotics. Existing methods require accurate motion capture data for training, which is costly to obtain. Instead, we propose a framework for training generative models of physically plausible human motion directly from monocular RGB...
Preprint
Full-text available
Hand pose estimation is difficult due to different environmental conditions, object- and self-occlusion as well as diversity in hand shape and appearance. Exhaustively covering this wide range of factors in fully annotated datasets has remained impractical, posing significant challenges for generalization of supervised methods. Embracing this chall...
Preprint
Full-text available
A major challenge for physically unconstrained gaze estimation is acquiring training data with 3D gaze annotations for in-the-wild and outdoor scenarios. In contrast, videos of human interactions in unconstrained environments are abundantly available and can be much more easily annotated with frame-level activity labels. In this work, we tackle the...
Preprint
Full-text available
We present KAMA, a 3D Keypoint Aware Mesh Articulation approach that allows us to estimate a human body mesh from the positions of 3D body keypoints. To this end, we learn to estimate 3D positions of 26 body keypoints and propose an analytical solution to articulate a parametric body model, SMPL, via a set of straightforward geometric transformatio...
Preprint
We introduce DexYCB, a new dataset for capturing hand grasping of objects. We first compare DexYCB with a related one through cross-dataset evaluation. We then present a thorough benchmark of state-of-the-art approaches on three relevant tasks: 2D object and keypoint detection, 6D object pose estimation, and 3D hand pose estimation. Finally, we eva...
Preprint
Full-text available
Tracking segmentation masks of multiple instances has been intensively studied, but still faces two fundamental challenges: 1) the requirement of large-scale, frame-wise annotation, and 2) the complexity of two-stage approaches. To resolve these challenges, we introduce a novel semi-supervised framework by learning instance tracking networks with o...
Chapter
Full-text available
We study how well different types of approaches generalise in the task of 3D hand pose estimation under single hand scenarios and hand-object interaction. We show that the accuracy of state-of-the-art methods can drop, and that they fail mostly on poses absent from the training set. Unfortunately, since the space of hand poses is highly dimensional...
Chapter
Estimating 3D hand pose from 2D images is a difficult, inverse problem due to the inherent scale and depth ambiguities. Current state-of-the-art methods train fully supervised deep neural networks with 3D ground-truth data. However, acquiring 3D annotations is expensive, typically requiring calibrated multi-view setups or labour intensive manual an...
Preprint
Training deep neural networks to estimate the viewpoint of objects requires large labeled training datasets. However, manually labeling viewpoints is notoriously hard, error-prone, and time-consuming. On the other hand, it is relatively easy to mine many unlabelled images of an object category from the internet, e.g., of cars or faces. We seek to a...
Preprint
In this work, we study how well different type of approaches generalise in the task of 3D hand pose estimation under hand-object interaction and single hand scenarios. We show that the accuracy of state-of-the-art methods can drop, and that they fail mostly on poses absent from the training set. Unfortunately, since the space of hand poses is highl...
Preprint
Estimating 3D hand pose from 2D images is a difficult, inverse problem due to the inherent scale and depth ambiguities. Current state-of-the-art methods train fully supervised deep neural networks with 3D ground-truth data. However, acquiring 3D annotations is expensive, typically requiring calibrated multi-view setups or labor intensive manual ann...
Preprint
One major challenge for monocular 3D human pose estimation in-the-wild is the acquisition of training data that contains unconstrained images annotated with accurate 3D poses. In this paper, we address this challenge by proposing a weakly-supervised approach that does not require 3D annotations and learns to estimate 3D poses from unlabeled multi-v...
Preprint
Full-text available
Inter-personal anatomical differences limit the accuracy of person-independent gaze estimation networks. Yet there is a need to lower gaze errors further to enable applications requiring higher quality. Further gains can be achieved by personalizing gaze networks, ideally with few calibration samples. However, over-parameterized neural networks are...
Chapter
Estimating the 3D pose of a hand is an essential part of human-computer interaction. Estimating 3D pose using depth or multi-view sensors has become easier with recent advances in computer vision, however, regressing pose from a single RGB image is much less straightforward. The main difficulty arises from the fact that 3D pose requires some form o...
Conference Paper
Full-text available
In this work we propose an online multi person pose tracking approach which works on two consecutive frames $I_{t-1}$ and $I_t$. The general formulation of our temporal network allows to rely on any multi person pose estimation approach as spatial network. From the spatial network we extract image features and pose features for both frames. These f...
Preprint
Full-text available
In this work we propose an online multi person pose tracker which works on two consecutive frames $I_{t-1}$ and $I_t$. The general formulation of our temporal network allows to rely on any multi person pose estimation network as spatial network. From the spatial network we extract image features and pose features for both frames. These features com...
Preprint
Estimating the 3D pose of a hand is an essential part of human-computer interaction. Estimating 3D pose using depth or multi-view sensors has become easier with recent advances in computer vision, however, regressing pose from a single RGB image is much less straightforward. The main difficulty arises from the fact that 3D pose requires some form o...
Article
Human poses and motions are important cues for analysis of videos with people and there is strong evidence that representations based on body pose are highly effective for a variety of tasks such as activity recognition, content retrieval and social signal processing. In this work, we aim to further advance the state of the art by establishing "Pos...
Article
Full-text available
In this work we address the challenging problem of 3D human pose estimation from single images. Recent approaches learn deep neural networks to regress 3D pose directly from images. One major challenge for such methods, however, is the collection of training data. Specifically, collecting large amounts of training data containing unconstrained imag...
Preprint
In this work we address the challenging problem of 3D human pose estimation from single images. Recent approaches learn deep neural networks to regress 3D pose directly from images. One major challenge for such methods, however, is the collection of training data. Specifically, collecting large amounts of training data containing unconstrained imag...
Preprint
In this work, we introduce the challenging problem of joint multi-person pose estimation and tracking of an unknown number of persons in unconstrained videos. Existing methods for multi-person pose estimation in images cannot be applied directly to this problem, since it also requires to solve the problem of person association over time in addition...
Preprint
Despite of the recent success of neural networks for human pose estimation, current approaches are limited to pose estimation of a single person and cannot handle humans in groups or crowds. In this work, we propose a method that estimates the poses of multiple persons in an image in which a person can be occluded by another person or might be trun...
Preprint
In this work we propose to utilize information about human actions to improve pose estimation in monocular videos. To this end, we present a pictorial structure model that exploits high-level information about activities to incorporate higher-order part dependencies by modeling action specific appearance models and pose priors. However, instead of...
Article
Full-text available
One major challenge for 3D pose estimation from a single RGB image is the acquisition of sufficient training data. In particular, collecting large amounts of training data that contain unconstrained images and are annotated with accurate 3D poses is infeasible. We therefore propose to use two independent training sources. The first source consists...
Article
Full-text available
Given a crowd-sourced set of videos of a crowded public event, this paper addresses the problem of detecting and re-identifying all appearances of every individual in the scene. The persons are ranked according to the frequency of their appearance and the rank of a person is considered as the measure of his/her importance. Grouping appearances of e...
Article
Vehicle type (make and model) recognition provides high level of security to the systems that are solely based on automatic license plate detection and recognition. Most of the work in this direction has been done in controlled conditions. In this paper we evaluate in an extensive experimental setting, the strength and weakness of various global an...

Network

Cited By